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Foreword

Welcome to IWBDA 2021!
The IWBDA 2021 Organizing Committee welcomes you to the Thirteenth International
Workshop on Bio-Design Automation (IWBDA). IWBDA brings together researchers
from an an array of life science and computational disciplines including synthetic biol-
ogy, systems biology, and design automation. The focus is on concepts, methodologies,
and tools for the synthesis of biological systems.

While the field of synthetic biology is still nascent, we can already appreciate that many
success stories can be attributed to the joint efforts of researchers with experimental
expertise and researchers making computational contributions. As we work to convert
the design of synthetic biological systems from an ad hoc process to one driven by
standardized components and principles, there is a tremendous opportunity to engage
with new ideas and new communities. IWBDA offers a forum for cross-disciplinary
discussion, with the aim of seeding and fostering collaboration between biological and
computational research communities. We hope that over the next few days, you will all
encounter new ideas you can integrate into your current efforts.

This year, the program consists of 8 workshops, 13 contributed talks, and 7 short pre-
sentations (in lieu of posters): The talks are organized into 6 sessions:
• Standardization of Biological Components
• Screening Methods
• Metabolic and Knowledge Engineering
• Computer-aided design, modelling, and simulation
• Machine Learning
• Data Repositories

In addition, we are very pleased to have two distinguished invited speakers: Dr. Tijana
Radivojevic from the Lawrence Berkeley National Laboratory and Dr. Thomas E. Goro-
chowski from the University of Bristol
IWBDA is proudly organized by the non-profit Bio-Design Automation Consortium
(BDAC). BDAC is an officially recognized 501(c)(3) tax-exempt organization.
We would like to thank all the participants for their contributions to IWBDA. We would
also like to highlight the efforts of the Program Committee and the Virtual Chairs. Our
combined efforts enable us to adapt to a more accessible online format for this year.
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Program
All times BST. Conference to be conducted over Zoom.

Monday, 20th September 2021 15:00 - 15:15 Welcome & Opening Remarks Prashant Vaidyanathan

15:15 - 16:45 Session 1: Standardization of Biological Components, Chair: Andrea Cristina

• 15:15-15:30 Network visualisation of synthetic biology designs

Matthew Crowther, Anil Wipat and Ángel Goñi-Moreno

• 15:30-15:55 Data Representation in the DARPA SD2 Program

Nicholas Roehner, Jacob Beal, Bryan Bartley, Richard Markeloff, Tom Mitchell, Tramy Nguyen, Daniel Sumorok, Nicholas

Walczak, Chris Myers, Zach Zundel, James Scholz, Benjamin Hatch, Mark Weston and John Colonna-Romano

• 15:55-16:20 Excel-SBOL Converter: Creating SBOL from Excel Templates and Vice Versa

Julian Abam, Jeanet Mante, Isabel Pötzsch, Jake Beal and Chris Myers

• 16:20-16:45 Towards collaborative and automated development of resources for data standards in synthetic biology

Jake Sumner Ajibode, Jacob Beal, James Scott-Brown, Thomas Gorochowski, Chris Myers and Goksel Misirli

16:45 - 17:00 Short Break

17:00 - 18:00 Live Keynote I: Dr. Tijana Radivojevic

• Title: Guiding synthetic biology via machine learning and multi-omics technologies.

• Abstract: Synthetic biology allows us to bioengineer cells to synthesize novel valuable molecules such as renewable

biofuels or anticancer drugs. However, traditional synthetic biology approaches involve ad-hoc engineering practices,

which lead to long development times. One of the most important challenges in bioengineering is effectively using

multi-omics data to guide metabolic engineering towards higher production levels. In this talk, I will show our efforts in

developing pipelines for collection of multi-omics datasets, their analysis through machine learning, and the production

of recommendations, with the goal of accelerating the Design-Build-Test-Learn (DBTL) cycle. I will focus on machine

learning techniques that, trained on the multi-omics datasets, provide actionable recommendations predicted to optimize

strain performance and increase production through several DBTL cycles. These tools help guide synthetic biology in a

systematic fashion, without the need for a full mechanistic understanding of the biological system. Our tools also aim to

enable commercially-relevant bioengineering and are currently being deployed by industrial and academic partners.

18:00 - 18:30 Gather Social Hour

18:30 - 20:30 Workshop 1: SBOL Version 3: Data Exchange throughout the Bioengineering Lifecycle
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Tuesday, 21st September 2021

15:00 - 15:05 Welcome & Opening Remarks Jenhan Tao

15:05 - 16:00 Session 2: Screening Methods, Chair: Kenza Samlali

• 15:05-15:30 The Bioware Cyber-Fluidic Platform: A Holistic Approach to Digital Microfluidics

Georgi Tanev, Luca Pezzarossa and Jan Madsen

• 15:30-15:45 An Investigative Platform Comprising Cell-Free Transcription- Translation and Electron Microscopy for Studying

Bacteriophages

Joseph Wheatley, Sahan Liyanagedera, Ian Hands-Portman, Antonia Sagona and Vishwesh Kulkarni

• 15:45-16:00 Engineering SpyTag Bacteriophage K1F for Directional Immobilisation

Sahan Liyanagedera, Joseph Wheatley, Alyona Biketova, Ian Hands-Portman, Antonia Sagona, Kevin Purdy, Tamas

Feher and Vishwesh Kulkarni

16:00 - 16:15 Short Break

16:15 - 17:15 Live Keynote II: Dr. Thomas E. Gorochowski

• Title: Programming biology – controlling the flow of molecular machines empowering life.

• Abstract: Synthetic genetic circuits are composed of many interconnected parts that must control the flows of transcrip-

tional and translational machinery such that a desired biological computation can be implemented. A major challenge

when developing such circuits is that the genetic parts used often display unexpected changes in their behavior when

pieced together in new ways. Such changes can arise due to contextual effects or unintended interactions with the host

cell. In this talk, I will demonstrate how we have been using a variety of sequencing technologies to create a genetic

debugger to pinpoint the root of such failures, as well as our recent efforts to develop “tunable” genetic parts whose

functions can be dynamically altered to fix many of these common issues. I will also discuss some of our recent efforts

to consider the role of evolution in biological design and the concept of the ‘evotype’ as a way to reason about the

evolutionary potential of engineered biology. Taken together, our work provides a more complete and quantitative view

of the inner workings of genetic circuits, offers a route to engineering more robust and adaptive functionalities in living

cells, and improves our understanding of the rules governing the effective reprogramming of biology.

17:15 - 17:45 Gather Social Hour

17:45 - 19:45 Workshop 2: Part I -From Chemical Reaction Network Compilation to Bayesian Parameter Inference

(Compilation with BioCRNpyler)

19:45 - 21:45 Workshop 2: Part II -From Chemical Reaction Network Compilation to Bayesian Parameter Infer-

ence (Model Reduction and Inference)
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Wednesday, 22nd September 2021

15:00 - 15:05 Welcome & Opening Remarks Marilene Pavan

15:05 - 15:55 Session 3: Metabolic & Knowledge Engineering I, Chair: Alejandro Vignoni

• 15:05 - 15:30Modeling of the engineered production of curcumin in Escherichia coli

Michael Cotner, Ellie Brown, Jixun Zhan and Zhen Zhang

• 15:30 - 15:55Codon-Optimized Degenerate Codon Set Design Tool

Akira Takada, Tomer Aberbach, Nicholas Carpino, Georgios Papamichail and Dimitris Papamichail

15:55 - 16:00 Short Break

16:00 - 17:30 Workshop 3: Machine Learning Aided Advances in Synthetic Biology

17:30 - 17:45 Short Break

17:45 - 18:50 Session 4: Metabolic & Knowledge Engineering II, Chair: Dimitris Papamichail

• 17:45 - 18:00 iBioSim Server: a Tool for Improving the Workflow for Genetic Design and Modeling

Thomas Stoughton, Lukas Buecherl, Payton Thomas, Pedro Fontanarrosa and Chris Myers

• 18:00 - 18:25 Optimizing and Classifying Literature Events for Automated Model Extension

Casey Hansen, Julia Kisslinger, Neal Krishna, Emilee Holtzapple, Yasmine Ahmed and Natasa Miskov-Zivanov

• 18:25 - 18:50 New advances in the automation of context-aware information selection and guided model assembly

Yasmine Ahmed, Adam A. Butchy, Khaled Sayed, Cheryl Telmer and Natasa Miskov-Zivanov

18:50 - 19:15 Gather Social Hour

19:15 - 21:15 Workshop 4: DIY Microfluidics CAD - Extending 3DuF for fun and publications
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Thursday, 23rd September 2021

15:00 - 15:05 Welcome & Opening Remarks Alexis Casas

15:05 - 16:45 Session 5: Computer-aided design, modelling, and simulation, Chair: Martin G. Pescarmona

• 15:05 - 15:30 A Comparison of Weighted Stochastic Simulation Methods

Payton Thomas, Mohammad Ahmadi, Hao Zheng and Chris Myers

• 15:30 - 15:55 LOICA: Logical Operators for Integrated Cell Algorithms

Gonzalo Vidal, Guillermo Yáñez-Feliú, Carlos Vidal-Céspedes and Timothy James Rudge

• 15:55 - 16:20 Biophysical Technology Mapping of Genetic Circuits

Nicolai Engelmann, Tobias Schladt, Erik Kubaczka, Christian Hochberger and Heinz Koeppl

• 16:20 - 16:45 Automated translation of logical models to SystemVerilog enables simulation speedup

Eric Li, Emilee Holtzapple, Niteesh Sundaram and Natasa Miskov-Zivanov

16:45 - 17:15 Break / Short Discussion - Distributed mini-biofoundries

17:15 - 21:15 Workshop 5: Flapjack: Data Management and Analysis for Genetic Circuit Characterization
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Friday, 24th September 2021

14:00 - 14:05 Welcome & Opening Remarks

14:05 - 14:50 Workshop 6: BMSS - An Automated BioModel Selection System for Gene Circuit Designs

14:50 - 15:00 Short Break

15:00 - 15:40 Session 6: Machine Learning, Chair: Jeanet Mante

• 15:00 - 15:15 Improving predictability in bio-design using ensemble models

Bret Peterson, Tijana Radivojevic and Hector Garcia Martin

• 15:15 - 15:40 Comparison of Extrinsic and Intrinsic Noise Model Predictions for Genetic Circuit Failures

Pedro Fontanarrosa, Lukas Büecherl and Chris J. Myers

15:40 - 16:00 GatherSocial Hour

16:00 - 18:00 Workshop 7: Visualizing biological designs using SBOL visual

18:00 - 18:15 Short Break

18:15 - 18:45 Session 7: Data Repositories, Chair: Samuel MD Oliveira

• 18:15 - 18:30 SynBioHub2 - Providing an Intuitive and Maintainable Genetic Design Repository

Benjamin Hatch, Jeanet Mante, Chris Myers and Eric Yu

• 18:30 - 18:45 A database for ligand-inducible genetic biosensors

Simon d’Oelsnitz

18:45 - 20:45 Workshop 8: Principles of genetic circuit design: programming living cells to perform novel func-

tions

20:45 - 21:00 Closing Remarks

https://www.gather.town/


Keynote Presentation
Guiding synthetic biology via machine learning and multi-omics technologies

Tijana Radivojevic

Speaker Biography
Dr. Tijana Radivojevic is a Data Scientist at Agile BioFoundry and Joint BioEnergy Institute, Lawrence
Berkeley National Lab (LBNL). Her current interests lie in helping bioengineering become a mature en-
gineering discipline. She has been working on development of machine learning based algorithms and
tools for guiding and predicting outcomes of bioengineering, while capturing the associated uncertainty.
Prior to joining LBNL, her research focused on development of methodologies in computational statistics,
applied across domains such as finance, reservoir simulation, molecular simulation, breast cancer. Tijana
holds a PhD degree in Applied Mathematics from the University of the Basque Country, Spain, and MSc,
BSc degrees in Financial Mathematics from the University of Novi Sad, Serbia.

Keynote Abstract
Synthetic biology allows us to bioengineer cells to synthesize novel valuable molecules such as renewable
biofuels or anticancer drugs. However, traditional synthetic biology approaches involve ad-hoc engineer-
ing practices, which lead to long development times. One of the most important challenges in bioengi-
neering is effectively using multi-omics data to guide metabolic engineering towards higher production
levels. In this talk, I will show our efforts in developing pipelines for collection of multi-omics datasets,
their analysis through machine learning, and the production of recommendations, with the goal of ac-
celerating the Design-Build-Test-Learn (DBTL) cycle. I will focus on machine learning techniques that,
trained on the multi-omics datasets, provide actionable recommendations predicted to optimize strain
performance and increase production through several DBTL cycles. These tools help guide synthetic
biology in a systematic fashion, without the need for a full mechanistic understanding of the biologi-
cal system. Our tools also aim to enable commercially-relevant bioengineering and are currently being
deployed by industrial and academic partners.



Keynote Presentation
Programming biology – controlling the flow of molecular machines empowering life

Thomas E. Gorochowski

Speaker Biography
Dr. Thomas E. Gorochowski is a Royal Society University Research Fellow at the University of Bristol
and Co-Director of the Bristol BioDesign Institute (BBI). His laboratory focuses on exploring the molecu-
lar and biophysical mechanisms that individual cells and groups of cells use to make sense of their world
and process information. By applying tools from the field of synthetic biology to create new genetic
systems from the ground-up, his laboratory then probes these artificial systems using novel techniques
based on diverse content-rich sequencing methods and advanced computer models, with the aim of bet-
ter understanding the rules governing how biological parts are best pieced together to perform useful
computations. Elucidating the computational architecture of living cells and cellular collectives opens
new ways of effectively reprogramming them to tackle problems spanning the sustainable production of
materials to novel therapeutics, while also providing fundamental insight into how biology orchestrates
the complex processes and structures sustaining life.

Keynote Abstract
Synthetic genetic circuits are composed of many interconnected parts that must control the flows of tran-
scriptional and translational machinery such that a desired biological computation can be implemented.
A major challenge when developing such circuits is that the genetic parts used often display unexpected
changes in their behavior when pieced together in new ways. Such changes can arise due to contextual
effects or unintended interactions with the host cell. In this talk, I will demonstrate how we have been
using a variety of sequencing technologies to create a genetic debugger to pinpoint the root of such fail-
ures, as well as our recent efforts to develop “tunable” genetic parts whose functions can be dynamically
altered to fix many of these common issues. I will also discuss some of our recent efforts to consider
the role of evolution in biological design and the concept of the ’evotype’ as a way to reason about the
evolutionary potential of engineered biology. Taken together, our work provides a more complete and
quantitative view of the inner workings of genetic circuits, offers a route to engineering more robust
and adaptive functionalities in living cells, and improves our understanding of the rules governing the
effective reprogramming of biology.
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Towards collaborative and automated development
of resources for data standards in synthetic biology
Jake Sumner Ajibode1, Jacob Beal2, James Scott-Brown3 Thomas E. Gorochowski4, Chris J. Myers5, Göksel

Mısırlı1
1Keele University, 2Raytheon BBN Technologies, 3University of Oxford, 4University of Bristol, 5University of Colorado

Boulder
w8q52@students.keele.ac.uk,jakebeal@ieee.org,james@jamesscottbrown.com

thomas.gorochowski@bristol.ac.uk,chris.myers@colorado.edu,g.misirli@keele.ac.uk

1 INTRODUCTION
Data standards in synthetic biology are becoming increas-
ingly important as the number of tools addressing different
needs grows. This covers the design of genetic circuits and
visualizing and storing underlying information regarding
biological designs. The Synthetic Biology Open Language
(SBOL) [5] has been developed to provide a mechanism to
capture and exchange a shared understanding of such de-
signs and related information. Moreover, SBOL Visual [1]
has been developed to standardize the representation of bi-
ological designs via well-defined glyphs and rules for how
these are combined and connected.

The SBOL community has adopted GitHub for the collabo-
rative development of specifications online. The community
website is built using GitHub pages and is accessible via
HTTP. The SBOL data and visual standards follow an in-
cremental release process by applying common Git-related
processes such as branching for incremental developments
and making releases with explicit version numbering. Stan-
dard enhancement proposals are prepared by community
members, discussed, and finally incorporated into minor or
major SBOL versions. The changes between versions can
affect existing tools, and additional mechanisms are needed
for documentation and verification. As the number and fre-
quency of these new releases increase, there is a growing
desire to automate the preparation of documentation and
other resources produced. Such an automated process would
also open opportunities to allow for the testing of changes
before incorporating them into formal releases.

An automated approach is of particular interest to the
SBOL Visual standard that has grown rapidly over the past
few years to contain a large number of glyphs and associated
data. Each glyph definition comes with a Scalable Vector
Graphics (SVG) file, providing information about how the
glyph can be connected to the others in a biological design.
Complementary metadata about each glyph is stored in a
markdown file to ensure this information is human-readable.
Each markdown file includes information about the types of
a biological part or interaction that the glyph can be used
with via ontological terms from the Sequence Ontology (SO)

[4] and the Systems Biology Ontology (SBO) [3]. In addition,
these files include lists of allowed alternative glyphs, free-
text notes and other related information. These markdown
files should ideally be validated after each change in the
context of all other glyph files and metadata from different
files to prevent human error.

Previously, we developed SBOL Visual Ontology version
2 (SBOL-VO2) [7] to make the metadata about these glyphs
machine accessible. We also developed the visual ontology
web service (VOWS) to make the glyphs searchable and to
find the most relevant glyph for a provided SO or SBO term
representing a biological part or interaction. An ontological
version of SBOL 2 has also been developed [6]. However,
the web service is currently not suitable for supporting the
automation of new releases or for testing it against a specific
snapshot of the standard. Moreover, these resources need to
be updated to incorporate the new SBOL 3 data and visual
standards.

Here, we report the latest developments related to the
automation of the SBOL Visual standard. This work involves
developing a new SBOL Visual ontology for version 3 (SBOL-
VO3) and improving the visual ontology web service for a
better user experience. We then demonstrate an automated
workflow to generate the visual ontology and related docu-
mentation. This will accelerate the ability to release a new
SBOL Visual specification and enable error checking to im-
prove the robustness of the process.

2 SBOL VISUAL ONTOLOGY 3 (SBOL-VO3)
In the new version of the SBOL Visual ontology, ontological
terms related to glyphs have been grouped into four main
branches to represent sequence features, molecular species,
molecular interactions for binary relationships, and biolog-
ical processes with multiple inputs and outputs. Sequence
feature terms are linked to respective SO terms, while SBO is
used in all other terms to indicate the types of all molecular
interactions, processes and non-DNA-based molecular terms.
Another new feature is to capture a network-level represen-
tation of biological designs using directed edges. SBO terms
are used to provide information about the roles of molecules
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in molecular interactions and processes, and hence the direc-
tion of edges. The hasHead and hasTail terms indicate the
direction of binary interactions. For example, ‘hasHead some
(role some SBO:0000642)’ axiom for an inhibition interac-
tion specifies that the direction of the interaction starts from
an entity with the inhibitor role (SBO:0000642). Similarly,
hasIncoming and hasOutgoing properties indicate the in-
puts and outputs for participating biological molecules. This
visual ontology refers to terms from the latest SBOL 3 data
ontology (SBOL-OWL3).

In line with the major changes in SBOL 3, we developed
the proof-of-concept SBOL-OWL3 ontology. This ontology
captures the rich SBOL 3 data model, which uses a graph-
based approach to represent biological designs. Hence, SBOL-
VO3 and SBOL-OWL3 ontologies act as machine-accessible
sources to connect the SBOL Visual glyphs with SBOL spe-
cific data entities.

3 SBOL VISUAL ONTOLOGY WEB SERVICE
We added new features to the previously developed SBOL
Visual Ontology Web Service [7]. Specifically, we decoupled
the web service from a particular version of an SBOL Visual
ontology and other related SO and SBO ontologies. These
external resources are now loaded directly from the web. Dif-
ferent versions of the visual ontology are held at a GitHub
repository. By default, the web service uses the latest ver-
sion of the SBOL Visual ontology and the latest glyph files.
However, users can also specify a particular release number.
Alternatively, users can provide HTTP URLs for the ontol-
ogy and the base glyph folder. These URLs can also be for a
specific GitHub branch to test resources under development,
and different media types for glyphs can be requested.

4 AUTOMATION
Our goal is to develop a fully automated workflow to test
incremental or major updates and use them directly via the
SBOL Visual web service (Figure 1). To facilitate this ap-
proach, we aimed to use GitHub Actions. As a result, specific
GitHub-related events such as new releases or commits to a
particular branch can trigger our workflow to auto-generate
the SBOL Visual ontology, related documentation and make
the visual glyphs directly available via the web service. We
developed scripts that can be linked to GitHub actions so that
the SBOL community can take advantage of these resources
quickly.

5 CONCLUSION
Ontologies are ideal for capturing domain knowledge. We
used this approach to provide a machine-accessible represen-
tation of the SBOL 3 data and visual standards. In order to
help the SBOL community deal with incremental and major
changes, we adopt an automated approach based on GitHub

actions. This automation enables testing changes rapidly
and releasing them to the community quickly. The improve-
ments enhance the user experience via different additional
options when using the web service. The SBOL community is
working on a standard format for parametric glyphs that can
be customized for different properties such as color, width,
and height [2]. Our goal is to incorporate additional meta-
data about these parameters into the SBOL Visual ontology
and use the web service to serve parametric glyphs for de-
sign and layout tools in the future. SBOL Visual glyphs, the
automation workflow and the SBOL Visual Ontology are
available from https://github.com/SynBioDex/SBOL-visual
and https://github.com/SynBioDex/sbol-visual-ontology.
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Figure 1: A use case involving the use of the automated approach. A user modifies the metadata for an SBOL Visual glyph and
makes a new release. This release triggers the automatic regeneration of the SBOL Visual ontology and the online documen-
tation. Tools can start using this change immediately. Alternatively, they can continue using a specific or an older version of
the ontology and glyphs. Tools can either query the ontology file or utilize the web service to find the most suitable glyphs
for given SO or SBO terms.
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1 INTRODUCTION
Despite occurring with low frequency, rare events can have
devastating effects on biological systems. For example, rare
biochemical events have been demonstrated to contribute
to cancerous phenotypes by inactivating tumor-suppressing
genes [1]. It is therefore important that computational meth-
ods be developed to analyze the probability of rare events.

Exact trajectories of biochemical reaction networks may
be determined with molecular dynamics, wherein, given the
initial position and momentum of each atom in the system,
the complete state of the system can be determined at any
time [4]. Unfortunately, such methods are computationally
intractable for most systems. Instead, stochastic chemical
kinetics (SCK) may be used to generate many potential tra-
jectories for a system and approximate the probability of
some event occurring [8].

Rare events can be problematic for stochastic simulation
because the number of trajectories that must be generated
to approximate the probability of a rare event may be com-
putationally prohibitive. To address this issue, a variety of
stochastic simulation algorithms have been developed that
utilize importance sampling (IS) techniques to better estimate
the probability of rare events [3, 6, 7]. In this abstract, three
such algorithms are examined to determine how well they
address the problem of rare event simulation.

The first algorithm that will be examined is the weighted
stochastic simulation algorithm (wSSA) [6], which first ap-
plied IS techniques to biochemical network simulation. The
second algorithm that will be examined is the state-dependent
biasing method for importance sampling (swSSA) [7]. The
third algorithm that will be examined is the guided weighted
stochastic simulation algorithm (guided wSSA) [3].

2 RESULTS
The efficacy of each stochastic simulation method was tested
on a six-reaction model of a biochemical futile cycle. This
network is given as follows:
S1 + S2

k1−−−→ S3, S3
k2−−−→ S1 + S2

S3
k3−−−→ S1 + S5, S4 + S5

k4−−−→ S6

S6
k5−−−→ S4 + S5, S6

k6−−−→ S4 + S2.
where

𝑘1 = 𝑘2 = 𝑘4 = 𝑘5 = 1, 𝑘3 = 𝑘6 = 0.1.

In the model, the initial state is

𝑋1 (0) = 𝑋4 (0) = 1, 𝑋2 (0) = 𝑋5 (0) = 50,

𝑋3 (0) = 𝑋6 (0) = 0.
The rare event of interest is 𝑋5 → 40 within 100 time units,
which is unlikely because the symmetry of the initial mole-
cule counts and reaction rate constants will keep the system
near the initial state with high probability. Futile cycles of
this kind exist biologically in GTPase cycles, MAPK cascades,
and glucose mobilization [2].

Rare events are difficult to simulate because the number of
traditional SSA runs necessary to see a rare event of interest
occur even once can be very high. Kuwahara and Mura solve
this issue by increasing the likelihood of certain reactions oc-
curring in simulation and decreasing the likelihood of others.
Each run is then assigned a weight specific to the sequence
of reactions that occurred such that the mean run weight is
a sample estimator for the probability of the rare event of
interest. This method requires that the user manually input
the IS biasing parameters that are applied to each reaction.

In the small six-reaction example network, reaction three
produces species five and reaction six consumes species five,
so reaction three must be biased downward and reaction six
must be biased upward. To this end, a single biasing parame-
ter 0 < 𝛿 was introduced such that the rate of reaction three
is multiplied by 𝛿 and the rate of reaction six is divided by 𝛿.
The performance of various magnitudes for 𝛿 is determined
by comparing the true probability of a rare event 𝑋5 → 40
to the wSSA estimate after 102 runs for 0 < 𝛿 ≤ 1.5 with
increment 0.025 (Figure 1(a)).

As the species population changes throughout the course
of simulation, relative propensity of each reaction changes
too. The key insight presented in [7] is that forcing a fixed
IS biasing factor in wSSA will result in a narrow range of
values that factor can take to produce an accurate estimate.
That is because the fixed biasing factor must adjust relative
propensities appropriately for most of the possible values
they take throughout the simulation. Also, a fixed biasing
parameter will increase/decrease relative propensity of a re-
action at a state where it already has a high/low probability
of selection, resulting in lower accuracy. Therefore, [7] in-
troduces a biasing factor which is a function of the relative
propensity of the reaction it is adjusting at the current state.
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These functions are characterized by two sets of user inputs:
(1) maximum amount of change allowed for each reaction,
𝛾 𝑗 and (2) a threshold from which encouraging/discouraging
reaction selection is stopped, 𝜌0𝑗 .

Figure 2 shows the results of estimating the probability
of the rare event of interest on six reaction network. Again,
𝑅3 is set to be biased downward and 𝑅6 is set to be biased
upward. Fixing 𝜌0 to be 0.6 for 𝑅6 and 0.2 for 𝑅3, and setting
𝛾3 = 𝛾6 = 𝛾𝑚𝑎𝑥 , true probability of the rare event is compared
to swSSA estimates with 1 ≤ 𝛾𝑚𝑎𝑥 ≤ 5 with increment 0.025
after 100 runs (Figure 1(b)).

To avoid reliance on user input and a priori knowledge of
the system, Gillespie and Golightly calculate the conditioned
expectation of reaction count over the remainder of the simu-
lation for each reaction given that the rare state of interest is
attained at the end of the simulation by assuming a constant
reaction hazard and use that expectation to estimate an ideal
amount of IS biasing [3, 5]. Unfortunately, the Guided wSSA
may calculate a negative ideal biasing, and the resultant neg-
ative reaction rates cause errors in simulation. Inspection
of the R code for the three example cases in Gillespie and
Golightly reveals that a different method of dealing with
these negatives is used in each case.

The Guided wSSA was ran using each of the three nega-
tive resolution methods with 103 runs to compare the per-
formance of each method (Figure 1(c)).

3 DISCUSSION
The wSSA requires the user to select which reactions should
be encouraged and which reactions should be discouraged.
Although such a task might seem trivial for very simple mod-
els, deep insight into underlying dynamics of the network is
necessary for more complex models. Also, the biasing fac-
tor for those selected reactions must be specified prior to
simulation. This is a tricky task, since these parameters can
arbitrarily take any value greater than zero and it is by no
means obvious what values will result in accurate estimates
just by considering the model. Moreover, the accuracy of
the estimate is highly sensitive to these values. Selecting
non-optimal biasing factors can result in an estimate even
less accurate than one produced by running the original SSA
for the same number of simulations.

The swSSA suffers from the same issues. Reactions which
are to be encouraged/discouraged should be specified by the
user. Furthermore, for each of those reactions, the maximum
amount of change allowed as well as a threshold from which
encouragement/discouragement should be applied must be
set prior to simulation, resulting in twice as many parame-
ters as the wSSA. Like with the wSSA, the accuracy of this
method is sensitive to these parameters, although the swSSA
generally produces more accurate estimates and shows more
robustness against a wider range of these parameters.

The Guided wSSA eliminates the need for specifying a set
of reactions to bias and parameter(s) associated with each
of those reactions as in the wSSA and swSSA. Since, in the
Guided wSSA, matrices are inverted to automatically rec-
ognize a suitable biasing factor, this method is inherently
slower then the SSA, wSSA, and swSSA in simulating trajec-
tories. This additional computational effort may be justified
if the run weights have a variance which is considerably
smaller than those produced by other methods (as is the
case with experiments discussed in [3]). Estimation of the
probability of the rare event discussed in Section 2 on the six
reaction network model using guided wSSA produces a far
less accurate estimate than estimating that with wSSA while
setting 𝛿 = 0.6. Running 200 simulations, it took guided
wSSA 1.6 seconds to produce an estimate with the variance
of 0.05 where it took wSSA 0.3 seconds to produce an esti-
mate with the variance of 0.0015. The issue of complexity is
demonstrated when the total runtimes of 105 runs of each
algorithm are compared (Figure 1(d)).

In summary, the original wSSA may achieve rapid con-
vergence and lower variance than competing methods, but
only with a narrow set of biasing parameters that cannot
be reliably determined for an arbitrary system. The swSSA
demonstrates broader robustness to biasing variation, but
estimates with a high proportional error with few runs, less-
ening its advantage over the SSA. The guided wSSA solves
the issue of biasing parameter determination, but has poor
run-time performance and converges slower than the wSSA
with optimal biasing.
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Figure 1: (a)True value of 𝑃𝑡 ≤100 (𝑋5 → 40|𝑥0) (red) compared with the wSSA estimate at values of 𝛿 varying from 0.025 to 1.5
(blue). Note that 𝛿 = 1 corresponds to the traditional SSA, and 𝛿 > 1 corresponds to reciprocal weighting (decreases likelihood
of reaching state of interest). (b)True value of 𝑃𝑡 ≤100 (𝑋5 → 40|𝑥0) (red) compared with the swSSA estimate at values of 𝛾𝑚𝑎𝑥

varying from 1 to 5 (blue). (c) True value of 𝑃𝑡 ≤100 (𝑋5 → 40|𝑥0) (purple) compared with the Guided wSSA estimate using
each negative resolution method. Method A (yellow) and method C (blue) perform so similarly that method C is not visible.
Method B fails to resolve negatives in general, and does not complete any runs. (d) The time to completion of 105 runs of each
algorithm is compared. The relative computational complexity of the Guided wSSA makes it much slower than other methods.
The wSSA (with an ideal biasing parameter) performs faster than the SSA despite performing more calculations because a large
proprotion of runs reach the state of interest before the total simulation time is reached.

of chemical physics 129, 16 (2008), 10B619.
[7] Roh, M. K., Gillespie, D. T., and Petzold, L. R. State-dependent biasing

method for importance sampling in the weighted stochastic simulation
algorithm. The Journal of chemical physics 133, 17 (2010), 174106.

[8] Samoilov, M. S., and Arkin, A. P. Deviant effects in molecular reaction
pathways. Nature biotechnology 24, 10 (2006), 1235–1240.

19



The Bioware Cyber-Fluidic Platform:
A Holistic Approach to Digital Microfluidics

Georgi Tanev∗, Luca Pezzarossa∗, and Jan Madsen
Department of Applied Mathematics and Computer Science

Technical University of Denmark
Kongens Lyngby, Denmark

{geta,lpez,jama}@dtu.dk

1 INTRODUCTION
Digital microfluidic biochips have been in the research spot-
light for over two decades bringing scientists on the quest
of creating a universal portable bio-lab. Despite the unique
first-order digital-to-fluidic control and numerous proof of
concept applications, the digital biochips struggle to fulfil the
promises of delivering extensive miniaturization, automa-
tion, and integration of processes used in the biomedical
field. One of the main reasons is that although rather simple
in construction, digital biochips require advanced hardware
and software instrumentation, which poses many scientific,
engineering, and integration challenges. Therefore, a holis-
tic system approach is required to bridge the gap between
the incremental technological developments and the vision
for a digital microfluidic-based portable bio-lab. Inspired by
the modern software-hardware symbiotic coexistence, we
present the BiowareCFP – a cyber-fluidic platform aiming
for seamless integration between the cyber, fluidic, and bio-
logical domains.

2 THE BIOWARECFP
The BiowareCFP is the natural continuation of our modu-
lar and reconfigurable digital microfluidic platform, which
was presented at IWBDA2019 [9]. The holistic approach to
modularity allowed for extending the digital-biochip instru-
mentation along with the evolving requirement for biological
sample handling. This was recently demonstrated by imple-
menting the fundamental steps of two traditional, but rather
different bioassays, namely full cell cloning, and magnetic
beads-based ELISA [10]. Green fluorescent protein (GFP)
was cloned into E. coli in a three-step process consisting of
assembling recombinant DNA by PCR amplification, USER
vector cloning, and transformation. These steps require tem-
perature control, for which the heating capability of the
digital biochip was utilized [9, 10]. Magnetic beads ELISA
was demonstrated with both MRSA and SARS-CoV2 proteins,
where the protocol required a magnetic field to capture and
retain the magnetic beads for the washing steps [10].

∗Joint main authorship. This research was funded by Novo Nordisk Fonden.

In the early development stage of the BiowareCFP, the sys-
tem was tested mainly with moving colored water droplets.
Nevertheless, implementing the mentioned assays required
handling of various fluids, including reagents with high en-
zymatic or protein content. Consequently, unspecific surface
absorption became apparent in the form of skewing reagent
concentrations or leading to reduced droplet mobility and
consequential adhesion to the surface of the digital biochip.
Moreover, keeping reagents at elevated temperatures for
prolonged intervals inevitably leads to reagents evaporation
and consequent bubble formation. Although techniques for
mitigating these effects exist, their complete elimination is
unlikely. Therefore, we are currently developing an exten-
sive software control framework that implements real-time
monitoring and dynamic experiment flow control for reliable
handling of biological fluids.

Using digital biochips that can be reconfigured to different
laboratory protocols requires a structured method to capture
the protocol, verify the functionality through simulation,
generate the platform commands, and implement real-time
monitoring of the protocol execution. This process calls for
a toolchain similar to the one used in classical software and
hardware development, namely high- and low-level program-
ming languages, a compiler, a debugger or simulator, and
an execution environment. Although the majority of these
components have already been researched separately, in-
tegration among them virtually does not exist resulting in
digital biochips and instrumentation platforms that usually
exhibit limited programming capabilities.

A comprehensive review of domain-specific languages for
programmable biochemistry can be found in [7], while a
variety of compilation techniques for digital microfluidics is
outlined in [6]. Different approaches have been used in the
development of these languages. For instance, BioCoder [3]
extends the existing C++ language with a library enabling
biologists to express the steps of a lab protocol. AquaCore [2]
proposes an instruction set offering means to implement com-
plete lab protocols on digital biochips, including operations
such as merge, split, heat, etc. BioScript [5] is a standalone
language characterized by an intuitive syntax optimized for
human readability, as well as a type system ensuring that
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unsafe compounds interaction does not happen. State-of-the-
art execution platforms for these domain specific-languages
include DropBot [4], OpenDrop [1], Puddle [11], and the
modular reconfigurable platform presented in [8]. Neverthe-
less, neither of the mentioned approaches fully account for
dynamic protocol flow control based on real-time feedback
from the digital biochip.

3 PROGRAMMING ENVIRONMENT
The proposed software framework aims to provide a set
of tools that allows a user with little or no programming
experience to design, compile, simulate, and execute bio
protocols on the BiowareCFP. Particular emphasis is given
to support real-time flow control on software and hardware
levels which allow for decision making depending on sensing
results and on-the-fly verification of the protocol execution.
For example, in the case where a step of a protocol does
not produce the expected result. In that case, intermediate
actions can be taken to repeat or try to recover the step before
proceeding, enabling real-time monitoring and correcting
protocol execution. Figure 1 shows an overview of the main
steps of the programming environment from the definition
of the protocol to the execution on the digital biochip.

When programming for a biochip, the first step is to define
the desired protocol using a high-level intuitive text or block-
based graphical representation, which is then translated into
the control flow graph of the protocol to be executed. For
this, we are developing a web-based interface that allows to
combine classic programming operations such as arithmetics,
flow control, and printing, together with fluidic operations
such as dispensing, mixing, incubation, temperature control,
and sensing, as shown in Figure 3.

An abstract syntax tree of the protocol is then produced
from the high-level representation and compiled into a target-
specific representation. Information regarding the cyber-
fluidic architecture, such as electrode and chip topology,
availability and placement of actuators, sensors, etc. is pro-
vided as input to the compiler. The target representation of
the compiled code is in BioAssembly - our domain-specific
instruction set architecture (ISA) and assembly implementa-
tion. BioAssembly is inspired by classic computer ISAs, and
it offers a platform-independent set of core instructions ded-
icated to digital biochips, as well as classic arithmetic, flow
control, and memory access instructions from which complex
droplet operations can be built. In addition, BioAssembly na-
tively supports the execution of parallel synchronized tasks
streamlining the droplet controls and interactions with the
physical environment.

The compiled BioAssembly protocol is then executed by a
virtual machine that emulates a processor-based system and
interacts with the cyber-fluidic platform as a remote object
through remote system calls. The BioAssembly instructions

that do not produce an action in the platform (e.g., arithmetic
and logic, memory access, branches, etc.) are resolved and
executed locally in the virtual machine, while the instruc-
tions that interact with the cyber-fluidic platform trigger the
execution of the appropriate system calls. The use of a virtual
machine decouples the BioAssembly execution and the func-
tionality offered by the underlying cyber-fluidic platform
since the low-level interaction with the physical platform
needs to be resolved only once in the implementation of
the action methods. The interface of the virtual machine is
shown in Figure 4.

In addition to the execution on the BiowareCFP, the virtual
machine can be connected to a simulator. The simulator
is used to verify and debug the complied protocol before
running on the real platform. The simulator uses models of
the cyber-fluidic platform actuators and sensors, as well as
models of the droplets to simulate the protocol execution.
In the future, we aim to also include unpredictable behavior
using statistical models and handle in-droplet biochemical
simulation.

4 VALIDATION AND EXPERIMENTS
The cyber-fluidic platform and its integration with the soft-
ware framework were tested and validated by means of both
artificial tests and traditional biological protocols.

Artificial tests were designed to validate specific features
of the system. An example of this is a test where a continu-
ous stream of droplets was sorted based on their color. Thus,
demonstrating the execution of the code by the virtual ma-
chine and its capability of real-time flow control based on the
color information captured by a color sensor integrated with
the digital biochip. Figure 4 shows the interface of the virtual
machine running the color sorting program and controlling
its execution on the physical cyber-fluidic platform.

The tested real-life protocols include magnetic beads-based
ELISA (for MRSA and SARS-CoV2 proteins) and the funda-
mental steps used in full cell cloning, where details can be
found in [10]. Figure 2 shows an instance of the BiowareCFP
configured for temperature calibration of the three individ-
ual temperature zones for PCR. After calibration, a space
domain PCR was performed by moving and keeping the PCR
mix droplet for predefined times at the annealing, melting,
and elongation zones. Currently, these tests are not fully au-
tomated, but require supervision and sporadic interventions
to mitigate bubble formation and bio-fouling. Nevertheless,
they prove that real-life protocols can be entirely executed
on our platform.

Future work includes further development of the software
framework user interface, sensor and actuator integration on
the digital biochip, and further testing of traditional protocols
on the BiowareCFP such as sample preparation for single-cell
proteomics.
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Figure 1: Overview of the main steps of the programming environment starting from the definition of the protocol and termi-
nating with the execution on the biochip. The simulator is used to debug, verify, and correct the protocol.
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Figure 2: The BiowareCFP configured for temperature calibration of three temperature regions used for the annealing, melting,
and elongation steps of the PCR protocol.
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Figure 3: The web-based interface for designing a protocol using an intuitive high-level block-based representation. Blocks
correspond to classic programming operations (arithmetics, flow control, printing, etc.) and fluidic operations (dispensing,
mixing, incubation, temperature control, sensing, etc.).
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Figure 4: The graphical user interface of the virtual machine executing a testing protocol where droplets are sorted based on
their color. The interface allows users to monitor and control the protocol execution and the cyber-fluidic platform.
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1 INTRODUCTION
In recent years, Genetic Design Automation (GDA) tools like
iBioSim [8, 18], SBOLCanvas [16], and Cello [9] were estab-
lished to support scientists in automatically designing and
modeling genetic circuits. This allows researchers to simu-
late their designs in-silico before building them in in-vitro,
saving time and money. Therefore, mathematical descrip-
tions of genetic networks become a necessity and that is why
genetic design is usually model-driven [11]. The determin-
istic framework of ODE analysis is appropriate to describe
the mean behavior of a system. However, there is no ran-
domness or stochasticity associated with the model, and the
same results are obtained given the same initial conditions
[1]. The stochastic nature of biochemical reactions, even at
the single-gene level [4], and the fluctuations in reaction
rates due to differences in the environment [2, 10], gener-
ate significant noise to a system [7, 10, 12, 15]. Therefore,
stochastic modeling and analysis is necessary to accurately
predict outcome production fluctuations of GRNs. These fluc-
tuations, caused by noise within a system, can have a drastic
effect on the probabilities of glitching behavior of a system.
This makes stochastic analysis of GRNs critical for the study
of circuit failure probabilities, since failures can have drastic
effects if the circuit’s output results in an early drug release
or apoptosis.

Work by Fontanarrosa et al. [5] and Buecherl et. al [3]
investigate the glitching behavior of a combinational genetic
circuit first published by Nielsen et al. [9] . The genetic circuit
was labeled 0x8E and can be seen in Figure 1(a). Fontanar-
rosa et al. [5] identified the different input transitions of the
circuit that resulted in a glitching behavior. Based on this
information, Fontanarrosa et al. designed two additional im-
plementations of the circuit with the same function, using
different logic combinations. The two modified layouts can
be seen in Figure 1(b) and (c). The layout in (b) has redundant
logic as two NOT-gates, to add delay to the IPTG pathway.
The layout in (c) was created by using hazard-preserving
optimization methods to avoid introducing logic hazards.
Buecherl et al. [3] built on those results using stochastic
simulation and stochastic model checking to determine the
probability of the glitches discovered by Fontanarrosa et al.

There are different sources of noise that would generate
variability in a circuit’s output. The inherent stochasticity of
biochemical processes, such as transcription and translation,
generates intrinsic noise [15]. This is especially significant
in systems with low copy numbers of mRNAs or proteins
in living systems [15, 17]. Therefore, stochastic effects are
thought to be particularly important for gene expression
and have been invoked to explain cell–cell variations of out-
put production in clonal populations [4, 15]. The “stochastic
chemical kinetics” that arise due to random births and deaths
of individual molecules give rise to jump Markov processes,
which can be analyzed by means of master equations and
simulated with stochastic simulation algorithms [6, 7]. How-
ever, Beal [2] argues that stochastic chemical kinetics cannot
explain the observed variation, and thus the explanation of
such variation falls back to extrinsic noise. Extrinsic noise
is generally defined as fluctuations and variability in a sys-
tem’s reaction rates due to disturbances originated from its
environment [10, 13]. This can be modeled as fluctuations
in model parameters (such as transcription and degradation
rates) [14].

This work focuses on determining if there are differences
in predicted circuit failure percentages for three different
circuit layouts with identical expected functions, using sto-
chastic analysis to simulate different noise sources. The re-
sults shed light on the difference between the intrinsic and
extrinsic noise model predictions and if the differences in
circuit layouts have any effect on glitch propensities. This,
in turn, emphasizes the need to evaluate further the relative
influence of intrinsic and extrinsic noise on a genetic cir-
cuit’s output to help designers predict circuit failures more
accurately and, therefore, determine better design choices.
Moreover, the percent failure predictions between different
circuit layouts can help designers weigh different options of
circuit topologies to determine which one is best suited for
the intended purposes of the design.

2 CIRCUIT ANALYSIS
Intrinsic Noise Model
In this work, to reduce the intrinsic model’s complexity, pro-
tein production and degradation was set to steps in molecule
change to ten instead of one. That means that every time a
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production or degradation reaction is fired, ten molecules are
produced or destroyed with a ten times reduction in reaction
propensity. Furthermore, to reduce the number of species,
only the internal molecules and complexes are modeled in-
stead of the input molecules IPTG, aTc, Ara. For instance,
IPTG binds to LacI which regulates the circuit. Instead of
modeling both species, only LacI is modeled.

Extrinsic Noise Model
The extrinsic noise model used in this work applies a simple
case of static external perturbations, modeled as a random
draw from a folded normal distribution for each parameter
value used in the model at the beginning of each simulation
run. The mean of each distribution is the default parameter
value in iBioSim (obtained from literature), with a standard
deviation equal to forty percent of the mean’s absolute value
(which emulates the "extrinsic noise"). This value of noise
was obtained when calibrating different noise values, but is
an arbitrary value that should be replaced with a better esti-
mate obtained from experimentation (see Section 3). Beal [2]
argues that these parameters follow a geometric distribution
instead of a normal one, which is also part of our planned
future work.

Results
For the simulation of the circuit models, the input molecules
for the high state are set to 60 molecules. Any further increase
of the molecule count does not affect the output of the circuit.
The models use iBioSim’s default parameters. The thresholds
for static-0 function hazards and static-1 function hazards
are defined by analyzing the response of a standardized NOT
gate, which is ten and thirty molecules, respectively. More
information can be found in [3]. The results of the intrinsic
and extrinsic analysis can be seen in Table 1.

Table 1 shows the predicted circuit failure percentages for
both the intrinsic and extrinsic analysis for the three different
circuit layouts: Original Design (OD, Figure 1(a)), Redundant
Logic (RL, Figure 1(b)), and Logic-Hazard-Free (LHF, Fig-
ure 1(c)). The results show that depending on which noise
model is taken into consideration, the circuit layout with
the lowest probability of glitching differs. So, for example, if
only intrinsic noise model predictions are considered, then
the LHF circuit layout is the best choice. Otherwise, if only
extrinsic noise model predictions are considered, then the
OD layout appears to be the best. Furthermore, the results
show that the glitch propensities for each transition vary
greatly depending on which noise model is considered for
each circuit layout. For example, for input transition (1,1,1)
to (0,1,0), 91% of the intrinsic noise simulation runs for the
OD layout circuits glitch, whereas only 36% of the extrinsic
noise simulation runs glitch for the same circuits.

3 DISCUSSION
This paper presents a comparison of genetic circuit failure
percentage predictions from different models used to sim-
ulate noise in a GRN. It illustrates that the design choice
is affected if noise is considered arising primarily from in-
trinsic or extrinsic sources, since the probabilities of circuit
failures change for each simulation. In this case, intrinsic
noise modeling generally predicts a higher percentage of
glitching behavior for all circuits than extrinsic noise model-
ing. This motivates further study to determine which source
of noise has a higher incidence in GRNs, if not both, to be
able to accurately predict glitch propensities for genetic cir-
cuits. One current limitation of the work is that these genetic
circuits operate in a range of 104 to 105 molecules for a high
signal. In a future iteration of the work these aspects should
be considered to reflect more biologically realistic values.

This paper also presents a comparison of genetic circuit
failure percentage predictions for three different circuit lay-
outs with identical expected function. If intrinsic noise has
a higher influence on a circuit’s output, then these results
show that the LHF circuit layout is the least likely to glitch.
Whereas if extrinsic noise is the predominant source of fluc-
tuations in GRNs, then the OD design layout is the least
likely to glitch.

In the future, we plan to extend the analysis done in this
paper to include:

• characterized gate parameters for increased accuracy
of results,

• percent circuit failures for all transitions, not only
those that have function hazards,

• stability of each circuit for each state, calculated as the
ability to hold-state given a fixed input state,

• extend the extrinsic noise model to use the model pro-
posed by Beal [2],

• generate a model that simulates both intrinsic and
extrinsic sources of noise.

These results and further studies will advance the DBTL
pipeline, promoting the learning and designing stage to filter
out the circuit layouts with higher probability of glitching
for the input transitions considered critical to the designer.
Furthermore, a model generator implemented in iBiosim that
automatically includes intrinsic or extrinsic sources of noise
in the model would help genetic circuit designers apply and
test different levels of noise to obtain both circuit failure
predictions and circuit robustness.
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Table 1: Intrinsic and extrinsic noise model predictions of circuit failure percentages

Intrinsic Extrinsic
Input Transition OD RL LHF OD RL LHF
(0, 1, 0) → (1, 1, 1) 0.31 0.76 0.29 0.09 0.27 0.09
(0, 1, 0) → (1, 0, 0) 0.72 0.80 0.25 0.36 0.34 0.08
(1, 1, 1) → (1, 0, 0) 0.92 0.93 0.91 0.48 0.38 0.31
(1, 1, 1) → (0, 1, 0) 0.91 0.54 0.90 0.36 0.19 0.37
(1, 0, 0) → (0, 1, 0) 0.76 0.42 0.74 0.33 0.20 0.29
(1, 0, 0) → (1, 1, 1) 0.30 0.33 0.30 0.13 0.15 0.05
(0, 1, 1) → (1, 0, 1) 0.99 0.81 0.99 0.85 0.64 0.88
(0, 0, 0) → (0, 1, 1) 0.83 0.83 0.82 0.37 0.55 0.43
(0, 0, 0) → (1, 0, 1) 0.99 0.81 0.99 0.82 0.65 0.90
(1, 0, 1) → (0, 1, 1) 0.99 1.00 0.99 0.83 0.88 0.86
(0, 1, 1) → (0, 0, 0) 0.86 0.87 0.77 0.52 0.64 0.54
(1, 0, 1) → (0, 0, 0) 0.86 0.96 0.74 0.59 0.73 0.60

Percent failure predictinons for each input transition that contains a function hazard, for different circuit layouts, and different noise models.
The order of the inputs is Ara, IPTG, aTc. So, for example, (0,1,0) means only IPTG is present. OD: Original Design layout (Figure 1(a)), RL:

Redundant Logic layout (Figure 1(b)), LHF: Logic-hazard free layout (Figure 1(c)).

(a)

(b)

(c)

Figure 1: Three different logic layouts for the circuit 0x8E.
The three inducer molecules are IPTG, aTc and Ara and the
output is YFP. The OR gate is represented by and the
NOR gate by . (a) Original circuit layout as published
in [9]. (b) Circuit implementation with added redundant logic
as two NOT gates, which add an extra delay to the IPTG
pathway. The NOT gate is represented by . (c) Circuit
implementation with logic-hazard-free optimizations. More
details on the implementations (b) and (c) can be found in
[5].
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1 INTRODUCTION
Curcumin is the major bioactive natural product in turmeric
(Curcuma longa), which is commonly used as a food additive
(flavor and colorant) and traditional medicine for thousands
of years. This polyphenol has a variety of biological activi-
ties, such as antioxidant[15], anti-cancer[18], anti-allergic[2],
anti-inflammatory[13], and anti-Alzheimer’s[7] effects. The
production of this promising natural product relies on the
extraction of producing plants, which requires large quan-
tities of farmland and organic solvents[17]. Therefore, this
traditional method is not environmentally friendly or cost-
effective. Additionally, the quality of the product is often
affected by the regions where the plants grow. Microbial
production represents a great alternative because of the sig-
nificantly reduced production time and reproducible pro-
duction process. Microorganisms such as Escherichia coli
can be engineered into curcumin-producing cell factories by
incorporating curcumin biosynthetic enzymes. Our group
has previously introduced five enzymes: tyrosine ammonia
lyase (TAL), 4-Coumarate:CoA ligase (4CL), coumarate 3-
hydroxylase (C3H), caffeic acid 3-O-methyltransferase (COMT)
and curcuminoid synthase (CUS), into E. coli to construct an
artificial pathway to produce curcumin in the bacterium.

To enable industrial production of curcumin, it is neces-
sary to continuously improve the yield in engineered strains.
While testing various parameters in lab experiments are of-
ten time-consuming and labor-intensive, this work aims to
establish a computer model to simulate the production of
curcumin in E. coli, based on which we could identify the
limiting factors in the pathway for experimental optimiza-
tion. We used the above-mentioned biosynthetic enzymes
except that the CUS was replaced with two type III polyke-
tide synthases, diketide-CoA synthase (DCS) and curcumin
synthase (CURS) due to the lack of kinetic data for CUS.

∗This research was funded by the Utah State University Engineering Under-
graduate Research Program and gift donations from Adobe Incorporated.

2 PROBABILISTIC MODEL CONSTRUCTION
Curcumin production in E. coli was previously modeled to
predict and optimize the yield[14]. Another model was cre-
ated using ODEs to accurately predict the production[1]. In
this work, we investigate the probabilistic behavior of the
pathway model. The PRISM Probabilistic Model Checking
language is used to model the pathway as a continuous-time
Markov chain (CTMC)[12]. PRISM has previously been used
to model the Fibroblast Growth Factor (FGF) pathway[8].
The pathway is shown in Figure 1, as modeled. Intracellular
L-tyrosine serves as the starting substrate of this pathway,
which is converted into feruloyl-CoA by TAL, C3H, 4CL,
and COMT. Feruloyl-CoA is extended by DCS to produce
feruloylacetyl-CoA, which is then condensed with another
feruloyl-CoA molecule to produce curcumin through CURS.
In the adaptation of the pathway to the probabilistic model,
we made the following assumptions. First, the model ab-
stracts away the pathway’s interaction with the cell’s native
metabolism. The DCS enzyme utilizes malonyl-CoA as a
substrate, a common intracellular species important to the
cell’s central metabolism and fatty acid biosynthesis. We
approximate the concentration of malonyl-CoA as a con-
stant assuming that it is always in sufficient supply for DCS
to produce feruloylacetyl-CoA. Secondly, the model also ex-
cludes the byproducts of DCS and CURS when these enzymes
act on caffeoyl-CoA and p-coumaroyl-CoA. In a laboratory
system, curcuminoid byproducts of these enzymes, such as
dicaffeoylmethane, demethoxycurcumin, and bisdemethoxy-
curcumin, would be produced at low concentrations along
with curcumin. These byproducts were excluded due to a
lack of their kinetic parameters in existing literature, but we
hope to include them in the future. Our previous lab experi-
ments indicate that these byproducts are only produced at
trace concentrations [19]. Therefore, excluding them may
not have a severe effect on the results of the model. The com-
putational model for the pathway consists of nine species
and ten reactions. Each species is represented by an inte-
ger variable, whose value corresponds to the micromolar
intracellular concentration of that species. Each reaction is
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modeled as a probabilistic transition that updates concen-
trations of participating species. The rate of each reaction
is calculated using the Michaelis-Menten equation, a func-
tion of an enzyme’s molecular weight, 𝑘𝑐𝑎𝑡 and 𝐾𝑚 for a
specific enzyme and substrate, and concentration of the sub-
strate. Table 1 shows the kinetic parameters of each enzyme
and respective substrate found in literature. Each parameter
was taken from enzymes from the organisms used in our
group’s past resveratrol model[3]. Given the initial state of
the model, which is determined by the initial concentration
of each species, the reaction rates are calculated. Based on the
ratio of the rates for all enabled reactions at the initial state,
the model then probabilistically chooses a reaction to occur,
resulting in decrementing its substrate concentration and
incrementing the product concentration by one micromolar.
In the next state, each reaction rate is reevaluated using the
updated concentrations, and the process is repeated until
a user-specified upper time bound is reached. To calculate
the most probable, average behavior, the results of 1,000
simulations are averaged.

Table 1: Enzyme kinetics data

Enzyme Substrate 𝐾𝑚(μM) 𝑘𝑐𝑎𝑡 (1/s) Source
TAL L-tyrosine 1492.2 155 [4]
4CL p-coumaric acid 25.1 16.3279 [6]
4CL caffeic acid 11 4.408533 [5]
4CL ferulic acid 56.7 7.475801 [6]
C3H p-coumaric acid 143.03 0.0347 [9]
C3H p-coumaroyl-CoA 143.03 0.0347 [9]
COMT caffeic acid 59.5 0.145152 [16]
COMT caffeoyl-CoA 26 0.145152 [10]
DCS feruloyl-CoA 46 0.02 [11]
CURS feruloyl-CoA 18 0.018333 [11]

Listing 1: Model of the curcumin production.
module p a r t i a l _ p a t h w a y
[ ] fcoa >0 −> v1 : ( f acoa ' = f a c o a +1 ) &( fcoa ' =

fcoa −1 ) ;
[ ] f coa >0 & facoa >0 −> v2 : ( cur ' = cur +1 ) &(

fcoa ' = fcoa −1 ) &( facoa ' = facoa −1 ) ;
endmodule

A model snippet is shown in Listing 1. The full model can
be found at https://github.com/formal-verification-research/
phenylpropanoids-model. Using feruloyl-CoA as a substrate,
two reactions produce feruloylacetyl-CoA and curcumin, re-
spectively. Rate formulas v1 and v2 (not shown here) are
evaluated using the concentration of feruloyl-CoA and each
enzyme’s respective kinetic parameters at each simulation

step. These two reactions compete for feruloyl-CoA as a sub-
strate and the ratio of their rates determines the likelihood of
one reaction occurring over the other. As this example shows,
the probabilistic behavior emerges from the random choice
made between multiple competing reactions at each simula-
tion step. Therefore, it facilitates a more in-depth analysis
than a typical deterministic simulation, such as the likeli-
hood of certain reactions can happen and limiting enzymes
in the synthetic pathway.

3 RESULTS AND DISCUSSION
Figure 2 shows the results of an average of 100 simulations.
It can be observed that every intermediate in the pathway
eventually reaches an almost constant concentration except
the product, curcumin, and p-coumaroyl-CoA. Curcumin
reaches a steady linear increase, which is expected as there
are no parts of the cell that use curcumin. The concentration
of p-coumaroyl-CoA rapidly builds in the cell as 4CL, which
produces the molecule, is much faster than C3H, which uti-
lizes the molecule as a substrate. Both caffeic acid and ferulic
acid are observed at an average concentration of 0 μM due to
this same reason. While these two molecules are produced
by the simulation, because 4CL is drastically more efficient
than C3H, it is much more likely that p-coumaroyl-CoA is
produced over caffeic acid. When caffeic acid is produced,
however, it is quickly converted into caffeoyl-CoA by 4CL,
again because of the enzyme’s high efficiency.

Based on these observations, C3H is likely the limiting
enzyme and primary candidate for optimization. To validate
this conclusion, an overexpression simulation was run on
every enzyme in the pathway. In these simulations, the con-
centration of a selected enzyme was assumed to be double
that of other enzymes. The concentrations of all other en-
zymes for each simulation were kept at the original value of
25 mg/L, and the overexpressed value was set to 50 mg/L. If
the simulation saw an increase in yield, then these enzymes
were marked as a potential point of optimization to increase
the yield. The simulation results are shown in Table 2.

Table 2: Curcumin yields from overexpressed simulation

Enzyme Curcumin yield (μM) Percent change
- 486.565 ± 0.751 -

TAL 517.835 ± 2.742 6.427%
4CL 474.484 ± 2.520 -2.483%
C3H 645.888 ± 3.848 32.744%

COMT 488.752 ± 2.290 4.495%
DCS 434.854 ± 3.348 -10.628%

CURS 490.037 ± 2.479 7.136%
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Based on these experiments, overexpressing most enzymes
had a moderately positive or negative effect on the yield
of curcumin. C3H, as expected, was the only enzyme that
showed a significant increase in yield, and in our future
optimization experiments we will focus on this enzyme. In-
terestingly, the overexpression of DCS caused a 10% decrease
in yield, likely because this enzyme takes available feruloyl-
CoA away from CURS and prevents curcumin from forming.
This marks DCS as another potential point of optimization,
as it may be beneficial to lower the concentration of this
enzyme to improve the yield. Furthermore, we will test how
adjusting the concentrations of multiple enzymes affects
curcumin production. Using the information from our repre-
sentative model, we will validate the model in the lab.
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1 INTRODUCTION
Being still considered in its early stage of development com-
pared to electronic design automation (EDA), genetic design
automation (GDA) struggles to implement simple functions
and accurately predict their behavior in the designated host
environments. In terms of logic circuits, insu�cient charac-
terization of logic elements and the interaction with their
host environment renders predictions of signals in the cir-
cuits imprecise. This is partially due to purely phenomeno-
logical approximations based on measurements of isolated
compounds. This leads to strong requirements, like orthogo-
nality, often limiting the number of available parts. On the
level of DNA, transcription factors (TF’s) encoded in genes,
and promoters – which the TF’s act on – are often chosen
as the main building blocks implementing and connecting
logic elements [7]. Employing available biophysical knowl-
edge on this level, our design approach uses equilibrium
thermodynamic interactions, thoroughly studied in recent
works [1–3, 8], which takes competitive interactions, like
crosstalk, and small copy-number e�ects into account. Select-
ing a candidate circuit in consideration of these e�ects in a
technology mapping process, we ultimately seek to improve
circuit performance and predictability in a real application.
This, however, leads to longer evaluation times for each can-
didate demanding a clever search strategy. Therefore, we
additionally propose a Branch and Bound based technology
mapping scheme to obtain the optimal circuit while drasti-
cally reducing the number of candidate evaluations.

2 THERMODYNAMIC LOGIC CIRCUIT MODEL
E�ects from small molecule copy-numbers and competitive
binding like crosstalk and host genome interactions can al-
ter a genetic circuit’s response signi�cantly up to orders of
magnitude [3]. To be able to calculate the contributions of
these e�ects, we need to consider sub-gate genetic parts but
maintain su�cient scalability for a technology mapping pro-
cess. The thermodynamic formulation provides a physical
justi�cation and economical parametrization but needs part
speci�cations on the level of promoters, genes and TF’s. How-
ever, for the calculations to remain transparent for higher
layers, we continue to only allow the exchange of groups
of the used sub-gate parts associated with the single logic

* The authors contributed equally to this work.

a)

b)
c)

Figure 1: Illustration of the logic circuit from the thermo-
dynamic perspective. Filled shapes expressed by the colour-
coded genes bind to �tting promoters. The faint logic circuit
in the background depicts the technology mapping process’
point of view. Marked interactions are: a) desired binding
implementing the circuit function, b) crosstalk, c) environ-
mental competing binding sites.

gates. As our gate model we use the combination of a gene
expressing a TF which represses a set of associated output
promoters, inherited from the prominent GDA tool Cello
[7]. The thermodynamic perspective of such a logic circuit
is illustrated in Fig. 1.

Thermodynamic calculations on a candidate assignment
are founded on the idea of time-scale separation of RNA-
polymerase- (RNAP-) and TF-binding to available binding
sites from protein-level signals which generate the circuit’s
response [2]. Combined with the assumption that expecta-
tion of RNAP-binding, and gene expression are proportional
[8], we can calculate the circuit response from equilibrium
statistics of RNAP- and TF-binding. Summations of statis-
tical weights of microstates associated with speci�c events
(i.e. partition functions) normalized to the total weight of
all microstates give the expression levels. Thus, let 1, . . . , #
be an enumeration of all gates and their associated parts.
Let x ⌘ (G1, . . . , G ) 2 R be a vector of all  > # TF
copy-numbers in the circuit with the �rst # being the gates’
outputs followed by those posing as inputs and those from
the host interferring with the circuit. Let further / (x) be the
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total partition function of all microstates B 2 S(x) of RNAP-
and TF-binding permutations (we assume the number of
RNAP to be �xed) and /= (x) be the partition function of all
microstates B= 2 S= (x) ⇢ S(x) where RNAP is bound to
one or more input promoters upstream of gene =. Note, that
/= (x) is dependent on the circuit topology, since the set of
input promoters of gene = can vary. We can �nd

G= / /= (x)
/ (x) =

Õ
B= 2S= (x)⇢S(x) exp (�VY (B=))Õ

B2S(x) exp (�VY (B)) = E (%=) ,
(1)

where V ⌘ (:B) )�1 is a product of the Boltzmann constant
:B and the equilibrium temperature ) of the mix. The Y (B)
is the total binding energy for the permutation encoded in
B . As an example, we provide the description of a single !-
input NOR gate with inter-input crosstalk, such from  � !
environmental TF’s, and leakage. There, we obtain from (1)

G= ⇡ 1=
!’
;=1

exp
⇣
�V

⇣
Y (;)? � Y2,?

⌘⌘
Õ!
8=1 exp

⇣
�V

⇣
Y (8)? � Y2,?

⌘⌘ 3 (;) (x) , (2)

where the individual promoter-speci�c regulation factors
3 (;) are given by

3 (;) (x) =
1 +Õ 

:=1
G:
⇠ exp

⇣
�V

⇣
Y (;)?,G: � Y

(;)
? � Y2,G:

⌘⌘
1 +Õ 

:=1
G:
⇠ exp

⇣
�V

⇣
Y (;)G: � Y2,G:

⌘⌘ ,

where we introduce the unrepressed copy-number G= ⌘ 1=
if x = 0, the binding energies of RNAP to the ! promoters Y (;)? ,
those to the ⇠ "background" sites on the host genome Y (;)2,? ,
the similar binding energies of the  TF’s Y (;)

5:
and Y2,5: , the

binding energy modelling imperfect competition between
RNAP and TF Y (;)

?,5:
[10], and resolved the proportionality.

Coming back to the full circuit with its # gates, we generally
have the relations (c.f. (2))

8= : G= = 1=
/= (x)/ (0)
/ (x)/= (0) , (3)

with 0 the zero vector. Solving the implicit non-linear sys-
tem (3) of # unknowns in # equations as a root-�nding
problem, we obtain the # unresolved quantities in x using a
Quasi-Newton algorithm. Equipped with this, we estimate
crosstalk in the overlaid logic circuit, can incorporate com-
petitive interaction with the host genome [3], and can po-
tentially account for titration e�ects [8] in low copy-number
regimes of involved TF’s.

Building Block
Library

Figure 2: Excerpt of Branch and Bound’s search tree for
an exemplary circuit. The marked gate is systematically
assigned library gates and resulting partial mappings are
scored with the bounding function, i.e. simulated with op-
timistically estimated inputs. Inferior partial solutions are
then pruned, while here, one solution is expanded further.

3 OPTIMAL AND FAST TECHNOLOGY MAPPING
USING BRANCH AND BOUND

During genetic technology mapping, genetic building blocks
from a library are assigned to the abstract logic circuit struc-
ture, while the resulting genetic circuit maximizes a given
performance metric represented by a circuit score like output
fold-change.

Due to the small circuit and library sizes and simple gate
models, it has been feasible in GDA to �nd optimal technol-
ogy mapping solutions using exhaustive search. However,
increased model complexity, like it is introduced by the pro-
posed thermodynamic model, leads to a computationally
costly evaluation of candidate circuits. To handle this, heuris-
tic approaches like Simulated Annealing have been proposed,
which provide shorter run times, but do not deterministically
obtain the optimal solution [7] [9]. As the output fold-change
of genetic circuits heavily depends on the performance of the
genetic building blocks near the end of the logic cascade, a
Branch and Bound (B&B) based technology mapping scheme
is proposed during which circuits are built iteratively start-
ing at the primary output [4] [6]. This approach seeks to
combine the computational performance of heuristics and
the optimal solution quality of exhaustive search.

During B&B, an implicit enumeration of the search tree
is performed, while based on the preliminarily best known
solution only partial solutions with a prospect of leading
to better solutions are considered further. As a result, the
possibility of pruning parts of the search tree arises (see Fig.
2). The quality of partial solutions is given by the maximally
reachable score of circuits containing the partial solutions,
which is called the bounding function. It is based on a true
partial simulation of the circuit, incorporating optimistic
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Figure 3: Number of simulations needed for mapping the set
of 66 benchmark circuits with the examined algorithms.

bounds for repressor concentrations yet unknown and omit-
ting un-reachable internal logic states identi�ed by Boolean
simulation.

The performance of this new technology mapping ap-
proach has been compared to exhaustive enumeration and
the mean performance of the SA proposed in [9]. To this end,
the genetic gate library and the gate model of Cello have
been used to map a total of 66 circuit structures including
the 33 structures presented in [7]. Furthermore, two con�g-
urations of B&B have been evaluated: an optimal one which
guarantees �nding the optimal solution and a heuristic one
with a relaxed bounding function. Figure 3 shows the total
number of simulations required by each mapping algorithm
for the whole benchmark set. Compared to exhaustive search,
B&B reduces the number of simulations 24-fold, while also
obtaining the optimal technology mapping. When it comes
to an heuristic approach, B&B outperforms SA 17.5-fold in
run time, while increasing the chance of �nding the opti-
mal result 1.2-fold and decreasing the mean loss in score
6.1 ⇥ 105-fold, leading to near-optimal results.

4 CONCLUSION
We propose a method to calculate a genetic logic circuit
which uses a NOR-logic structure in the style of Cello [7] on
a sub-gate level using a thermodynamic model instead of us-
ing gate transfer functions derived from kinetic models. The
model uses a di�erent library of elementary parts compared
to a gate library but can be integrated in the more abstract
gate-level technology mapping process by restricting the
exchange of the parts. This allows taking small copy-number
e�ects and such from competitive binding, like crosstalk,
into account when scoring a circuit assignment. Statistical
quantities used to characterize the sub-gate units can be in-
ferred from experimental data [5]. Since these calculations
are more expensive, we additionally propose a novel tech-
nology mapping approach using Branch and Bound, which
shows to be capable of drastically reducing the average num-
ber of genetic circuits to evaluate before reaching an opti-
mal solution, while using the classical gate model of Cello.

This is accomplished by rigorously pruning the search space
with a domain-speci�c bounding function. Further work tar-
gets the incorporation of crosstalk in the bounding function,
yielding tighter bounds with respect to the thermodynamic
calculations, thus enabling a fast crosstalk-aware technology
mapping.
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1 INTRODUCTION
Our understanding of disease and normal cell function is
greatly enhanced by computational models of signaling cas-
cades. Computational modeling methods, in contrast to in
vitro or in vivo methods, require less time to produce mech-
anistic explanations of cell function. These models contain
individual elements, which are usually a mix of genes, pro-
teins, small molecules, and biological processes. For all but
the simplest signaling cascades, any computational model
will be large and complex. Each model element is capable of
having multiple interactions, and feedback and feedforward
loops are frequent in signaling cascades [3].

The complexity of cell signaling necessitates simulation
methods that can manage large models, while still providing
accurate results. Boolean models, described in [2], represent
the activity of model elements as a discrete value, determined
by logical functions (Figure 1 A,B). This methodology confers
several benefits over other modeling approaches, as it is
not dependent on reaction rates. This abstraction reduces
the time needed for model assembly, as well as allowing
the inclusion of more ambiguous model elements, such as
biological processes like “inflammation”.

Software simulators are often limited by the typical run-
times for the programming language in which they are writ-
ten. This is an area where we can benefit from the use of hard-
ware simulators and, more specifically, Field-Programmable
Gate Arrays (FPGAs). FPGAs provide better spatial paral-
lelism, instruction efficiency, and re-programmability, all of
which lead to a significant speedup in runtime (compared
to software implementations). Recently, several hardware-
based implementations of a simulator were proposed [4, 7, 8],
written using hardware description languages (HDLs), and
allowing several orders of magnitude of speedup compared
to the software-based simulator. HDLs allow for the specifi-
cation of gate-level logic and the creation of configurable and
scalable models. Currently, however, there are no flexible,
automated methods to convert Boolean models to an HDL.
Here, we present a tool for converting Boolean models to
SystemVerilog [1], the HDL used in this work (Figure 1C),
for simulation of the model in an FPGA. This translation
tool requires less time and manual intervention to produce
models capable of being simulated using hardware methods.

A B C (A, !B)
0 0 1

1 0 1
0 1 0

1 1 1

A* = A
B* = not C
C* = A or not B

A

C

B

A

B
C

NOT

OR

  NOT

A_next <= A_curr;
B_next <= ~C_curr;
C_next <= A_curr|~B_curr;

A

E

DC

B

Figure 1: (A) A graphical representation of a simple toy
Boolean model with three elements, as well as the Boolean
expressions for the next state (*) for each element. (B) The
truth table for the value of Element C. (C) SystemVerilog
logic statements. (D) Logic gate representation of the toy
model. (E) Simulation results using the DiSH simulator [9],
a software-based simulator.

Cell 
Collective BioRecipes

Translator 

Modelsim 

Logic.svInitial.sv

Initialization 
Values

Hardware:
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Simulation 
Results
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Figure 2: SystemVerilog translator workflow.

2 METHODS
In this work, a Python script was used to translate a logi-
cal model in the format of either BioRECIPES or Boolean
expressions into a hardware description language (HDL).
The translated model is then used as input for a hardware
simulator. The BioRECIPES format is described in [10] and
the Boolean expressions were found from models in Cell
Collective. For each new model, the network logic module
and initializations are changed and created by the translator.
These are later combined with the controlpath and datapath
modules from the hardware-based simulator, which remain
the same from model to model (Figure 2).
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To simulate each model, we use the hardware implemen-
tation of the Discrete Stochastic Heterogeneous Simulator
(DiSH), described in detail in [4]. The DiSH simulator in-
cludes the datapath and controlpath modules, which provide
ModelSim with the logic of how the update rules are used,
namely which elements get updated and how frequently this
occurs. In the hardware simulator, registers are the main
storage components used to keep track of the network state.
As such, the main components needed for the network logic
module are the declaration of input and output registers for
each element and the assign statement that links these regis-
ters. The translator handles the creation of these components
on an element-by-element basis as the conditions of each
element must be considered. In other words, the translator
determines the regulators for each element from the input
and, by reading the notation associated with each format,
assigns the corresponding logic operator. When the entire
model is translated to SystemVerilog and the model module
is assembled, the model is simulated using ModelSim, a tool
that is used to simulate standard HDL designs in a hardware
environment. ModelSim compiles and links the individual
SystemVerilog modules into a project where it proceeds to
simulate the design. As the purpose of this work is to demon-
strate the versatility of the translator in converting many
different models, the simulator scheme and parameters were
kept uniform and simple. The model is run under the simul-
taneous update scheme, which updates the activity of all
model elements, based on their update rules, at each step in
the simulation. Each model is run for 50 steps. While here
we use the simultaneous update scheme, our SystemVerilog
translator works with any DiSH update scheme.

3 RESULTS
To demonstrate the efficacy of the translator, we used as
input three Boolean models Table 1 written in different rep-
resentation formats. The runtime, even for large models with
hundreds of nodes and edges, is in the order of milliseconds.
Since the number of SystemVerilog logic statements relies
only on the number of model elements, even the largest
Boolean models can be translated quickly. For conversion of
Boolean models to SystemVerilog, this is a profound speedup
over manual methods. In addition to the time saving benefits
of using the translator to convert large Boolean models, the
translated models can be quickly simulated to explore model
behavior. In the following section, we show the translation
and simulation results for these Boolean models.

Large Granuloma Leukocyte Model
We translated a model of large granular lymphocyte leukemia
(LGL) signal transduction, described in [11], from BioRECIPES
format. Figure 3A is a graphical representation of the LGL
model, accompanied by a close-up of a subnetwork. This part

Table 1: Characteristics of the test case Boolean models. For
each model, we list the input format, number of elements
in the model (nodes), and number of interactions within the
model (edges). We also state the runtime of the translator in
milliseconds (ms).

Model Format Elements (#) Interactions (#) Translation runtime (ms)
LGL BioRecipes 47 168 9.94
ErbB Cell Collective 247 1100 13.96

Fibroblasts Cell Collective 139 557 6.98

Apoptosis_next <= Caspase_curr | Apoptosis_curr;
Mcl1_next <= (STAT3_curr & NFKB_curr & Erk_curr) & ~(Fas_curr & IL2_curr | Apoptosis_curr);
BID_next <= (Caspase_curr | GZMB_curr) & ~(BclxL_curr | Mcl1_curr | Apoptosis_curr);
BclxL_next <= (NFKB_curr & STAT3_curr) & ~(BID_curr | Ras_curr & IFNT_curr | IL2_curr |Apoptosis_curr);

B

C

A

Figure 3: Translation of the LGL logical model described in
[11]. (A) A graphical representation of the whole model, as
well as a close-up of one pathway. The close-up shows sev-
eral possible paths between the model elements Apoptosis
and BclxL, both of which were focal points in the original
publication. (B) A small subset of the SystemVerilog logic
statements produced by the translator. We show the Sys-
temVerilog statements for each model element in the close-
up in (A). Note that some of the more verbose logic state-
ments have been abridged for clarity. (C) Simulation results
for the six elements in (B).

of the model represents the regulation of apoptosis by several
elements - BclxL, Mcl1, and BID. The model is represented
by 47 SystemVerilog logic statements after translation. The
abridged SystemVerilog logic statements for the subnetwork
are shown in Figure 3B. After translation of the LGL model
into SystemVerilog, we simulated using the simultaneous up-
date scheme, as described in the Methods section. The traces
for the four subnetwork elements are shown in Figure 3C.

ErbB Signal Transduction Model
We translated a model of ErbB signaling, described in [5],
to SystemVerilog. Figure 4A is a graphical representation
of the model, with a close-up visualization of a subnetwork.
This subnetwork represents EGF-dependent activation of
Akt, which was studied in-depth in the original paper. This
subnetwork contains six elements - EGF, EGFR dimer, mod-
ified EGFR dimer, free EGFR, PP2A, and Akt. The model,
originally in Boolean expression format, is represented by
247 SystemVerilog logic statements after translation. The
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Figure 4: Translation of the ErbB logical model described
in [5]. (A) A graphical representation of the whole model,
as well as a close-up of one pathway. The close-up shows
one possible path between the model elements EGF and Akt,
both of which were focal points in the original publication.
(B) A small subset of the SystemVerilog logic statements pro-
duced by the translator. We show the SystemVerilog state-
ments for each model element in the close-up in (A). Note
that some of the more verbose logic statements have been
abridged for clarity. (C) Simulation results for the six ele-
ments in (B).

abridged SystemVerilog logic statements for the subnetwork
are shown in Figure 4B. After translation of the LGL model
into SystemVerilog, we simulated as described in Materials
and Methods. The traces for the six subnetwork elements
are shown in Figure 4C.

Fibroblast Model
We translated the Boolean model of fibroblast signaling trans-
duction, described in [6]. Figure 4A is a graphical represen-
tation of the fibroblast model, accompanied by a close-up of
one subnetwork. This part of the model represents the regu-
lation of Erk through two pathways. The model, originally in
Boolean expression format, is represented by 139 SystemVer-
ilog logic statements after translation. The abridged Sys-
temVerilog logic statements for the subnetwork are shown
in Figure 4B. After translation of the LGL model into Sys-
temVerilog. The traces for the six subnetwork elements are
shown in Figure 4C.

4 CONCLUSION
Hardware-based simulators allow for orders of magnitude
faster simulation than software simulators, but require input
to be in the form of a hardware description language. Our
translator is capable of fast conversion of Boolean models
to SystemVerilog. Our results show that our tool translates
even the largest models quickly, and the runtime in millisec-
onds does not neutralize the speedup of the DiSH hardware
simulator over software simulation methods. This transla-
tor is also flexible in terms of the accepted input formats,
and is extendable to non-biological models. We show in our
three test cases that the translator automatically creates all
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Figure 5: Translation of the fibroblast signaling transduc-
tion logical model described in [6]. (A) A graphical repre-
sentation of the whole model, as well as a close-up of one
pathway. The close-up shows several possible paths between
the model elements EGFR and ERK, both of which were fo-
cal points in the original publication. (B) A small subset of
the SystemVerilog logic statements produced by the transla-
tor. We show the SystemVerilog statements for each model
element in the close-up in (A). Note that some of the more
verbose logic statements have been abridged for clarity. (C)
Simulation results for the six elements in (B).

SystemVerilog logic statements from the input model, and
that these logic statements are still human readable. DiSH
hardware simulation of these models demonstrates the util-
ity of the translator tool, and its potential future uses for
mechanistic study of cell signaling. Future directions include
translation of other input formats, such as truth tables or
adjacency matrices. The translator could also be updated
to include discrete models with three or more activity lev-
els, as opposed to Boolean models with only two activity
levels. The DiSH software simulator is also capable of in-
cluding temporal information, such as delays, within update
rules. Potentially, we could include this functionality to the
SystemVerilog translator.
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1 INTRODUCTION
Synthetic biology is bringing together engineers and biol-

ogists [10]. Associated with this interdisciplinary movement
is the need for reusable tools that supplement the current
understanding of genetic sequences. To satisfy this need,
Synthetic Biology communities across the world have de-
veloped tools and ontologies to help describe their unique
semantic annotations [1, 3–9, 13, 14, 17–19, 22]. Shared repre-
sentations for data and metadata, grounded in well-defined
ontology terms, can help reduce confusion when sharing
materials between practitioners,[20]. The Synthetic Biology
Open Language (SBOL) [5] is one of the approaches that
has been developed to address this challenge. SBOL pro-
vides a standardized format for the electronic exchange of
information on the structural and functional aspect of bi-
ological designs, supporting use of engineering principles
of abstraction, modularity, and standardization in synthetic
biology. Many tools have been created that work with SBOL,
including the SynBioHub repository software for storing and
sharing designs [12].

Using formal representations such as SBOL, however, typ-
ically requires either a thorough understanding of these stan-
dards or a suite of tools developed in concurrence with the
ontologies [11]. Unfortunately, this poses a significant bar-
rier to use for scientists not trained to work with such ab-
stractions. One approach to lowering this barrier was demon-
strated in the Systems Biology for Micro-Organisms (SysMO)
consortium [2]. In SysMO, the MicroArray Gene Expression
Markup Language (Mage-ML) was set up as an XML schema
[15], and users were expected to submit data to the SysMO
Assets Catalogue (called SEEK) in XML format in order to
publish work. To allow the use of the Mage-ML language
without having to understand XML, the RightField tool was
created [21], an ontology annotation and information man-
agement application that can add constrained ontology term
selection to Excel spreadsheets. This tool enables administra-
tors to create templates with controlled vocabularies, such
that the scientists utilizing the tool would never actually see

the raw RightField, only the more familiar Excel spreadsheet
interface.

Similarly, users of SBOL and SynBioHub have faced a steep
learning curve for understanding the underlying ontology:
as assessed in [16], “For successful use and interpretation of
metadata presented in SynBioHub, the semantic annotation
process should be biologist-friendly and hide the underlying
RDF predicates.” Accordingly, the Excel-SBOL Converter
presented here has been designed to provide a simple way
for users to generate SBOL data without needing a detailed
understanding of the underlying ontology and associated
technologies. The converter provides a simple way for users
to manage data by allowing users to download SBOL into
Excel templates and submit Excel templates for conversion
into SBOL.

2 RESULTS
The Excel-SBOL Converter enables the round trip con-

version of SBOL2 into Excel Templates and Excel Templates
to SBOL2, as shown in Figure 1. This metadata conversion
allows researchers the flexibility of working in Excel without
losing the benefits of SBOL2 and maintains inter-operability
with the SBOL2 tool suite. The converter also facilitates
understanding of the metadata relationships, management,
and structure within the SBOL2 XML file. The converter
has been implemented and published as two Python pack-
ages, Excel2SBOL and SBOL2Excel, under a free and open
license and published to pypi for easy pip installation and
integration with other projects. Specific benefits of each of
the packages are described below.

SBOL2Excel
The SBOL2Excel package is designed in a modular way

to allow further expansion. The package’s design includes
an initial step from SBOL2 to a dictionary structure. This
function could be swapped out with other functions to enable
the conversion of other formats such as SBOL3 and GenBank
to the Excel Templates.
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Figure 1: Round trip journey of the Excel-to-SBOL Con-
verter: User 1 converts an SBOL file into an Excel spread-
sheet using the SBOL2Excel library, and shares that spread-
sheet with User 2, who then converts the Excel spreadsheet
back into an SBOL file using the Excel2SBOL library. The
SBOL file that User 2 returns to User 1 is exactly the same as
the SBOL file that User 1 originally had.

Another key feature is that any arbitrary Component-
Definition properties can be converted into Excel columns.
However, some common types of properties are given ad-
ditional post processing to make them more user friendly.
SBOL2Excel operates in five general steps:

(1) An SBOL2 document is read (with property-specific
post-processing) and converted to a dictionary.

(2) The dictionary is converted to a pandas dataframe.
(3) The dataframe’s columns are reordered based on the

default Excel Template.
(4) Extraneous columns are dropped from the dataframe.
(5) The dataframe is output into a formatted Excel Spread-

sheet.
Figure 2 shows a high level representation of SBOL2Excel’s
modular architecture.

Excel2SBOL
This package is able to parse and add information from

arbitrary columns into component definitions as annotations.
Specific columns are added as a particular type of annotation
based on a column conversion table that is accessible in
the Excel Template. The package is also able to deal with
different templates as long as the Template parameters are
added to the modules config file. SBOL2Excel operates in 3
general steps:

(1) Parse the different sections of the template (Overview
Information, Design Description, and Part Table).

(2) Parse the table indicating how columns are converted.
(3) For every row, create a component definition and add

attributes based on each column in the parts table.
Figure 3 is a high level representation of Excel2SBOL’s mod-
ular architecture.

3 DISCUSSION
The next steps in the development of the Excel-SBOL

Converter are:
• Making the incorporation of ontologies with Excel

Templates easier and less hard-coded, perhaps by re-
lying on RightField Templates. Integrating RightField
may be useful in preparing ontologies for templatiza-
tion.

• Making the benefits of adherence to community stan-
dards clearer to users to create greater uptake.

• Establishing a core set of part metadata which can then
be enforced via the Excel Templates.

• Making both packages SBOL3 Compliant. Enabling
this feature would allow users to perform conversions
from SBOL documents (perhaps generated by SynBio-
Hub) that contain SBOL2, SBOL3, or both.

• Creating SynBioHub plugins for both packages to inte-
grate their functionality with SynBioHub. This would
enable users to perform conversions without directly
interacting with Python code.

• Expanding the range of top-level SBOL types that can
be converted (e.g. Activities, Composite Components,
and Modules).
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Figure 2: The module architecture of the SBOL2Excel Python Package. Note that the colors of the functions indicate which
Python module they can be found in, as indicated in the key on the bottom right.

Figure 3: The module architecture of the Excel2SBOL
Python Package. Note that the colors of the functions indi-
cate which Python module they can be found in, as indicated
in the key on the bottom right.
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1 INTRODUCTION
Synthetic Biology is an interdisciplinary field that mixes
life sciences and engineering. From this perspective living
systems are objects to engineer, and a rational way to de-
sign them is by modifying their genetic code. This can be
done by introducing synthetic DNA that encodes a synthetic
regulatory network, also known as a genetic circuit. The
design-build-test-learn (DBTL) cycle is central to engineer-
ing disciplines and each phase requires appropriate tools,
standards and workflows, which are still in development
in synthetic biology. The synthetic biology open language
(SBOL) is an open standard for the representation of in sil-
ico biological designs that covers the DBTL cycle and has
attracted a community of developers that have produced an
ecosystem of software tools [4].

Modelling is key to the DBTL cycle and is essential to the
design and learn stages; a model states a well-defined hy-
pothesis about the system operation. Abstraction enables the
construction and analysis of models based on components,
devices, and systems that can be used to compose genetic
circuits. It is the basis for genetic design automation (GDA),
which can accelerate and automate the genetic circuit de-
sign process. In order for GDA to proceed in a rational way,
the abstract elements of genetic circuits must be accessible
to characterization, allowing parameterization of models of
their operation and interactions.

Functional abstraction of DNA sequences as parts such
as transcriptional promoters (Pro), ribosome binding sites
(RBS), coding sequences (CDS), terminators (Ter) and other
elements has enabled the assembly of relatively small genetic
circuits [1–3]. However, for large-scale genetic circuit design
higher-level abstractions are required, as provided by the
logic formalism [6]. In this approach circuit compositions are
abstracted into genetic logic gates that transition between
discrete low and high steady-state gene expression levels
according to input signals, either external or internal to the
circuit [9]. These genetic logic circuits can be designed auto-
matically, in an analogous way to electronic circuits, based
on the required discrete logical truth table [6], however this
specification requires knowledge of the domain-specific pro-
gramming language Verilog.

Despite the discrete logical design formalism, these genetic
circuits are dynamical systems and can have autonomous,
continuous non-steady-state dynamics, displaying complex
and rich behaviors from bi-stability to oscillations and even
chaos [2, 3, 11]. Furthermore, typical operating conditions
for engineered circuits like colonies, bioreactors or gut mi-
crobiomes are time varying, which can lead to complex be-
haviors from even simple genetic circuits [7].

To design genetic circuit temporal dynamics we therefore
require kinetic gene expression data generated at the test
phase. This data must be integrated with models to enable
characterization of abstracted parts, devices and systems, as
well as metadata, including the DNA part composition, to
enable automated design. Thus there is a need for software
design tools that integrate abstract circuit designs, dynamical
models, kinetic gene expression data, and DNA part com-
position via common exchange standards in a user-friendly
and accessible fashion.

2 RESULTS
Logical Operators for Integrated Cell Algorithms (LOICA)
provides a high-level genetic design abstraction using a sim-
ple and flexible object-oriented programming approach in
Python. LOICA integrates models with experimental data via
two-way communication with Flapjack, a data management
and analysis tool for genetic circuit characterization [12].
This communication not only provides direct access to ex-
perimental characterization data, but also to DNA design
composition and sequence via SBOL contained in SynBio-
Hub [5], enabling characterization and simulation in the
same tool, but also facilitating exchange with other tools
such as iBioSim [11].

The basic objects in LOICA are Operator and GeneProduct,
which may be either a Regulator or Reporter (Figure 1A). A
Regulator represents a molecular species that regulates gene
expression. A Reporter is a molecular species that provides a
measureable signal, such as a fluorescent protein. The Op-
erator maps one or more Regulator concentrations to one
or more GeneProduct synthesis rates. An Operator can be
implemented in DNA as a combination of Pro and RBS, and
the Regulator could be a CDS of a transcription factor or of a
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regulatory RNA. The interactions between the Operators and
the Regulators encode models for genetic circuit temporal
dynamics, which are simulated with differential equations.
The system is thus:

𝑑p
𝑑𝑡

= Ψ(r) − Γp − 𝜇 (𝑡)p, (1)

Ψ(r) =
∑
𝑘

Φ𝑘 (r), (2)

where p = (𝑝0, 𝑝1, ...𝑝𝑁−1)𝑇 is the vector of GeneProducts,
which includes different Regulators (r = (𝑟0, 𝑟1, ...𝑟𝑀−1)𝑇 ) and
Reporters (s = (𝑠0, 𝑠1, ...𝑠𝑁−𝑀−1)𝑇 ). The non-linear operator
Ψ maps Regulator concentrations to GeneProduct synthesis
rates. Γ is a diagonal matrix of GeneProduct degradation
rates, and 𝜇(t) is the instantaneous growth rate of the cells.
Equation 1 shows the overall system where Ψ encodes the
whole circuit, and consists of a sum of individual LOICA
Operators Φ𝑘 (Equation 2).

Figure 1B shows a mathematical model that results from
the interaction of an Operator encoding a simple NOT logic
modeled with a Hill equation as transfer function. It can be
implemented as a promoter containing repressor binding
sites combined with a ribosome binding site (RBS). The logi-
cal Operator can thus be instantiated as a genetic device that
is repressed by an input Regulator and outputs a GeneProduct
synthesis rate. Note that LOICA can be used to define an
Operator as any operation that maps from input Regulator
concentrations to output synthesis rates.

The repressilator is a useful dynamical system case study
because it produces continuous sustained oscillations that
escapes ON/OFF logic [2]. To model it, we consider a simple
balanced ring oscillator with three NOT Operators connected
with three different Regulators. The Operators and Regulators
are incorporated into a GenticNetwork, linked with a Flapjack
Vector, which with the Metabolism drives the dynamics of
the Sample, also corresponding to a Flapjack Sample (Fig-
ure 1A). For the circuit to produce a measurable signal we
add three Operators using the same inputs but changing the
outputs to three different Reporters, linked with the Flapjack
Signal model (Figure 2A). The code to generate this model
is in Figure 2B. This approach is used to generate synthetic
data (a LOICA Assay) from models that can be uploaded to
Flapjack. It is then easy to access Flapjack’s genetic circuit
characterization tools, data management and data visual-
ization through a Python package (pyFlapjack) or the web
interface shown in Figure 2D.

We have described how to use LOICA to generate and an-
alyze simulation data from models. Another example work-
flow goes from data to model parameterization and could
be as follows for the learn stage of the DBTL cycle. First, a
GeneticNetwork is assembled from a collection of Operators,
linked by various Regulators and Reporters in some topology.

Each Operator is then linked to experimental data contained
in Flapjack, which corresponds to measurements of the aux-
iliary circuits required to parameterize the model encoded.
For example, a NOT Operator links to data of a chemical
signal receiver and a chemical signal inverter measured in a
range of signal concentrations (LOICA and Flapjack Supple-
ment). The Operator provides a function that then extracts
the data from Flapjack and uses it to parameterize the cor-
responding model (Figure 1B). In the example shown that
means fitting parameters 𝑎, 𝑏, 𝐾, 𝑛 by least squares minimiza-
tion of the difference between the experimental data and
the solution of differential equation models of the auxiliary
circuits (Equation 1). Each Operator thus contains the infor-
mation required to characterize itself. Therefore with LOICA
data driven models that include mathematical constraints
it is possible to design circuit topologies and look for likely
functional designs initiating a new round of the DBTL cycle.

3 CONCLUSION
LOICA integrates the design and characterization of genetic
circuit dynamics into Python workspaces, providing an easy-
to-understand design abstraction implemented using sim-
ple object-oriented programming principles. This program-
ming interface does not require specialist or domain-specific
knowledge, but leverages common programming skills, mak-
ing it accessible but also providing customization capabilities
for advanced users. LOICA is able to simulate abstract ge-
netic circuit designs using differential equation models. It ab-
stracts genetic circuit designs into objects which are capable
of characterizing themselves via links to data in Flapjack. As
data relating to genetic components is updated in Flapjack,
the fitted parameters can be automatically updated upon
characterization. Flapjack also provides the connection to
SynBioHub which allows design and characterization based
on SBOL.

4 FUTURE WORK
We aim to complete and automate the DBTL cycle in syn-
thetic biology, proposing a workflow that integrates LOICA,
Flapjack [12] and SynBioHub [5] via SBOL3 [4]. In the de-
sign stage SBOL/SBML will provide flexibility to use other
existing bioCAD tools such as iBioSim [11] as part of the
workflow. To make a direct transition to the build stage
LOICA will generate a human/machine readable protocols
for assembly using Opentrons liquid handling robots [10]
and their open Python API. We will expand LOICA’s capa-
bilities to single-cell resolution spatio-temporal systems by
connecting it to CellModeller [8] for individual based mod-
elling and stochastic simulations. For the test stage we will
develop open science hardware for measuring genetic circuit
dynamics that could be used to obtain kinetic data for direct
upload to Flapjack.
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Figure 1: Diagram of model generation in LOICA. A. Diagram of an Assay encapsulating a Sample which in turn encapsulates
Metabolism, Supplement, and GeneticNetwork. In the later, the Operator and Regulator are interacting to generate a model.
On the right side the different interactions with the Flapjack and SynBioHub models are shown. B. Mathematical model of
a NOT Operator with one input and one output generated through LOICA object interactions. Here 𝑝𝑂𝑈𝑇 is a GeneProduct
(Regulator or Reporter), output of the Operator. In the Operator 𝑎 is the basal or leaky gene expression, 𝑏 is the regulated gene
expression, 𝑟𝐼𝑁 is a Regulator concentration, 𝐾 is the switching concentration, and 𝑛 is the cooperativity degree of 𝑟𝐼𝑁 with
respect to the Operator. In the GeneProduct 𝛾 is the degradation rate of 𝑝𝑂𝑈𝑇 . In Metabolism 𝜇 (𝑡) is the instantaneous growth
rate which dilutes 𝑝𝑂𝑈𝑇 . Here the Operator is encoded by a Hill equation transfer function that states its regulation by 𝑟𝐼𝑁 .
The transfer function could be any mapping from input concentration to synthetis rate, making LOICA Operators flexible and
easy to extend.
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Figure 2: Example of repressilator design in LOICA. A. LOICA diagram of the modeled repressilator circuit and respective
symbols. B. Python code that generates a repressilator in LOICA. GeneticNetwork construction is the first step where the user
states all the objects and their interaction. C. Next during Assay setup the user initializes and runs the simulation, and the
results can be uploaded to Flapjack. The two-way communication with Flapjack allows data storage and management, enables
various analyses to be performed, and allows Operators to characterize themselves. D. Data exploration in Flapjack via the web
interface. This interface allows to query, analyze and plot the data, which can also be done through the pyFlapjack Python
package.
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1 INTRODUCTION
Machine reading tools are able to quickly and automatically curate
vast amounts of information from relevant published literature
[6][2]. This curated information can be used to build biological
computational models or expand upon existing models. However,
the information gleaned by machine readers is both vast and var-
ied in quality. Machine readers must work to extract standardized
biological interactions from inconsistent terminology and complex
sentence structures, which sometimes leads to extraction errors.

Previously we have developed VIOLIN (Verifying Interactions of
Likely Importance to the Network) a tool to automatically classify
and judge biological interactions extracted from relevant literature.
With VIOLIN, we are able to take these literature extracted events
(LEEs) and compare them to an existing biological model, deter-
mining whether a given LEE agrees with the model (corroborates),
introduces new information to the model (extends), disputes the
model (contradicts), or requires manual review (flagged). Each LEE
is assigned four numerical values to represent its relationship to
the model system (Match Score), its classification category (Kind
Score), its frequency (Evidence Score), and extraction confidence
(Epistemic Value). These values are combined into a Total Score to
allow for automatic filtering and classification of large sets of LEEs
curated from multiple sources. To further increase the utility of
VIOLIN, we now seek to integrate VIOLIN as part of an automated
model-building framework (Figure 1).

Current approaches towards building and extending models have
two major pitfalls. They either focus on only a single step of the
process [8][7], or the decision metrics lack depth, focusing on the
machine reading output or model as separate entities, more than
the relationship between the two [2].

We first integrated VIOLIN with the filtering tool FLUTE (FiLter
for Understanding True Events) [3], to make use of the expert
data gathered in public databases. The FLUTE tool connects to
public protein interaction databases to judge the accuracy of an
LEE. This integration allows us to balance the removal of erroneous
extractions while retaining novel interactions which may not yet
be represented in a database.

We next integrated VIOLIN with CLARINET (CLARIfying NET-
works) [1], an automated model extension tool. Where VIOLIN
classifies individual LEEs for their relevance and usefulness to a
given model, CLARINET classifies candidate extensions as clusters
of biological interactions, taking into account how LEEs are con-
nected to each other, in addition to their connection to the baseline
model.

These three tools together create a powerful method of taking
information-rich relevant literature and identifying the highest
quality events for extending a baseline model.

Figure 1: An outline of automated information extraction
and the model assembly, highlighting the roles FLUTE, VI-
OLIN, and CLARINET hold: FLUTE and VIOLIN judge the
quality, relevance, and usefulness of LEEs on an individual
basis, and then CLARINET judges how the LEEs connect,
both to each other and the baseline model.

2 METHODS
To evaluate the itnegration of VIOLIN and FLUTE, we used the
following as inputs (1) three computational models, namely a model
of Skel-133 Melanoma, a model of human T-cells [4], and a model
of the BDNF pathway as it relates to Major Depressive Disorder
(MDD) [5], and (2) four LEE sets for each model. From these inputs,
we generated three types of outputs: LEE sets classified by VIOLIN
only (control), LEE sets first filtered by FLUTE and then classified
by VIOLIN (pre-processed), and LEE sets first classified by VIOLIN
and then filtered by FLUTE (post-processed).

We next investigated the integration of VIOLIN and CLARINET,
using a Glioblastoma Multiforme model and two highly specialized
LEE sets. Our first LEE set (R𝐺1) contained 10,130 LEEs from 242
papers, and the second (R𝐺2) contained 25,875 LEEs from 454 papers.
From these inputs, we also created three data outputs: candidate
clusters created from the raw LEE sets (control), candidate clusters
created from the Total VIOLIN output, which lists only the unique
LEEs (unique), and candidate clusters created from only the VIOLIN
extensions (extensions). Table 1 shows a summary of the input
parameters for both parts of our investigation.
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Table 1: Testing Inputs

LEE Suffix Model Model Nodes LEE sets

R𝐴 T cell 61 4
R𝐵 Melanoma 225 4
R𝐶 MDD 72 4
R𝐺 GBM 238 2

3 RESULTS
For our VIOLIN-FLUTE integration, we found that post-processing
methods consistently retained the greatest number of LEEs, and
that this is true across all VIOLIN classification categories (Figure
2). Contradictions and Extensions had the lowest average reten-
tion rate, and flagged had the highest (Table 2). This supports our
previous suggestion that the contradiction category can be used
to filter out machine reading errors. As expected, those LEEs with
high evidence scores are retained more often than those with low
evidence scores.

Figure 2: Retention counts for each VIOLIN classification:
(A) shows corroborations, (B) shows extensions, (C) shows
contradictions, and (D) shows flagged

Table 2: Average Retention Rates

Pre-Processed % Post-Processed %

Corroborations 32.9 42.1
Extensions 21.7 26.9

Contradictions 10.7 16.6
Flagged 39.3 61.6

For the VIOLIN-CLARINET integration, we observed the size
and central nodes of the candidate clusters for the control, unique,
and extension output from CLARINET (Figure 3). We found that
just the act of comparing the control output to the unique output,
which contains only single instances of a given LEE, has an effect
on the outcome of the candidate clusters. The candidate clusters
from the extensions are an even more focused input, as they only
present LEEs for consideration which are known to present new
information to the model. This suggests that forming candidate

clusters from raw machine reading output is influenced by corrob-
orative or contradictory LEEs, as well as machine reading errors,
and having more directed LEE sets would produce more directed
clusters.

Figure 3: Candidate clusters for the control, unique, and ex-
tensions input compared to the GBM model using CLAR-
INET. The top row was created from the R𝐺1 LEE set, and
the bottom row was created from the R𝐺2 LEE set

4 CONCLUSIONS
Integrating VIOLIN with FLUTE and CLARINET showed us the
promising outcome of combining these individually effective tools.
The options of using FLUTE with VIOLIN allows the user to deter-
mine the importance of removing erroneous information versus
retaining novel interactions. Our results from CLARINET show
that narrowing an LEE set down to those which are most useful for
extension changes the candidate extensions, and VIOLIN allows
this process to be fast and automatic. Our next step is to further
investigate approaches to utilize the integration of these three tools
towards automated creation of useful and reliable models.
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1 INTRODUCTION
Modeling complex systems or extending existing models
with new information enables a better understanding of these
systems [5]. New information can be extracted from different
knowledge sources—such as expert knowledge, published
literature and pathway databases—and used to assemble or
extend models (Figure 1 (a)). However, modeling is a time
and labor-intensive task, often limited by the knowledge
and experience of the modelers. With new research articles
published each day, there is a pressing need for an auto-
mated method that updates models with new information
efficiently and automatically, while preserving the useful-
ness and accuracy of the original models. Recently, there has
been a push in the field of synthetic biology to automate the
entire pathway of model assembly, starting with collecting
biological interactions, assembling a model, and performing
simulations [3]. A typical model assembly pipeline (Figure 1
(b)) begins with a question about the system under study.
This question is converted into a search engine query to iden-
tify and extract the most relevant papers. Biological events
are extracted from those papers and used to assemble or ex-
tend models. The newly assembled models are then analyzed
and evaluated to determine if they satisfy desired system
behavior. In this work, we survey the most recent automated
model assembly efforts. Specifically, we will review five tools:
Layer-based [8], Genetic Algorithm (GA) based [12], ACCOR-
DION [1], CLARINET [2] and FIDDLE [4]. We will emphasize
the applicability and benefits of each tool using a case study
of T cell differentiation model [6] [9] .

2 BACKGROUND
Cellular signaling pathways can be modeled as directed
graphs, with nodes representing pathway elements, and
edges representing interactions between elements. To study
the dynamics of such systems, all the presented tools use ex-
ecutable models, where discrete variables represent states of
model elements, and each element can have a state transition
function or update function. A baseline model, and an output
from a machine reading engine are the inputs to the model
assembly pipeline. Each model assembly pipeline generates
candidate models of the system under study. Model check-
ing is then used to verify whether each candidate model

satisfies a set of properties describing expected behavior
of the system. Here, we compare the tools using the same
T cell model described in [6], and suggested set of inter-
actions from an open-source reading engine, REACH [15].
We expressed both the model and the reading output using
an element-based BioRECIPES format [14] and we used the
DiSH simulator [13] to observe dynamic behavior of the
baseline and newly assembled models. We also used statis-
tical model checking [17] [7] [10] [11] to test all generated
models against formally defined properties.

Figure 1: (a) Knowledge assembly, conceptual overview; (b)
Automated model assembly pipeline.

3 AUTOMATED MODEL ASSEMBLY TOOLS
3.1 Layer-based approach. In [8], the authors proposed a
method that starts with a baseline model and selects interac-
tions extracted from published literature automatically. The
proposed method groups the information extracted from lit-
erature into layers, based on their proximity to the important
elements in the baseline model. The pieces of information or-
ganized in such layers are then added to the baseline model,
so that the extended model satisfies predefined system prop-
erties. The proposed method helps identify some new inter-
actions without trying the extracted interactions all at once
or one interaction at a time. Since the extension method adds
new interactions based on their proximity to existing models,
this method becomes impractical with large-scale models.
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3.2 GA-based approach. Another model extension method
that uses a Genetic Algorithm [18] was proposed in [12]. The
authors in [12] removed a group of elements from an existing
model in a random way and they mixed them with randomly
created interactions to mimic the output of machine reading
engines. Eventually, they applied the genetic algorithm to
search for the extensions that optimally reconstructed the
model. It has been proved in [12] that the GA-based approach
was able to extract a set of extensions that led to the desired
system behavior. The main disadvantages of the GA-based
approach include non-determinism, as the solution may vary
across multiple algorithm executions on the same inputs, as
well as issues with scalability.

3.3 ACCORDION (Automated Clustering Conditional On
Relating Data of Interactions tO a Network). A tool that
automatically and efficiently assembles the information ex-
tracted from available literature into models, evaluates the
dynamic behavior of newly assembled models, and selects the
most suitable model to address user questions as described
in [1]. In contrast to [8] and [12], ACCORDION focuses on
identifying clusters of strongly connected elements in the
newly extracted information that have a measurable impact
when added to the model. ACCORDION uses Markov Clus-
tering algorithm (MCL) [16], an unsupervised graph cluster-
ing algorithm, to group interactions obtained from literature
by machine reading. Eventually, it finds return paths that
start in the baseline model, go through one or more clusters,
and end in the baseline model; the baseline model and the
clusters on such return path form a candidate model.

3.4 CLARINET (CLARIfying NETworks). Recently, a novel
methodology was proposed in [2] to expand dynamic net-
work models using the information extracted from published
literature by machine reading engines. CLARINET organizes
the extracted events as a collaboration graph and uses sev-
eral novel metrics for evaluating these events individually, in
pairs, and in groups. The metrics introduced by CLARINET
are based on the frequency of occurrence and co-occurrence
of events in literature, and their connectivity to the baseline
model. CLARINET is scalable; its average runtime is at the
order of seconds when processing several thousand interac-
tions.

3.5 FIDDLE (Finding Interactions using Diagram Driven
modeL Extension). A tool described in [4] that employs two
methods based on network search algorithms—Breadth First
Addition (BFA) and Depth First Addition (DFA)—to auto-
matically assemble or extend models with the knowledge
extracted from published literature. FIDDLE is able to refine

models by systematically adding known biological interac-
tions into intermediate models, measuring changes in model
performance, and then adding or discarding interactions
based on whether they improve the model performance met-
ric. Both BFA and DFA scale linearly with the size of the
model they are tasked to extend, and the number of potential
interactions with which to extend the model.

4 RESULTS AND DISCUSSION
To demonstrate the accuracy, efficiency, and utility of each
tool, we have selected a computational model of T cell dif-
ferentiation [9]. Our main goal with this case study is to
show that each tool is able to automatically assemble and
extend an existing published model into another published
and manually built model using new elements and new inter-
actions automatically extracted from published literature. As
the final golden model, we used the T cell model published
in [6] and the set of desired system properties discussed
in [9] and [6]. The complete list of 27 properties is shown
in Table 1. The golden model and the properties are used
to evaluate the automatically assembled model obtained by
each tool. Figure 2 highlights the differences between the
results obtained for each tool when tested using statistical
model checking. The GA-based method features the best per-
formance as scored through statistical model checking. Due
to its iterative nature, the time required to perform GA-based
extension increases with the number of possible extensions,
and can be prohibitively long when applied to large scale
models [2]. Both ACCORDION and CLARINET balance per-
formance with scalability and can be applied to large scale
models, as well as large scale machine reading output, as
demonstrated in [1] and [2]. CLARINET scores the newly
extracted events based on both the evidence from literature
and the connectivity to the baseline model. If the user is
interested in collecting new interactions that are strongly
connected to each other and strongly connected to the base-
line model, then, ACCORDION would be a better choice;
since it adds paths of connected interactions, which are at
the same time connected to the baseline model. The layer-
based and BFA methods perform similarly, despite adding
different number of extensions to the baseline model. The
layer-based method is meant to be applied when the user is
interested in collecting new, relevant interactions that are
directly connected to the baseline model. The DFA method
performed the worst, scoring below the baseline model. This
can be attributed to optimizing a scoring metric different than
statistical model checking. In fact, both FIDDLE methods at-
tempt to optimize the same metric with the fewest number
of extensions to the baseline model. Their poor performance
points to their metric being a poor stand in for statistical
model checking, and the stipulation to minimize the number
of additional extensions as an unnecessary restraint.
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Table 1: Set of properties that are observed to be true in T
cells [6] [9].

Prop# Description
Scenario 0: No TCR

1 Once deactivated, AKT will remain inactive until end of analyzed period
2 Once activated, PTEN will remain active until end of analyzed period
3 Once deactivated, FOXP3 will remain inactive until end of analyzed period
4 Once deactivated, IL2 will remain inactive until end of analyzed period
5 Once deactivated, CD25 will remain inactive until end of analyzed period
6 Once deactivated, STAT5 will remain inactive until end of analyzed period
7 Once deactivated, mTOR will remain inactive until end of analyzed period
8 Once deactivated, mTORC2 will remain inactive until end of analyzed period
9 Once activated, FOXO1 will remain active until end of analyzed period

Scenario 1: Low TCR
10 Once deactivated, AKT will remain inactive until end of analyzed period
11 Once activated, PTEN will remain active until end of analyzed period
12 Once activated, FOXP3 will remain active until end of analyzed period
13 Once deactivated, IL2 will remain inactive until end of analyzed period
14 Once activated, CD25 will remain active until end of analyzed period
15 Once activated, STAT5 will remain active until end of analyzed period
16 Once activated, mTOR will remain active until end of analyzed period
17 Once activated, mTORC2 will remain active until end of analyzed period
18 Once activated, FOXO1 will remain active until end of analyzed period

Scenario 2: High TCR
19 Once deactivated, AKT will remain inactive until end of analyzed period
20 In developing Th, PTEN decreases and remains absent
21 Once deactivated, FOXP3 will remain inactive until end of analyzed period
22 Once activated, IL2 will remain active until end of analyzed period
23 Once activated, CD25 will remain active until end of analyzed period
24 Once activated, STAT5 will remain active until end of analyzed period
25 Once deactivated, mTOR will remain inactive until end of analyzed period
26 Once activated, mTORC2 will remain active until end of analyzed period
27 Once activated, FOXO1 will remain active until end of analyzed period

5 CONCLUSION AND FUTURE WORK
Automatically extending models with the information pub-
lished in literature allows for rapid collection of the existing
information in a consistent and comprehensive way. It also
facilitates information reuse and data reproducibility. In this
review, we described five recent efforts in this direction. We
demonstrated the respective benefits and drawbacks of each
tool and we tested them on a previously published biolog-
ical model. These methods and software tools represent a
novel effort to replace hundreds or thousands of manual
experiments, and have a potential to significantly acceler-
ate the advancement of scientific knowledge. As our future
work, we will conduct a more in-depth comparison of the
five tools to even more precisely evaluate their advantages
and drawbacks. We plan to apply the proposed methods on
several other models in different biological domain, and we
will work on parallelization of the model checking algorithm
to further increase its execution efficiency.
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Figure 2: Comparison of the model checking probability es-
timates p for the baseline model, golden model, and the
best model obtained from each of the five tools: Layer-based,
GA-based, ACCORDION, CLARINET and FIDDLE (BFA and
DFA), when run on a 3.3 GHz Intel Core i5 processor. In the
last three rows, we show the number of properties with prob-
ability estimates >0.85, the length of time for each method,
and the number of extensions added to the baseline model.
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1 INTRODUCTION
Mutant libraries representing protein variants are often used
to optimize protein function. One design strategy aims to
place ambiguous codons at certain locations of a target pro-
tein, creating sequence degeneracy in the synthesized DNA
library. Assays of such libraries aid the development of vari-
ants with improved properties [5, 6].

Combinatorial assembly of oligos with degeneracies pro-
vides a reasonable approach in the development of improved
variants[1, 3, 8, 9]. Library-design strategies seek to experi-
mentally evaluate a diverse but focused region of sequence
space in order to improve the likelihood of finding a benefi-
cial variant.

Such an approach is based on the premise that prior knowl-
edge can inform generalized predictions of protein properties,
but may not be sufficient to specify individual, optimal vari-
ants. Libraries are particularly appropriate when the prior
knowledge does not admit detailed, robust modeling of the
desired properties, but when experimental techniques are
available to rapidly assay a pool of variants.

The design of mutant protein libraries typically involves
selecting sites for mutation where degenerate codons (those
containing mixtures of nucleotides) are introduced to enable
variation. The protein variant library is then produced by
synthesizing degenerate oligonucleotides and using anneal-
ing based recombination. Custom oligonucleotide overlaps
enable the targeted introduction of crossovers at only de-
sired positions, in turn enabling the desired level and type
of diversity in the combinatorial library [1, 3, 8, 9].

Traditional mutant protein library design methods involve
the incorporation of a single degenerate codon (thereafter
referred to as decodon) at each position where amino acid
substitutions are considered. Decodons contain ambiguous
(degenerate) bases, as shown in Table 1. Degenerate bases are
one letter codes are used to represent (i.e. code) sets of DNA
bases.

∗Corresponding author

Table 1: Degenerate Bases and their codings

Degenerate Base Actual Bases Coded

N A or C or G or T
B C or G or T
D A or G or T
H A or C or T
V A or C or G
K G or T
M A or C
R A or G
S C or G
W A or T
Y C or T

CodonGenie [7] is an online tool that was created to aid
the effort of designing single decodons that code for any
given amino acid set. The tool ranks candidate decodons
by specificity, attempting to minimize coding of undesirable
amino acids and/or STOP codons. Even so, when using a
single decodon to code for a set of amino acids, it is often
unavoidable to code for additional unwanted amino acids
and/or STOP codons.

2 A CODON-OPTIMIZED DECODON
CALCULATOR TOOL

In our previous work [4] we explored coding sets of amino
acids by using multiple decodons. Annealing-based recombi-
nation of degenerate oligos containing these decodons can
generate libraries that focus exclusively on the productive
portion of the design space by eliminating unwanted vari-
ants, therefore improving the overall quality of the library
for screening purposes. This first version of our Decodon
Calculator, given as input any set of amino acids, produces
the minimum number of decodons necessary to code for
exactly that set, i.e. without coding for extraneous amino
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acids or STOP codons. At the same time it outputs an exam-
ple of a decodon set of minimum cardinality for each amino
acid subset. These example sets are produced based on the
order that decodon sets are generated and processed by our
dynamic programming algorithm and, for all purposes, can
be considered random. To enhance the utility of our tool, in
the second generation Decodon Calculator we introduce a
decodon set scoring scheme, based on individual organism
codon preferences.

To score decodon sets in a given organism we utilize the
codon usage frequency tables in the Codon Usage Database
[2]. For each codon, we calculate the ratio of the frequency of
that codon over the frequency of the most frequent synony-
mous codon in the organism. Then, to score a set of decodons,
we calculate the numeric average of all individual codons
comprising the set. Therefore scores for decodon sets range
from 0 - 1, with a score of 1 indicating that each codon in
the set is the most frequently occurring in the organism of
interest. This scoring method is similar to the one utilized by
the CodonGenie tool, and more details can be found in [7].

The new Decodon Calculator, given any input amino acid
set, now outputs the minimum cardinality decodon set with
the largest codon utilization (referred in the tool as organism
compatibility) score coding for these amino acids. Currently
our tool supports codon preferences for three organisms,
human, mouse, and E.coli. Additional model organisms are
expected to be added in the future.

3 SUBSETS AND SUPERSETS
The Decodon Calculator provides minimum cardinality de-
codon sets coding for any given amino acid set, eliminating
unwanted mutations. When designing oligos though with
multiple mutation sites, the degeneracy can increase expo-
nentially as a function of the number of sites. This in turn,
when the desired number of mutations per oligo is large, can
lead to substantially increases in the total number of distinct
oligos that need to be ordered. To balance DNA synthesis
costs and library specificity, we added an additional feature
to the Decodon Calculator, which provides maximal subsets
and minimal supersets of the input amino acid sets which
are encoded by fewer decodons than the original input set
necessitates.

In addition to the minimal cardinality k decodon set, our
tool now also generates the maximal subset and minimal
superset of the input amino acid set encoded by k-1 de-
codons, then by k-2, etc. The process stops once we reach
subsets/supersets encoded by a single decodon, or when the
cardinality difference exceeds 3, meaning the subset/superset
has more than 3 fewer/additional amino acids than the origi-
nal input set.

The feature works as follows: once a set of amino acids is
selected and the Submit button is pressed, a table appears

Figure 1: Example result of Decodon Calculator showing
minimal decodon set with maximal codon score and corre-
sponding optimal subsets and supersets.

on the bottom of the screen, as shown in in Figure 1. In this
particular example, we can observe that the residues G, P, W,
N, S, D, and K can be coded by the four decodons AAA, CCG,
RRT, and TGG. Using three decodons, it is possible to code
for six of the seven input amino acids, P, N, S, D, G, and W.
Or for the superset {K, N, D, G, P, R, S, W}, which includes
one additional amino acid. With one decodon it is possible to
code for four of the seven input amino acids, but a superset
with at most 3 additional residues cannot be encoded by a
single decodon.

The Decodon Calculator featuring organism optimal de-
codons can be accessed at
http://algo.tcnj.edu/decodoncalc2/. The Decodon Calculator
with the additional optimal subset and superset functionality
can be accessed at
http://algo.tcnj.edu/decodoncalcset/. Both tools have been
implemented in Javascript on the client side and PHP on
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the server side, and utilize a database to store and retrieve
optimal decodon sets for all amino acid set.
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1 MOTIVATION
Modern scientific enterprises are often highly complex and
multidisciplinary, particularly in areas like synthetic biology
where the subject at hand is itself inherently complex and
multidisciplinary. Collaboration across many organizations
is necessary to efficiently tackle such problems [6, 15], but
remains difficult. The challenge is further amplified by au-
tomation that increases the pace at which new information
can be produced, and particularly so for matters of fundamen-
tal research, where concepts and definitions are inherently
fluid and may rapidly change as an investigation evolves [7].

The DARPA program Synergistic Discovery and Design
(SD2) aimed to address these challenges by organizing the
development of data-driven methods to accelerate discov-
ery and improve design robustness, with one of the key
domains under study being synthetic biology. The program
was specifically organized such that teams provided com-
plementary types of expertise and resources, and without
any team being in a dominant organizational position, such
that subject-matter investigations would necessarily require
peer-level collaboration across multiple team boundaries.
With more than 100 researchers across more than 20 orga-
nizations, several of which ran experimental facilities with
high-throughput automation, participants were forced to
confront challenges around effective data sharing.

The default architecture for scientific collaboration is es-
sentially one of anarchy, with ad-hoc bilateral relations be-
tween pairs of collaborators or experimental phases (Fig-
ure 1(a)). This was by necessity the case during early phases
of the SD2 program as well, in which incorporating new
tools into pipelines was ad-hoc and time-consuming, and
data was generally disconnected from genetic designs and
experimental plans. The other typical approach for collabo-
ration is one of “command and control”, in which a dominant
organization determines the data sharing content and format
for all participants (Figure 1(b)). This can be efficient, but
tends to be limited in flexibility and extensibility, rendering
it unsuitable for research collaboration, as indeed was found
when we attempted this approach during the first year of the
SD2 program. We addressed these problems with the applica-
tion of distributed standards to create a “flexible rendezvous”
model of collaboration (Figure 1(c)), enabling information
flow to track evolving collaborative relationships, improving

the sharing and utility of information across the community
and supporting accelerated rates of experimentation.

2 APPROACH
The driving design philosophy behind our approach to user
interaction in SD2 was to adapt representational tooling
as closely as possible to existing tools and familiar inter-
faces, such as spreadsheets and word processing documents.
Taking this approach allowed us to use and improve for-
mal machine-readable representations for system integration
while minimizing the amount that participating researchers
needed to learn about the formal representations. The central
set of standards thus formed a point of rendezvous between
the various stakeholders interacting in different experimen-
tal roles, while still allowing each of these participants to
continue working in their native idiom.

Specifically, the data sharing working group collaborated
in the creation of several key advancements in standards and
tooling that combine to create a comprehensive ecosystem
of lightweight curation tools. These are:

• Advances in biological data representation in the form
of enhancements to SBOL2 for comprehensive repre-
sentation of the design-build-test-learn cycle [5, 8] and
ultimately the development of SBOL3 [11], which in
turn enabled us to accelerate the rate of data standard
development and integration.

• A plugin interface to SynBioHub [12], which enabled
rapid development of new functionality for data visu-
alization, submission, and exchange [10].

• The SBOL Project Dictionary tool [4], which provides
a Google Sheets interface for collective “just-in-time”
harmonization of terminology across organizations,
thus enabling metadata translation and data fusion.

• The Experimental Intent Parser tool [13], an extension
of Google Docs that enabled biologists to design and
launch automated experiments with an easy-to-use
interface.

• The Open Protocol Interface Language (OPIL) [1], which
enabled the laboratories executing experiments to share
information about their protocols with experiment
planning tools, thus better informing the investigators
proposing experiments to execute.
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• The SYNBICT tool [14], which enabled automated
generation of improved annotations and extraction
of functional models of biological designs from their
sequences.

• The REDOER tool [2], which attempts to infer exper-
imental design from collections of samples, enabling
quality-control on automated experimentation.

• The Excel2SBOL conversion tool [9], which enabled
an efficient workflow for producing build requests for
genetic designs.

Collectively deployed in the architecture shown in Fig-
ure 2, these tools enabled a shift in the organization of ex-
perimental and informational workflows toward faster and
more flexible execution, most notably in SD2 working groups
that were working on challenge problems focused on the
performance of genetic circuits in yeast, moving existing
designs into novel chassis, and cell-free riboswitch design.

Following this shift, program knowledge sharing expanded
greatly. One key measure of knowledge sharing is the num-
ber of terms stored in the SBOL Project Dictionary, as each
such term indicates a strain, reagent, genetic construct, pa-
rameter, or other similar item that is being communicated
between collaborating organizations. We find that the num-
ber of terms stored in the SBOL Project Dictionary, expanded
in close correlation with the increase in experiment tempo:
Figure 3 shows the correlation between knowledge sharing
and data production, with both moving much more quickly in
the second half of SD2 after these tools began to be released.

Moreover, measurement of key knowledge collections
shows that progress on tools correlates with increases in
knowledge sharing and productivity. Figure 4 shows that
knowledge expansions in SynBioHub are correlated with
the dates of tool releases. In particular, key tool releases
occurred around July 2018 (Project Dictionary), April 2019
(SYNBICT, REDOER, and Intent Parser), October 2019 (Exper-
iment launches via Intent Parser), January 2020 (Excel2SBOL),
April 2020 (SYNBICT libraries), and October 2020 (OPIL), and
these are correlated with expansions in the number of SBOL
Module relations, which are used in representing knowledge
about circuits, and the number of ModuleDefinition rela-
tions, which are used in representing strains and reagents.

Finally, beyond these specific knowledge classes, the over-
all volume of knowledge systematized by the program is
quite large as well. By the end of the period reported, the
SD2 SynBioHub instance had a knowledge store of 22,872,306
triples, including 3,549,237 components, 15,884 modules, and
524,377 collections.

3 DISCUSSION
The transition partners that we have engaged with these
tools see potential value in using the Synthetic Biology Open

Language (SBOL) and associated tools with well-defined APIs
as a standard that is relevant to many groups and has greater
potential for sharing, greater levels of support, and more
longevity. Partners can benefit from work by the supporting
community and worry less about their data-sharing infras-
tructure losing “product support.” Transition partners also
see value in standards and tools being free and open, which
allows them to know what their data-sharing methods are
doing, modify them if needed, interact with them easily via
their own code, and not be limited by high commercial costs
or number of licensed “seats.” With solutions like those that
we developed in the SD2 program, they will be better able
to keep track of information over time as new people come
and go from labs, so that they can continue to build new
knowledge on top of existing knowledge. They will also be
better able to share design information and associated data
with other research groups in a more consistent way, and be
better able to take advantage of other groups’ designs and
data, making their own engineering processes much faster.

Building on the success of data representation in the SD2
program, we recommend that future programs should sup-
port the development of standards and corresponding soft-
ware infrastructure and also should support curators and
the development of data repositories and curation tools. Sim-
ilarly, just as many government funding agencies now re-
quire open access publications, government funding agen-
cies should require funded science activities to use standard-
enabled workflows and software to enhance data manage-
ment and sharing, and should ensure that funding is specifi-
cally allocated for such activities. Looking farther ahead, we
also see an opportunity for increased machine-readability
of shared information to become a foundation for higher-
level autonomy in scientific investigation [3], as well as for
enhancing reproducibility through machine validation of
scientific experiments and automation-assisted publication
of experiments.
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(a) Bilateral (b) Command and Control (c) Flexible Rendezvous

Figure 1: Architectures for data sharing: bilateral relations (a), command and control (b), and flexible rendezvous (c).
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Figure 2: High-level diagram showing how data representation tools were deployed in the DARPA SD2 program with respect to
inputs of designs, build requests, and experiments requests, and outputs of data, metadata, and analysis products. This diagram
focuses specifically on the key representations (SBOL and OPIL) and representation-centric tooling, and not other aspects of
supporting automation used in SD2.
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1 ABSTRACT
Visualising the complex information captured by synthetic
biology designs is still a major challenge. The popular glyph
approach where each genetic part is displayed on a linear
sequence allows researchers to generate diagrams and visu-
alise abstract designs [2], but only represents a single, static
representation that results in visualisation that is not specific
to the requirements of a user resulting in a one-size-fits-all vi-
sualisation. We developed a network visualisation technique
that automatically turns all design information into a graph,
displaying otherwise hidden data. The structure of the result-
ing graphs can be dynamically adjusted according to specific
visualisation requirements, such as highlighting proteins,
interactions or hierarchy. Since biological systems have an
inherent affinity with network visualization [6], we advocate
for adopting this approach to standardise and automate the
representation of complex information.

2 RESULTS
Firstly, a NOR gate design (adapted from [8]) is used to show-
case some fundamental visualization processes and the meth-
ods. Secondly, more complex regulatory circuits are used to
illustrate the potential of the network visualisation approach
to effectively display novel features.

Data. Before any visualisation can be realised, the under-
lying data representation must be considered. Without a
rich data representation, most meaningful visualisation is
not achievable simply due to the data not being encoded.
Therefore, we will use the Synthetic Biology Open Language
(SBOL) [5] as the data capture format. SBOL is a more for-
mal and synthetic biology-centric approach to the design
specification.

View. Visualizing unmodified data will produce an incom-
prehensible visualisation as the domain is too broad so the
significance of connections is lost. As seen within Figure
1A, despite a small design due to the verbose nature of the
underlying data very little can be inferred. Therefore, a view
is defined as an aggregation of data to produce a graph that
is focused on a specific aspect of the design. With a more
concentrated domain focusing on a single aspect, visual com-
plexity is reduced. For this introduction, a basic view that

aggregates data into the overall design and constituent bio-
logical parts and entities is used as seen within Figure 1B.

Layout. A view of any meaningful size will produce an
incoherent visualization when the position of nodes do not
consider the data being represented. Layout pertains to the
coordinate location of the nodes within the plot. Trivially,
layouts can ensure the rendered nodes and edges do not over-
lap but more significant implementation can have a layout
mirroring the intent behind the data being visualized. In the
current working example (Figure 1A, despite a better visual,
the network is incoherent as no positional data is encoded.
However, as seen within Figure 1C, despite a relatively basic
layout, the visual output is more clear.

Figure 1: A) All encoded data is rendered. B) Simple view of
constituent biological parts, proteins and non-genetic enti-
ties described within a design. C) A basic concentric layout
- all constituent entities are positioned around the central
node denoting the overall design. C) Addition of colour map-
ping with biological entities types and roles within the de-
sign.

Label reduction. Labels are added directly to the graph,
connected to edges or nodes. However, screen space is finite
and can become saturated. This issue is compounded when:
nodes are closely positioned, the rendered text is long, and/or
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the graph is highly connected. Therefore, label reduction is
the process of replacing labels with visual features to increase
concision but still encode the information. With the working
example, while the core focus on the view is comprehensible,
information that may be desired is not present. As seen
within Figure 1D, a user may want to visualise the role of
each biological entity.

Visualising complex information via presets
The overview previously discussed is only one instance of
producing a comprehensible visualisation. Here we use the
term “preset” to denote a view combined with a collection
of visual techniques that are complementary to said view
such that the visual output focuses attention upon a specific
and desired feature of a design. Below two presets are dis-
cussed, including intent and how visual modifications have
an affinity with the view. However, this is not an exhaustive
list and providing the information is encoded within the de-
sign data, any feature of a design can be visualised using a
network/graph focused approach.

Hierarchy. The hierarchy of a design focuses on visualiz-
ing how the different perceived levels of biological entities
are structured. This provides insight into each abstraction
level and how the components of each level map to their
neighbours. Furthermore, a hierarchical view can visualize a
design of arbitrary depth which is beneficial since the levels
of abstraction within a design increase as modules become
larger (parts, devices, circuits, systems, consortia). Figure 2
displays a hierarchical view that allows not only a visualiza-
tion of individual parts and constructs but also the makeup
of larger modules.

Figure 2: Visualising the digitalizer synthetic circuit from [3]
with a hierarchical representation of genetic modules in 4
layers.

Interaction. In contrast with sequence-level visualisations,
where intent and function are not explicitly described and
non-genetic entities are often poorly represented, interaction
networks provide an explicitly functional perspective. By

using this view, non-genetic entities (e.g., proteins) are easily
represented. Furthermore, the description of biochemical
networks fit well into a graph-based approach since these
are conceptualized as a set of interacting entities. We visu-
alised a Boolean genetic circuit (Figure 3) by using only its
interactions and non-genetic elements. Inputs, outputs and
information flow are easily comprehended even at a glance.
However, visualising the same relatively complex design us-
ing sequence-level information by deriving functional details
would be more challenging.

Figure 3: Visualising interactions (edges) and non-genetic el-
ements (nodes) of the 0xC7 Boolean genetic circuit from [7].

Scaling abstraction. Very often, despite the focus on a spe-
cific design feature (e.g., non-genetic elements), issues of
comprehension still arise due to the level of design details
and annotations. The ability to visualize a higher level of
abstraction allows a more granular, and more easily compre-
hensible output [4]. Figure 4 displays the same design as in
Figure 3 but at a higher level of abstraction, which may be
more adequate for a rapid design check.

Figure 4: Visualising interactions (edges) and non-genetic el-
ements (nodes) of the 0xC7 Boolean genetic circuit from [7]
with higher abstraction.
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While increasing the abstraction level can produce a visual
output that is more comprehensible in terms of function, the
reduced granularity can lead to more ambiguous visualisa-
tions concerning mechanistic details. Therefore, lowering
the level of abstraction (thus visualising more details) may
be beneficial in some cases, for instance, when building a
mathematical model of a genetic design. Figure 5 is a more
detailed view compared to Figure 3 and despite a consider-
able complexity increase, interactions are broken down into a
number reactions thus providing more detailed information.

Figure 5: Visualising interactions (edges) and non-genetic el-
ements (nodes) of the 0xC7 Boolean genetic circuit from [7]
with lower abstraction.

3 DISCUSSION & FUTURE WORK
We present a visualisation method that offers an alternative
approach to a conventional genetic-parts-based glyph. De-
signs can be automatically produced at differing levels of
abstraction, as defined by the user. This approach promises
to help understand complex designs more easily, and to scale
better for large designs, such as chromosomes.

Future efforts will focus on four aspects. Firstly, the fact
that networks are generated automatically and adjusted dy-
namically paves the way to develop powerful user interaction
tools. Secondly, we will exploit the full potential of graphs
for mathematical analysis through a wealth of graph theory
methods. Indeed, networks are not only useful for visuali-
sation purposes but mathematical structures for studying
data. Thirdly, networks allow representing any type of data,
not just gene design information. Therefore, specific visual-
isation networks of every stage throughout a standardised
DBTL lifecycle [1] will be coupled into layered graphs that
will include from automation to characterisation to mod-
elling information. Finally, most current visualisation tech-
niques will not scale to large designs. Therefore, exploring

how network visualisation that has precedence with large
data visualisation can be applied to designs of extreme size.

Visualization is complementary to the development of data
standards. Here, we use designs encoded with the SBOL since
this captures richer information than GenBank or FASTA
formats.
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1 INTRODUCTION
Innovation in analytical chemistry is critical for the growing
$14.1 B high-throughput screening industry. While tradi-
tional chromatography and mass spectrometry methods are
commonplace for chemical measurement, they often suffer
numerous limitations [1]. (1) The separation of chemical
species via chromatography is typically too slow for high-
throughput screening applications, requiring 5-30 minutes
per sample; while mass spectrometry alone offers rapid anal-
yses, on the order of 1 second per sample, compounds with
identical exact masses cannot be distinguished. (2) Target
compounds lacking chromophores require derivatization,
which increases analysis time and operational cost. (3) Anal-
ysis in complex backgrounds may produce a matrix effect,
which reduces measurement performance. (4) Chromato-
graphic and mass spectrometry instruments are often expen-
sive and require specialized training to operate.

Nature has evolved elegant tools to bypass these limita-
tions - genetic biosensors. In particular we focus on one-
component prokaryotic ligand-inducible transcription fac-
tors (herein called “biosensors”), which have a history of use
in synthetic genetic systems to report on the abundance of
diverse chemical structures in a wide range of host organ-
isms. [2]. Alternative sensor families (such as RNA-based
sensors, antibodies, eukaryotic sensors, and two-component
prokaryotic systems) are less commonly used as chemical
measurement tools by comparison. Briefly, biosensors func-
tion in these systems by binding to a specific DNA sequence,
thereby preventing the expression of the green fluorescent
protein (GFP) gene, in the absence of the inducer molecule. In
the presence of the target molecule, the biosensor dissociates
from its DNA sequence, enabling GFP expression (Figure 1).
As a result, the concentration of a particular chemical species
is transduced into an easily-detectable fluorescent signal.

Biosensors offer numerous benefits over traditional chro-
matographic and mass spectrometry methods. Protein-chemical
interactions employed by biosensors enable high specificity,
even among enantiomers, which obviates derivatization and
bypasses matrix effects. Furthermore, analysis occurs at the
single-cell level, enabling the facile measurement of hun-
dreds of thousands of samples in parallel.

Despite these clear advantages genetic biosensors are
rarely used for chemical analysis, partly due to the fact that
information on genetic biosensors is scattered across thou-
sands of academic journals. To facilitate the accessibility
of information of biosensors, we have created The Genetic
Biosensor Database, which documents key features of biosen-
sors extracted from academic journals, including metadata,
structural data, the sensor’s DNA binding sequence and cog-
nate ligand, and appropriate references. This resource aims
to facilitate the development of genetic biosensor systems
for next generation chemical analysis.

Figure 1: Mechanism of repressor-based prokaryotic ligand-
inducible transcription factors.

2 THE GENETIC BIOSENSOR DATABASE
The objective of this database is to provide all information
necessary to create a genetic reporter system (Figure 1). This
includes (1) the sensor’s cognate ligand(s), (2) the sensor’s
corresponding DNA sequence, and (3) the sensor’s protein
sequence. In addition, metadata, genome context, and struc-
tural data is provided (if available) to describe the sensor’s
role in its native host organism and possibly to infer unan-
notated functions. References are included for all data pre-
sented.

The database organizes each biosensor into one of eight
transcription factor families: TetR, LysR, AraC, MarR, LacI,
GntR, LuxR, and IclR (Figure 2). Once a family is selected, the
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user may browse through a table of sensors belonging to that
family. After a sensor is selected, data specific for that sensor
appears below. The top section of information includes the
sensor’s alias, or NCBI accession number, a toggleable panel
displaying the chemical structure of the sensor’s cognate
ligand(s), and a table containing corresponding metadata.

The middle section displays the sensor’s cognate DNA
binding sequence, or operator, and an illustration of the
genome context of the sensor. Neighboring genes are color
coded according to their annotated function; hovering over
the gene displays its annotation and clicking on it leads to
the corresponding NCBI entry page.

The final section below displays the sensor protein’s se-
quence as well as a toggleable and interactive display of its
structure(s), if available. Finally, the bottom of each page con-
tains appropriate references with links to the corresponding
article and labels describing what information the reference
provides; this can include data on a ligand interaction, DNA
interaction, structure, or an application using the sensor.

Data curation
All data is manually curated from peer-reviewed academic
publications. To encourage the development of functional
genetic reporter systems, a relatively strict criteria for in-
cluding information on sensor ligand/DNA interactions is
enforced. To be included in this database, data supporting
a ligand-sensor interaction must be derived from an EMSA,
SPR, or ITC in vitro experiment or a synthetic in vivo re-
porter system within a heterologous host (such as in Figure
1). In vivo data reporting on mRNA or protein abundance
in the native host organism upon exposure to the target
chemical is not sufficient for inclusion in the database, since
this assay cannot distinguish whether the input chemical
or a metabolic intermediate produced by native enzymes is
the true inducer molecule for the sensor [3]. Additionally,
structures of the sensor protein in complex with the inducer
molecule is not sufficient to establish a ligand-sensor inter-
action, since crystallography conditions can produce biases
and there have been documented cases of a sensor being
crystallized in complex with non-inducer molecules [4].

Data supporting a ligand-DNA interaction must be derived
from an EMSA or DNAse footprinting in vitro experiment,
or a synthetic in vivo reporter system within a heterologous
host (such as in Figure 1), to be included in the database.
These sequences typically include inverted repeats. In the
case where a sensor binds to multiple different DNA se-
quences, the sequence with the highest binding affinity is
chosen.

Future work will include (A) integrating full-text search,
(B) automated curation of biosensor entries, and (C) imple-
menting tools for predicting a sensor’s operator sequence
and cognate ligands.

Figure 2: Layout of a typical biosensor entry.

Web application architecture
All sensor data is stored in a SQLite relational database and
accessed by a Flask server via SQLAlchemy. React is used on
the front-end to handle user requests, interface with the Flask
back-end, and dynamically update the information displayed.
The bootstrap framework is used for styling and external plu-
gins are used for chemical structure display (smilesDrawer)
and protein structure display (LiteMol). The application is
deployed using Docker containers on an AWS server.

This database can be accessed at https://gbiosensors.com
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1 INTRODUCTION
Synthetic biology holds promise for engineering solutions
for a large variety of world-wide problems including ther-
apeutics for novel diseases [10], carbon neutral fuels [4],
and new materials for reducing environmental impact [2, 8].
Given the vast parameter space of possible but fruitless ex-
perimental manipulations, the pace of discovery in synthetic
biology is tied to our ability to design experiments with a
high likelihood of success. Complex, nonlinear interactions
between sources, intermediates, products and control sys-
tems throughout the cellular processes make it difficult to
optimize the production through rational design. Improving
production is instead heavily reliant on empirical results.

Machine learning can help guide empirically based ex-
perimental design [1, 5, 11]. However, unlike in other fields,
such as text or image processing which can have hundreds of
millions of training examples, training examples in synthetic
biology are often restricted to what highly skilled researchers
can generate through often expensive and time-consuming
experiments.

Our group has been developing the Automated Recom-
mendation Tool (ART) for making predictions of experimen-
tal results and using these predictions to recommend new
experiments based on the smaller training data sets repre-
sentative of many synthetic biology development efforts.
ART has already proven to be useful for a variety of syn-
thetic biology use cases, including production of renewable
biofuels, hoppy flavored beer, fatty acids, and tryptophan
[9, 11]. The predictions are generated based on an ensemble
of models, and the probability distributions of weights on
the underlying models are used to characterize uncertainty
in the predictions from the final, ensemble model. This un-
certainty characterization is a key component of ART and is
important in multiple phases of optimization as it indicates
areas of inadequate exploration in the early phases, and ar-
eas of likely success for goal-driven exploitation in the later
phases of optimization.

Because the nature of the contribution of the multiple
models in the ensemble to the predictions is critical to both
accuracy and the indicated uncertainty, we are exploring the
distribution of contributions of multiple models to the end
results. In this paper, we characterize preliminary results

on the impact of increasing the number of models in the
ensemble that are based on optimized model selection and
hyperparameter/workflow tuning (TPOT [7]) in order to
improve accuracy of the ensemble predictions and increase
the chances that multiple models can substantially contribute
to those predictions.

2 METHODS
For this preliminary study, we used an explicit function so
that there was a ground truth upon which to judge perfor-
mance directly. We used a function that had been previously
used as a challenging function for models to learn [3, 9].
The function has a large number of local minima across the
feature space. For a 𝑑-dimensional vector 𝑥 , the function is

𝐹 (𝑥) =
𝑑∑
𝑖=1

√
𝑥𝑖𝑠𝑖𝑛(𝑥𝑖 ). (1)

A training set of 1024 samples was generated using Latin
Hypercube [6] to select feature values from a domain span-
ning (0, 12) for each feature. Seven fixed regression model
types with default hyperparameters from the well-known
Scikit-learn library were trained as well as a variable number
of models (1, 2, or 4) based on a TPOT optimized workflow
(Figure 1) that selects a model type and associated hyper-
parameters according to performance on the training set.
Weights for the results of each model were trained to cre-
ate a Bayesian ensemble model, and the resulting ensemble
model was used to make predictions for the training and test
sets. The test set was generated similarly to the training set
with 1024 Latin Hypercube samples. Accuracy was assessed
based on the coefficient of determination for the mean values
of predictions relative to the calculated (true) values for both
the training and test sets. Experiments were repeated for a
different number of features in the feature space (4, 8, or 16),
which provided an increasing level of difficulty for accurately
representing the function, both because of increased com-
plexity of the function and reduced sampling relative to the
number of features. The experiments were repeated 4 times
each to gauge variation due to differences in the sampling of
the feature space for the training and test sets.
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3 RESULTS
The results for prediction accuracy are shown in the bar
graphs of Figure 2. A value of 1.0 indicates perfect predic-
tion, and a value of 0.0 indicates that the variance in the
errors is of equal size as the variance in the predicted val-
ues. When there were only 4 features, the models are able
to accurately capture the underlying function and there is
little difference between the training and test sets’ results
regardless of the number of TPOT-based models that were
added. As the number of features was increased to 8 and
then 16, the function became much more difficult to learn.
Consequently, the prediction accuracy was reduced for both
the training and test sets, and the difference in prediction
accuracy between the training and test sets became more
marked. Under these conditions, additional TPOT models
improved the accuracy. In the case of 16 features, the means
of the coefficients of determination for 1, 2, 4 TPOT-based
models was 0.812, 0.875, 0.890 for the test data set and 0.942,
0.970, 0.975 for the training data set respectively.

4 DISCUSSION
When using ART, we were not surprised that the model
generated from the TPOT workflow generation would some-
times be very heavily weighted with respect to the other
trained models since it involves optimization of model se-
lection and its hyperparameters before training. This heavy
reliance on the TPOT-based model is not an issue when
that model accurately captures the underlying function in
all areas of interest of the feature space. In such cases, the
ensemble approach is not expected to provide substantial
benefit.

For more challenging underlying functions, an ensemble
model can improve performance by providing a weighted
average of model outputs. This weighted average can reduce
random errors across the models, as well as minimize an
outlier in a single model that contradicts the other models
in a particular region of the feature space.

Towards this goal, we introduced multiple models gen-
erated from different TPOT model selection and hyperpa-
rameter/workflow tuning runs using different random seeds.
The model selection and hyperparamter tuning is sufficiently
sensitive to initial conditions that we were able to inspect the
generated workflows and confirm that these workflows were
indeed significantly different, often with different underlying
types of regression models. The weights assigned to the mul-
tiple TPOT-based models were more evenly distributed when
the underlying function was made more difficult for a single
model to represent (pie charts in Figure 2 indicate these dis-
tributions). The prediction accuracy also improved relative
to the standard ART use case of a single TPOT-based model.

Since ART’s performance on this function and on actual syn-
thetic biology predictions have already been demonstrated
[9, 11], we suggest that improving performance in ART on
this function indicates likely improvements on challenging
biosynthesis experimental predictions as well.

The demonstrated improvement in accuracy and suspected
better characterization of uncertainty should result in im-
proved experimental recommendations. Such improvements
will more quickly lead to successful experimental outcomes,
reducing experimental time and costs, and ultimately result-
ing in viable synthetic biology products.

5 FUTURE WORK
We plan to more fully characterize the impact of more even
distribution of weights in the ensemble model on the cal-
culated uncertainty and how that uncertainty reflects true
values for different classes of functions. Also, given the as-
sumption of independence between models in the ensemble
model, we plan to explore more explicit sampling without re-
placement in the TPOT model selection optimization which
would ensure that the base model was always different for
each recommended workflow. We will then use this approach
in some of our biosynthesis projects and will make it gen-
erally available in subsequent versions of ART if it proves
valuable as these results suggest.
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Figure 1: Overview of selection of models for a given run to create an ensemble model. The models and ensemble weights were
generated based on a training set for a feature space of variable size, and the ensemble model predictions were assessed based
on the test set.

Figure 2: Prediction accuracy improves more markedly with more TPOT-based models as the number of features increases.
The bar graphs show the prediction accuracy based on the coefficient of determination for ensembles including 1, 2, and 4
TPOT-based models. The blue bars indicate performance on the training data sets, and the red bars indicate performance
on the test data sets. The three graphs are for 4, 8, and 16 features, representing increasingly difficult functions to learn.
The pie graphs under the pairs of bars for each ensemble model indicate the distribution of the weighting of the individual
models within the ensemble. Orange indicates the proportion for the most heavily weighted TPOT-based model, and green
indicates the proportion for the 7 Scikit-learn regression models. For the right two columns in each graph, the yellow indicates
the proportion for the additional TPOT-based model (middle) or the combined weight of the other 3 TPOT-based models
(rightmost). More even distribution of weights across multiple models within the ensemble model correlates with improved
prediction accuracy.
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1 INTRODUCTION
Synthetic biology is the field of research that deals with the
application of engineering principles to design biological
systems to perform user desired functions [2]. Research into
this field has many applications including the development
of bio-fuels [8], internal drug-delivery systems [10], and bio-
sensors [12], all of which rely on genetic circuits to work.
Genetic circuits use the proteins and cellular pathways of
living cells to execute their functions.

Research in synthetic biology—particularly developing
genetic circuits—usually follows a Design, Build, Test, Learn
(DBTL) cycle to progress from a desired application to a phys-
ical build. In order to aid in the design of genetic circuits,
computational models are used to simulate them before at-
tempts are made to build them in vivo. This saves time for
researchers and can help to predict malfunctions in the cir-
cuit before they are built.

Genetic design automation (GDA) tools to support the
DBTL cycle include SynBioHub [7], SBOLCanvas [11], and
iBioSim [14]. SynBioHub is an online repository for sharing
genetic parts and other design information. SBOLCanvas is
a web application that can be used to create genetic circuits
using parts stored in SynBioHub (https://sbolcanvas.org/).
Finally, the iBioSim application is a software tool for the
design, modeling, and analysis of genetic circuits.

A set of standard description languages are used to link
these tools together. These standards allow for coherent com-
munication between the tools and for the reproducibility of
results that is necessary in synthetic biology. The languages
used by the aforementioned software are the Synthetic Bi-
ology Open Language (SBOL) [4, 6, 9], the Systems Biology
Markup Language (SBML) [5], and the Simulation Experi-
ment Design Markup Language (SED-ML) [13]. SBOL, SBML,
and SED-ML are all XML-based languages, each of which
has a different purpose for the design and simulation of ge-
netic circuits. An SBOL file encodes genetic parts and their
relationships within a circuit, SBML files encode computa-
tional models of genetic circuits, and SED-ML files encode
the simulation specifications for the purpose of experiment
repeatability. In addition to these languages, a COMBINE
Archive [1] is used to package SBOL, SBML, and SED-ML
files together so that a simulation study can be replicated
easily.

With the development of these software tools and stan-
dards, a general workflow for designing, modeling, and simu-
lating a genetic circuit was established. The current workflow
for using these software tools is specified in Figure 1(a). The
process of designing and testing genetic circuits starts with
the retrieval of genetic parts from SynBioHub through SBOL-
Canvas. Here, the initial design for a genetic circuit can be
created. Then, the VirtualParts API [3] enriches the DNA-
level design with additional proteins and small molecules
that are known to interact with the genetic parts. Next, the
computational model is created in iBioSim, where the SBOL
file automatically gets converted into an SBML file. Then,
the simulation conditions are decided and the simulation is
run. Finally, the results of the simulation are rendered and
then sent back to SynBioHub for sharing.

This workflow is a complex, manual process of importing
and exporting files when switching between applications, so
automating aspects of this process is becoming a priority. In
addition, iBioSim’s graphical user interface is outdated and
not easy to follow for someone not already familiar with it.

These problems could be solved with some level of de-
sign automation. One of the biggest steps forward would
be to keep researchers on the newer SBOLCanvas website
throughout the entire workflow. This removes the need to
download and configure an application, keeps the entire pro-
cess on a web-based system, and only uses the more intuitive
user interface of SBOLCanvas.

2 RESULTS
In order to take advantage of the simulation capabilities of
the iBioSim application, this work aims to push these func-
tional aspects to the back-end of the SBOLCanvas website.
This can be accomplished using an API that communicates
with SBOLCanvas and is capable of running iBioSim on a
server. A proposed workflow for using an API is described in
Figure 1(b). The long-term goal for this API is for it to be able
to receive an http request from SBOLCanvas that contains an
SBOL file and arguments for completing the Enrich, Model,
and Simulate steps, and then execute those steps automati-
cally on the server. The results from these steps would then
be packaged into a COMBINE Archive, and then sent back to
SBOLCanvas. The entire API would be running on a Docker
container to make it easier to update externally. A Docker
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(a)

(b)

Figure 1: (a) Diagram of the current workflow for design-
ing and simulating a genetic circuit. This workflow involves
three different applications: the Design step happens in
SBOLCanvas, the Enrichment, Model, and Simulate steps
happen within iBioSim, and the Share step happens in Syn-
BioHub. At each change of application, the relevant SBOL,
SBML, or SED-ML files must be exported from the previous
application and then imported into the next application. (b)
Diagram of the new proposed workflow. This workflow only
requires the user to work on the SBOLCanvas application;
the Enrichment, Model, and the Simulate step are taken over
by the API provided by the iBioSim server containerized us-
ing Docker, and the simulation is rendered back on SBOL-
Canvas. This workflow also makes use of the COMBINE
Archive to package the SBOL, SBML, and SED-ML files to-
gether for ease-of-use and for reproducibility.

container is a virtual environment that stores an application
for standalone execution. This approach eliminates the need
for researchers to download an application, while keeping all
of the same capabilities. The ability to keep the entire user-
side process on a single web-application would undoubtedly
provide for a more seamless workflow when compared to
the current workflow.

The iBioSim server application is a Dockerized API im-
plemented using Python that is capable of receiving an http
request with a COMBINE Archive from a previously com-
pleted simulation experiment, reproducing the results, and
sending the results back as a response to the http request.
The API accomplishes this by running the executable iBioSim
analysis file which can complete a simulation from the com-
mand line. The API then collects the results generated from
the simulation and sends them back, after which the unnec-
essary files are deleted to prepare for another http request.

For the purposes of testing, the API only received COM-
BINE Archives from previously generated simulation experi-
ments as an input so that the results from the API could be
compared to known results of the simulation. In addition,
since SBOLCanvas has yet to be updated to be able to send
the correct http requests, the tests were sent using the API
development tool, Postman.

3 DISCUSSION
With this work, a containerized API was created that is ca-
pable of automating the simulation of genetic circuits de-
signed in SBOLCanvas. The work on this API shows promise
for realizing the new, streamlined workflow for virtually
developing and testing genetic circuits. Web-based applica-
tions have many advantages for both users and developers
over standard, downloadable applications. Some of these
advantages include accessibility, ease of maintenance, and
the elimination of installation issues. There are a few draw-
backs of a completely web-based approach, such as the need
for internet access and the unavailability of iBioSim’s code,
but we believe these trade-offs are favorable for the average
user. This approach would allow researchers to have a sin-
gle, entirely online work-space for designing and simulating
genetic circuits, something which has only previously been
available in downloadable application packages. The idea
of dedicating a server to running simulations and reusing
iBioSim’s functional parts saves a lot of effort compared to a
full overhaul of iBioSim onto a web-application. With this
approach, no functionality in iBioSim other than the GUI
is lost as the program was designed to be fully functional
through the command line, though the dynamic modeling of
circuits has yet to be implemented. Updating the API to stay
in sync with changes to iBioSim is trivial due to the nature
of the Docker container, which uses the newest published
version of iBioSim upon building. Only the code for the API
would need to be updated, and the Docker container would
simply be restarted.

However, there are some more significant steps to be made
before this API is ready for public use. As previously men-
tioned, the API is currently only able to accept COMBINE
Archives as an input file. In the future, it should handle single
SBOL files as input so that first-time simulations can be run.
For this, the iBioSim server will be expanded to include the
SBOL-to-SBML conversion aspect from iBioSim. In addition,
SBOLCanvas will need to be updated to send http requests
to the API with the proper information to allow for seamless
front-end simulations. The logistics of setting up a server
that can run complex simulations in a timely manner are
also being considered for the future. The code for this API
is open source, available on Github, and released with the
Apache-2.0 License.
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1 INTRODUCTION
One of the primary goals of the field of synthetic biology is
to make genetic designs easier to develop. In order to achieve
this goal, genetic design repositories, such as JBEI-ICE [1]
and the International Genetically Engineered Machine (iGEM)
Registry of Standard Biological Parts (http://parts.igem.org),
have been developed to facilitate storing and sharing genetic
designs. These repositories are useful for DNA sequence shar-
ing, but they provide little information about genetic designs
at an abstract level, such as information about proteins, inter-
actions, and design versioning. In order to address the need
for supplying information about synthetic designs at the
abstract (as well as the sequence) level, SynBioHub [2] was
developed. SynBioHub is an open-source, web-based design
repository that facilitates storing, searching, and sharing of
genetic designs. It utilizes the Synthetic Biology Open Lan-
guage (SBOL) [3] data format to store both sequence and
abstract metadata of genetic designs.

Although SynBioHub is already utilized by many syn-
thetic biologists and organizations, further development is
necessary to meet the needs of large-scale synthetic biology
projects. This development has proved to be challenging, as
SynBioHub’s code base is difficult to maintain due to lack
of software modularity and outdated technologies. To solve
this issue, SynBioHub’s back and front-end architecture is
being redesigned to provide a more maintainable and intu-
itive genetic design repository that will be resilient to new
functionality development and future SBOL version releases.
The development of the redesigned back-end and front-end
is happening in parallel; development of the front-end is
almost complete.

This paper presents SynBioHub2’s redesigned front-end,
which will be soon be released as SynBioHub2. This version
of SynBioHub uses the same back-end as the original Syn-
BioHub while providing a more intuitive and maintainable
user interface than that of the original SynBioHub.

2 RESULTS
By redesigning SynBioHub’s front-end, SynBioHub2 pro-
vides a more intuitive user experience for synthetic biolo-
gists. This is illustrated through SynBioHub2’s new submit,
search, and viewing interfaces.

Submitting Designs
Given that SynBioHub’s primary purpose is to facilitate the
storage of genetic parts, it is important that SynBioHub
provides an intuitive submit workflow for its users. Syn-
BioHub2’s submit workflow has been redesigned to make
submission more intuitive. The current SynBioHub prevents
users from submitting more than one design file at a time. If
users wish to upload more than one design file, they must
either upload each file individually or zip their design files.
When submitting a zip file, the submission will fail if any of
the design files cannot be processed. SynBioHub2’s submit
interface allows multiple files to be submitted at once. By
utilizing React, the state of each file’s submission is dynami-
cally displayed. Users can also continue to use other parts of
the application (such as browsing design collections) while
waiting for their submission to complete. If any of the design
files fail to upload, a specific error message is displayed that
explains why the file failed, and users are given the option
to submit the file as a collection attachment. SynBioHub2’s
submit interface has already been developed; a screenshot
of the interface is shown in Figure 1.

Searching for Designs
One of the main purposes of SynBioHub is to enable users to
efficiently search for genetic designs. SynBioHub2’s search
interface has been improved as follows. First, SynBioHub2
provides feedback when searching for a genetic design. Its in-
terface uses the React JavaScript framework to dynamically
display animations based on the state of a search’s execution,
such as a loading icon when the search is being processed
and relevant error messages when a search fails. Second, Syn-
BioHub2 displays search results in a format that resembles a
spreadsheet. This allows users to view more part results at
once, as well as makes the search experience more intuitive
for synthetic biologists, who commonly utilize spreadsheets
to store information about their genetic designs. Lastly, Syn-
BioHub2 enables users to quickly perform frequently used
actions on search results. These actions include downloading
design files, creating a design collection, and storing search
results for later reference in a virtual "basket". SynBioHub2’s
search interface has already been developed; a screenshot of
the interface can be found in Figure 2.
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Figure 1: SynBioHub2’s submit interface. Users can view the
status of each submitted design file and are given the option
to submit files as attachments when they fail to upload. In
this case, the user attempted to submit an image as a design
file, which is not supported by SynBioHub. The user is noti-
fied that this submission failed, and is prompted to submit
the file as a collection attachment.

Viewing Designs
The main issue that prompted the redesign of SynBioHub
was an outdated interface for viewing genetic parts. The
current SynBioHub’s front-end parses the entire file repre-
senting the design that the user wishes to view before serving
an overview and renderings of the design. This has proven to
be detrimental to the user experience when users view larger
design files, as the viewing interface often takes a long time
to load. Additionally, adding any native code to the viewing
interface often requires further parsing of design files, which
further increases page load times.

SynBioHub2’s viewing interface will tackle the viewing
of genetic designs by using a dynamic rendering pipeline.
Rather than parse entire design files at once, SynBioHub2 will
first make a request to its back-end to fetch relevant metadata
about the design to display to the user. This metadata will
be used to populate the viewing page, which will be served
to the corresponding user immediately following this meta-
data population. After the viewing page is served to the user,
aspects of the viewing page that require further parsing of
the page’s corresponding design file will be asynchronously

fetched and rendered. This asynchronous rendering pipeline
will significantly reduce the time it takes for users to view
genetic designs. Additionally, SynBioHub2’s viewing inter-
face will give users control over which viewing elements
are visible, as well as the order in which the elements are
displayed through an interactive page overview pane. This
viewing functionality is still under active development. A
design mock-up for SynBioHub2’s viewing interface can be
found in Figure 3.

3 METHODS
SynBioHub2 achieves greater maintainability and scalability
by implementing a separation of concerns. It strictly divides
its front-end code from its back-end. This allows SynBio-
Hub2 to subscribe to the original SynBioHub’s back-end until
the new back-end’s development is complete. SynBioHub2’s
front-end refactors UI patterns into reusable React compo-
nents that can be modified quickly, enabling new features
and changes to be implemented relatively seamlessly. It also
features more extensive code documentation, which will en-
able developers to quickly contribute to its open-source code
base without introducing software bugs in the application.

4 DISCUSSION
Although SynBioHub2 makes a significant number of im-
provements to the original SynBioHub, it will not be the
final version of SynBioHub. Rather, it is a stepping stone for
SynBioHub3, which has a number of design goals, which are
listed below.

• Community involvement throughout development.
• A more intuitive front-end for biologists.
• A faster, more flexible user experience.
• Improved integration of curation.
• Support for SBOL3 and beyond.
• Preservation of the existing back-end and plugin API.

SynBioHub2 already begins to fulfill some of these design
goals; it provides a more intuitive and interactive front-end
for biologists, and community involvement throughout the
development process has been encouraged. However, de-
sign goals such as the ability to use different triplestore
databases are out of its scope, as SynBioHub2 focuses mostly
on redesigning of the front-end. These design goals will be
achieved once SynBioHub2 transfers its subscription from
SynBioHub’s original back-end to its redesigned back-end,
which is being developed in parallel to SynBioHub2.

SynBioHub2 is under active development. Although a sig-
nificant portion of the application has been developed, such
as submitting and searching for parts, some functionality
still needs to be implemented. Such functionality includes
design viewing, sharing of designs, and support for design
viewing plugins. Users can experiment with SynBioHub2’s
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Figure 2: SynBioHub2’s search interface. Users can check search results and perform common actions, such as downloading
corresponding parts.

development version at: https://dev2.synbiohub.org/. Syn-
BioHub2’s open-source code base can be found on GitHub
at: https://github.com/SynBioHub/synbiohub3/.
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Figure 3: Mock-up for SynBioHub2’s design view. Note the overview pane on the left and the ability to check/uncheck which
sections of the page are visible.
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1 INTRODUCTION
Understanding the structure and propensity of bacteriophages
(phages) can lead to key insights on how these highly abun-
dant viruses can be harnessed and exploited for use in thera-
peutics and diagnostics. Cell-free transcription-translation
(TXTL) systems have recently been engineered to enable
whole phage assembly [1], opening the door to a myriad of
phage-based applications with this highly controllable and
open environment. Combining this next-generation technol-
ogy with the well-established field of electron microscopy
(EM) allows for a unique look into the assembly dynamics of
phages with a degree of precision that has been previously
unachievable.

Phage-Based Therapeutics and Diagnostics
A bacteriophage is a type of virus that infects and kills bacte-
ria. The relationship between a phage and its cognate bacte-
rial prey constitutes the oldest predator-prey interaction on
Earth, having existed for at least 1 billion years [2]. During
this time, phages have evolved extreme specificity and sen-
sitivity towards their hosts. One global problem of extreme
importance, where phages can be of particular use, is tack-
ling antimicrobial resistance (AMR). It is predicted that if
the overwhelming surge of AMR is not seriously confronted
over the next 30 years, then it will overtake cancer in the
number of fatalities caused - with potential death tolls reach-
ing 10 million annually. AMR is a natural process, but the
misuse of antibiotics in humans and animals is accelerating
the process at a dangerous rate. One approach for reducing
AMR is to not disburse antibiotics in the first instance unless
they are completely necessary, a second approach is to sub-
stitute the use of antibiotics with an alternative therapeutic.
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Via phage deployment, both approaches can be executed by
(a) deciphering whether or not antibiotics are necessary by
identifying the pathogen causing the infection in a phage-
based diagnostic device and (b) replacing antibiotics with
Phage Therapy.

Phages offer a naturally occurring chassis that can, with
the tools that synthetic biology offers, be modified and opti-
mised for use in highly specific bacterial detection devices
and therapeutic treatments. Even prior to any modifications,
they offer many unique benefits over traditional approaches,
including: a) High specificity and sensitivity towards their
cognate host, b) Capacity to detect extremely low host pres-
ence, c) Capacity to function with impure samples under
diverse or even harsh conditions, d) Discrimination between
viable and incapacitated target pathogenic cells (i.e., removes
false positive for diagnostics), e) Signal amplification capacity
alongside signal transduction, f) Low cost, easy propagation
and purification.

TXTL Phage Assembly
TXTL harnesses the endogenous transcriptional and trans-
lational machinery extracted from cells (commonly E. coli)
and combines this cellular hardware with an energy solution
and amino acid mix, allowing for the expression of genetic
code in a single cell-free reaction. The ability to express and
assemble phages from their isolated genome in a cell-free sys-
tem allows for extensive control over when and how phages
are deployed. This ground-breaking technique also gifts re-
searchers the ability to extensively analyse phage assembly.
This knowledge and increased level of control over phages
is likely to supply ammunition for future phage-based thera-
peutics/diagnostics.

Our Main Contributions
We have extended the repertoire of phages that have been
synthesised in a TXTL reaction by successfully assembling
K1F phage. K1F is of particular interest because of its cognate
host, E. coli K1 - a gram-negative pathogen, responsible for a
wide range of diseases in humans, including sepsis, neonatal
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meningitis, urinary tract infections and inflammatory bowel
syndrome. The novelty of our work stems from its combi-
nation of iterative TXTL phage assembly reactions and EM
imaging. By taking advantage of the open and controllable
nature of a TXTL system, we can gain a thorough visual
insight into phage assembly and importantly, we are able to
precisely quantify the start and end points of DNA expres-
sion (when the genome is added to the reaction and when
the transcriptional inhibitor, rifampicin, is added to the reac-
tion). Subsequently, these timepoints can then be accurately
aligned with phage titers to produce representative data that
isn’t limited by variables such as TXTL reaction efficacy or
phage type. This defined level of control is unattainable in
vivo due to the turbulent nature of phage propagation and
opaque composition of bacterial cells.

2 METHODS
TXTL K1F Phage Assembly
Cell-free reactions, using the “myTXTL” kit from Arbor Bio-
sciences, were carried out in a volume of 12 𝜇L for 16 hours
at 29°C. Reactions were stopped at different time intervals
by adding 100 𝜇g/mL rifampicin.

Bacteriophage Titration
The standard plaque assay was used to count K1F phage
using the E. coli EV36 strain, an E. coli K12/K1 hybrid deriva-
tive with the ability to display a Kl polysaccharide capsule
morphologically similar to that of E. coli K1 clinical isolates.

Electron Microscopy
10 𝜇L drops of TXTL K1F assembly reaction from different
time intervals were applied to the centre of the mesh and
were incubated for 1 minute. The samples were removed and
the mesh washed twice with 10 𝜇L drops of water and finally
negatively stained with 10 𝜇L 2% uranyl acetate for 1 minute.
Images were acquired using the Jeol 2100 transmission elec-
tron microscope.

3 RESULTS AND ANALYSIS
For the first 15 minutes after the reaction started, no observa-
tions were made (Figure 1A). Sporadic phage capsids could
be seen at the half-hour mark (Figure 1B), which suggests
that protein expression and capsid assembly were underway
within 30 minutes of the start. Interestingly, after 45 min-
utes, the phage capsids had started to accumulate together
and after 60 minutes this was still ongoing with increased
abundancy (Figure 1C and 1D). Upon analysing the TXTL
K1F assembly titer data, it is revealed that the 45- minute
time point aligns to a titer of 103 PFU/mL and the 60- minute
time point aligns to a titer of 107 PFU/mL (Figure 1H).

Figure 1: A-E: TXTL K1F Assembly Visualised with EM. F-G:
myTXTL K1F Assembly Optimisation. H: Time Course Titer
Analysis of TXTL Synthesised K1F Phage.

Our interpretation of this data would explain that the ‘capsid
accumulation’ events that are displayed at 45 and 60 minutes
are in fact ‘DNA packaging’ events. This would, for the first
time, suggest that premature phages accumulate together
in large DNA packaging events at the last stage of their
development and subsequently, they become viable phages
– hence the rapid shift from 0 PFU/mL at 30 minutes, to
103 PFU/mL at 45 minutes, to 107 PFU/mL at 60 minutes.
After 180 minutes, the abundancy of the phages can be seen
to have increased, however, they appear to be much less
accumulative. This suggests that the DNA packaging events
are mostly complete by the 3-hour mark and that almost all
phages synthesised in the reaction are viable by that time –
this interpretation is supported by the fact that the amount
of titer observed at the 3-hour mark is 1010 PFU/mL.

4 FUTURE DIRECTIONS
We plan to use this novel phage analysis platform to further
validate our DNA Packaging Event theory and to investigate
other aspects of K1F phage assembly as a part of our wider
goal of developing phage-based therapeutic and diagnostic
models. Furthermore, this platform offers a new premise for
identifying and investigating genes involved in phage assem-
bly and other purposes through iterative gene knockouts –
which gives rise to a plethora of research opportunities that
can be explored.
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1 INTRODUCTION
Pathogenic bacterial infections must be detected early and
rapidly to improve the efficacy of the required therapeu-
tic interventions. However, conventional bacterial detection
methods are highly complex, require trained personnel and
are time-consuming. In this context, the use of a bacterio-
phage, also referred to as phage, as a detection probe has
several advantages for rapid bacterial screening including
(1) extreme specificity to cognate host, (2) massive increase
in progeny phage from a single infection event, and (3) sim-
ple and inexpensive large-scale production [4]. Engineering
of the required genetically modified bacteriophages is be-
coming increasingly easier due to the development of new
techniques such as CRISPR/Cas for the selection of recom-
binant bacteriophages [3]. We add to this rapidly evolving
field by presenting the first known engineering of SpyTag
K1F bacteriophage. This bacteriophage is intended for the
detection of E. coli K1, a clinically relevant bacteria.

2 MAIN CONTRIBUTIONS
We demonstrate the first known incorporation of the Spy-
Tag protein on to the capsid head of the K1F bacteriophage.
After creating the K1F-SpyTag and K1F-GFP-SpyTag bacte-
riophages via homologous recombination and CRISPR/Cas
mediated selection, we demonstrate their in vitro assembly in
an E. Coli Cell Free transcription/translation (TXTL) system.
We establish a method for facile directional immobilisation
of SpyTag fusion proteins – and by proxy SpyTag phage –
on to SpyCatcher decorated Polydimethylsiloxane (PDMS)
microfluidic chips, a material commonly used in the construc-
tion of disposable point of care (P.O.C) diagnostic devices.

3 METHODS
Integration of SpyTag on to Minor Capsid Protein of
K1F: The SpyTag and GFP-SpyTag genes were incorporated
∗This research is supported, in parts, by the EPSRC Standard Research
Studentship (DTP) EP/R513374/1, BBSRC Future Leader Fellowship (ref.
BB/N011872/1) to Antonia P. Sagona; by EPSRC/BBSRC grant BB/M017982/1
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Figure 1: Concept of SpyTag-K1F Phage directionally immo-
bilised via surface displayed SpyCatcher proteins embedded
in PDMS device.

into the minor capsid protein of the bacteriophage K1F via
homologous recombination [3]. To enrich the mixed popu-
lation produced by homologous recombination, a selection
strain containing the CRISPR/Cas machinery that targeted
the wild type genome, was subject to three rounds of in-
fection with the mixed population until stable recombinant
phage were isolated via plaque assays.

PDMS Surface Decoration with SpyCatcher: Wild type
Bsla and Bsla-SpyCatcher proteins were mixed in 2:1 ratio to
form the spotting solution in 0.1 M carbonate buffer (pH = 9).
This solution is spotted on to a hydrophobic microscope slide
and allowed to dry. PDMS precursor and curing agent were
mixed in a 10:1 ratio, degassed for 1 hour, and subsequently
poured over the spotted microscope slide. Following curing,
the PDMS chip was slowly peeled away to create PDMS chip
with surface decorated SpyCatcher proteins.

Coupling SpyTag Fusions to the SpyCatcherDecorated
PDMS: SpyTag fusions (GFP-SpyTag or K1F-SpyTag) were
incubated on the surface of the SpyCatcher exposed PDMS
chips for 10 minutes to facilitate covalent linkage between
SpyTag and SpyCatcher. Coupled PDMS chips were washed
10 times in PBS and examined for retention of SpyTag-GFP
via fluorescence or plaque assays for SpyTag-K1F.

Cell-Free TXTL Assembly of SpyTag-K1F: An in house
E. coli TXTL system was set up for the assembly of bacterio-
phage as described in [1] but with a few minor modifications.
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Figure 2: (A) Transmission electron microscopy image of
SpyTag-K1F phage in a TXTL reaction. (B) Fluorescence im-
age of PDMS device with immobilised SpyCatcher coupled
to GFP-SpyTag. Fluorescence intensity clearly demonstrates
the retention of GFP-SpyTag by surface exposed SpyCatcher
proteins on the PDMS device. Non SpyTagged GFP (position
1-4) is washed away, with some fluorescence observed due to
passive adsorption. Position 5 was a blank and not incubated
with a coupling solution.

Quantitative characterisations of phage production in TXTL
reactions were determined through plaque assays to obtain
the number of plaque forming units per milliliter (PFU/mL)
of TXTL reaction.

4 RESULTS AND DISCUSSION
A principle challenge in building a phage based diagnostic
device stems from the difficulty in ensuring directional immo-
bilisation of phages on the material of interest. Directional
immobilisation of bacteriophages can be achieved through
chemical, physio-chemical or electrostatic mechanisms be-
tween the virus and the surface in question [4]. Directional
immobilisation improves stability whilst maximising the con-
tact of bacteriophage receptor components to their target
host. Nonetheless, to the best of our knowledge, no results
are available for the immobilisation of bacteriophages on to
PDMS, a material commonly used in the preparation of mi-
crofluidic diagnostic devices. The results in this manuscript
constitute an important preliminary step in this direction.

To enable directional (tail-up) immobilisation of K1F phage,
we decided to incorporate the SpyTag gene into the phage
capsid head through homologous recombination and sub-
sequent CRISPR/Cas9 selection [3]. The SpyTag protein is
one half of the powerful protein conjugation pair termed
the SpyTag/SpyCatcher system [5]. The system is derived
by splitting the Streptococcus pyogenes fibro-nectin-binding
protein FbaB into two functional domains, viz., SpyTag and
SpyCatcher, that form a spontaneous isopeptide bond be-
tween Lysine and Asparagine residues . This ultra-strong
irreversible covalent interaction is an ideal method to attach
proteins to the capsid head of SpyTagged K1F phage and
provides a method for its facile directional immobilisation
on to surfaces containing SpyCatcher fusion proteins. We

targeted the fusion to the non essential minor capsid protein
(gene10b) which is encoded when a -1 translational frame
shift occurs in the 3’ region of the gene encoding the major
capsid protein (gene10a) [2]. In this way we were able to
create two recombinant phage incorporating either SpyTag
or GFP-SpyTag to the minor capsid head of K1F. Next we at-
tempted the assembly of SpyTag-K1F in an in house Cell free
TXTL system and achieved titres upwards of 109 PFU/mL.
Cell Free assembled phage were imaged via transmission elec-
tron microscopy (TEM), thus demonstrating correct structure
of capsids incorporating SpyTag (Figure 2 A).

5 CONCLUSION AND FUTURE DIRECTIONS
We have demonstrated a simple method to immobilise Spy-
Tag fused proteins to SpyCatcher decorated PDMS through
a method that enables control over immobilisation location
on the surface of the device (Figure 2B). The physical im-
mobilisation of SpyCatcher is achieved by spotting 1-5 𝜇L
of high concentration of a Bsla-SpyCatcher fusion protein
solution on to a microscope slide and pouring over PDMS.
The use of Bsla as a fusion partner to SpyCatcher is essential
to enable maximal surface exposure of SpyCatcher, as Bsla
readily forms mono-layers on hydrophobic surfaces [2]. We
demonstrate the ability of these SpyCatcher decorated PDMS
chips to capture GFP-SpyTag as a proof of concept for the
method (Figure 2B). This versatile strategy could enable the
coupling of K1F-SpyTag developed in this manuscript, or any
phage with SpyTag incorporated on to their capsid head, to
different parts of the microfluidic device, by selective and
sequential surface exposure. In doing so, a single device can
be easily fabricated to detect multiple bacterial pathogens.
Furthermore, we seek to build on our established methods for
the assembly of SpyTag-K1F in Cell-Free TXTL, by utilising
the SpyTag on the capsid head to perform affinity purifica-
tion of a signal packaged phage from a TXTL reaction. Taken
together these results will facilitate new generally applica-
ble techniques for using bacteriophages as biosensors for a
variety of different applications.
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