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Foreword

Welcome to IWBDA 2020!
The IWBDA 2020 Executive Committee welcomes you to the Twelfth International
Workshop on Bio-Design Automation (IWBDA). IWBDA brings together researchers
from the synthetic biology, systems biology, and design automation communities. The
focus is on concepts, methodologies, and software tools for the computational analysis
and synthesis of biological systems.

The field of synthetic biology, still in its early stages, has largely been driven by ex-
perimental expertise, and much of its success can be attributed to the skill of the re-
searchers in specific domains of biology. There has been a concerted effort to assemble
repositories of standardized components; however, creating and integrating synthetic
components remains an ad hoc process. Inspired by these challenges, the field has seen
a proliferation of efforts to create computer-aided design tools addressing synthetic
biology’s specific design needs, many drawing on prior expertise from the electronic
design automation (EDA) community. IWBDA offers a forum for cross-disciplinary dis-
cussion, with the aim of seeding and fostering collaboration between the biological and
the design automation research communities.

The workshop was originally intended to be held at Worcester Polytechnic Institute
in Worcester, Massachusetts, but was moved to an online forum in response to the
COVID-19 pandemic. In order to adapt the proceedings to this new venue, the program
this year differs in a few different respects from previous years. The daily schedule was
shortened so that it could accommodate participants across American and European
timezones. As a result, fewer talks were accepted this year. In addition, workshops and
breakouts have been integrated into the daily schedule to provide opportunities for
active engagement to balance the talk sessions. Finally, the traditional poster presen-
tations have been replaced with thematic panel sessions consisting of mini-talks and
Q&A.

This year, the program consists of 14 contributed talks organized into 3 sessions: Design
Automation, Pipelines, and Circuits & Modeling. The panel sessions consist of 19 pre-
senters organized into 6 topic groups: Design Abstraction, Sequence Design, Microflu-
idics, Knowledge Engineering, the Synthetic Biology Open Language, and Metabolic
Engineering. In addition, we are very pleased to have two distinguished keynote speak-
ers: Dr. Alec Nielsen, Founder and CEO of Asimov, Inc., a synthetic biology pioneer in
full-stack biological engineering, and Dr. Nili Ostrov, a post-doctoral fellow at Harvard
Medical School, expert in microbial genetics, and leader in the Genome Project Write
(GP-write) genome engineering consortium.
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IWBDA is proudly organized by the non-profit Bio-Design Automation Consortium
(BDAC). BDAC is an officially recognized 501(c)(3) tax-exempt organization.

We would like to thank all the participants for contributing to IWBDA. We would also
like to thank the Program Committee for reviewing the abstracts and everyone on the
Executive Committee for their time and dedication. Finally, we would like to thank BBN
Technologies for their sponsorship.
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10:30 - 10:45Welcome & Opening Remarks Eric Young (WPI)

10:45 - 10:50 Introduction to BDAthalon Prashant Vaidyanathan (Microsoft Research)

10:50 - 12:10 Session I: Design Automation, Chair: Marilene Pavan

• 10:50-11:10 gRNA-SeqRET: Genome-wide guide RNA design and sequence extraction

Lisa Simirenko, Ernst Oberortner, Ian K. Blaby, and Jan-Fang Cheng

• 11:10-11:30 Genetic Circuit Design Automation involving Structural Variants and Parameter Statistics

Tobias Schladt, Erik Kubaczka, Nicolai Engelmann, Christian Hochberger, and Heinz Koeppl

• 11:30-11:50 Laboratory Protocol Automation: A Modular DNA Assembly and Bacterial Transformation Case Study
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Logan Terry, Jared Earl, Sam Thayer, Samuel Bridge, and Chris Myers
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13:00 - 14:45 SBOL3 Workshop

15:00 - 16:00 Live Keynote I: Machine-Guided Design of Genetic Circuits, Alec Nielsen, PhD (Asimov, Inc.)

16:00 - 17:00Mini-talks and Panel discussions

• Design Abstraction

– BioCRNpyler: Compiling Chemical Reaction Networks from Parts in Diverse Contexts with Python

William Poole, Ayush Pandey, Andrey Shur, Zoltan Tuza, and Richard Murray

– Describing engineered biological systems withSBOL3 and ShortBOL2

Matthew Crowther, Lewis Grozinger, James McLaughlin, Goksel Misirli, Jacob Beal, Bryan Bartley, Angel

Goni-Moreno, and Anil Wipat

– SBModEns: A Modular Toolbox for Model Building, Reduction, Analysis and Simulation in System Biology

Fernando Nóbel Santos Navarro, Jesús Picó, and Jose Luis Navarro

• Sequence Design

– Accurate, Complete, and Contiguous Engineered Yeast Genomes with Prymetime

Joseph Collins, Kevin Keating, Tom Mitchell, Bryan Bartley, Nicholas Roehner, and Eric Young
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Uriel Urquiza-García, Christoph Wagner, Sascha Ferraro, and Matias Zurbriggen

– Detecting Co-Occurring Signatures of Engineering in Single Cells with Targeted Sequencing

Aaron Adler, Adam Abate, Brian Basnight, Joseph Collins, Benjamin Demaree, Kevin Keating, Xiangpeng Li,

Tyler Marshal, Thomas Mitchell, David Ruff, Allison Taggart, Shu Wang, Daniel Weisgerber, Eric Young, and

Nicholas Roehner

• Microfluidics

– Active Learning for Efficient Microfluidic Design Automation

David McIntyre, Ali Lashkaripour, and Douglas Densmore

– Efficient Large-Scale Microfluidic Design-Space Exploration: From Data to Model to Data

Ali Lashkaripour, David McIntyre, and Douglas Densmore

– A Droplet-Based Microfluidic Lab Automation for Biosynthetic Pathway Optimization

Kosuke Iwai, Megan Garber, Jess Sustarich, Peter W. Kim, William R. Gaillard, Kai Deng, Trent Northen,

Hector Garcia-Martin, Paul D. Adams, and Anup K. Singh
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Tuesday, August 4th

10:30 - 12:10 Session II: Pipelines, Chair: Bryan Bartley

• 10:30-10:50 Design Automation Workflows for Synthetic Biology and Metabolic Engineering: The Galaxy-

SynBioCAD Portal

Jean-Loup Faulon, Thomas Duigou, Melchior du Lac, Joan Hérisson, and Pablo Carbonell

• 10:50-11:10 Automation of a DOE Design Workflow in Synthetic Biology - A Comparative Study

Alexis Casas, Charles Motraghi, Matthieu Bultelle, and Richard Kitney

• 11:10-11:30 Round-Trip: An Automated Pipeline for Experimental Design, Execution, and Analysis

Daniel Bryce, Robert P. Goldman, Matthew Dehaven, Jacob Beal, Tramy Nguyen, Nicholas Walczak, Mark

Weston, George Zheng, Josh Nowak, Joe Stubbs, Matthew Vaughn, Niall Gaffney, and Chris Myers

• 11:30-11:50 Integrated Decision-Making to Detect DNA Engineering in Yeast

Sancar Adali, Aaron Adler, Joel Bader, Joseph Collins, Yuchen Ge, John Grothendieck, Thomas Mitchell, Anton

Persikov, Jonathan Prokos, Richard Schwartz, Mona Singh, Allison Taggart, Benjamin Toll, Stavros Taskalidis,

Daniel Wyschogrod, Fusun Yaman, Eric Young, and Nicholas Roehner

• 11:50-12:10 The Synthetic Biology Knowledge System

Jeanet Mante, Chris Myers, Eric Yu, Mai H. Nguyen, Gaurav Nakum, Jiawei Tang, Xuanyu Wu, Eric Young,

Kevin Keating, Bridget T. McInnes, Nicholas E. Rodriguez, Jacob Jett, J. Stephen Downie, Brandon Sepulvado,

and Logan Terry

12:10 - 13:00Meal / Zoom Social Hour

13:00 - 14:45 BDAthlon breakouts

15:00 - 16:00 Live Keynote II: Reading and Writing Non-canonical Microbial Genomes, Nili Ostrov, PhD
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• Knowledge Engineering

– Intent Parser: a tool for codifying experiment design
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– Collaborative Terminology: SBOL Project Dictionary

Jacob Beal, Daniel Sumorok, Bryan Bartley, and Tramy Nguyen

– The Social and Conceptual Organization of Synthetic Biology Ethics

Brandon Sepulvado, Jacob Jett, and J. Stephen Downie
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– Discovering Content through Text Mining for a Synthetic Biology Knowledge System

Mai Nguyen, Bridget McInnes, Eric Young, Gaurav Nakum, Jiawei Tang, Xuanyu Wu, Nicholas Rodriguez,

and Kevin Keating

• Synthetic Biology Open Language

– VisBOL 2.0 - Improved Synthetic Biology Design Visualization

Benjamin Hatch, James McLaughlin, James Scott-Brown, and Chris Myers

– Sequence-based Searching For SynBioHub Using VSEARCH

Eric Yu and Chris Myers

– Analysis of the SBOL iGEM Data Set
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• Metabolic Engineering

– Dynamic pathway regulation: extended biosensor and controller tuning with multiobjective optimization

Yadira Boada, Alejandro Vignoni, Ana Fraile, Jesús Picó, and Pablo Carbonell

– Enhanced Microbial Production of Valuable Natural Products Through Computational Metabolic Models

Michael Cotner, Zhen Zhang, and Jixun Zhan
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• 10:30-10:50 Multistable and dynamic CRISPRi-based synthetic circuits

Javier Santos-Moreno, Eve Tasiudi, Joerg Stelling, and Yolanda Schaerli

• 10:50-11:10 Robust control of biochemical reaction networks via stochastic morphing

Tomislav Plesa, Guy-Bart Stan, Thomas Ouldridge, and Wooli Bae

• 11:10-11:30 Genetic Circuit Hazard Analysis Using STAMINA

Lukas Buecherl, Jeanet Mante, Zhen Zhang, Brett Jepsen, Riley Roberts, Pedro Fontanarrosa and Chris J. Myers

• 11:30-11:50 Minimal model for protein expression accounting for metabolic burden

Fernando Nóbel Santos Navarro, and Jesús Picó

• 11:50-12:10 Bacteria mastering the tic-tac-toe game through synthetic adaptive gene circuits

Adrian Racovita, Satya Prakash, Clenira Varela, MarkWalsh, Roberto Galizi, Mark Isalan, and Alfonso Jaramillo

12:10 - 13:00Meal / Zoom Social Hour

13:00 - 14:45 SBOL Visual workshop

15:00 - 16:00 Guided Discussion, Chair: Prashant Vaidyanathan

16:00 - 17:00 Awards / Closing
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Keynote Presentation
Machine-guided Design of Genetic Circuits

Alec Nielsen, PhD

Keynote Abstract
Cells use genetically encoded circuits to regulate metabolism, communicate with each other, and gen-
erate spatial patterns. Synthetic genetic circuits enable advanced biotechnology applications, but are
challenging to design for many reasons: a lack of high-performance genetic parts, inaccurate biophysi-
cal simulations, and inefficient algorithms for searching the genetic design space. In this talk, we build
upon our previous work in genetic circuit design automation by developing improved biophysical sim-
ulators and genetic algorithm-based circuit generators. Using this approach, we achieve state-of-the-art
performance in computational circuit design and generalize the method to analog and temporal circuits.

Speaker Biography
Alec Nielsen is co-founder and CEO of Asimov, a Boston-based mammalian synthetic biology company
that spun out of MIT in 2017. Alec holds a B.S. in Electrical Engineering and Bioengineering from the
University of Washington and a Ph.D. from MIT Biological Engineering. His work focuses on computer-
aided design of complex cellular functions, scalable biochemistries for synthetic biology, and machine
learning applications in genetic design and biosecurity.



Keynote Presentation
Reading and Writing Non-canonical Microbial Genomes

Nili Ostrov, PhD

Keynote Abstract
The ability to make radical and comprehensive genomic changes opens new avenues for understanding
biological principles and for construction of synthetic genomes not found in nature. In this talk, I will
discuss development of high-throughput methods for reading and writing entire microbial genomes. I
will describe methods for ‘bottom up’ writing of a virus-resistant E. coli with an altered genetic code.
In addition, I will present enabling genetic tools for rapid ‘top down’ reading of gene function in the
non-model marine bacterium Vibrio natriegens, the fastest dividing free-living organism known. These
projects demonstrate the need for robust systems for large-scale genome manipulations to accelerate
design-build-test of non-canonical organisms.

Speaker Biography
Dr. Nili Ostrov is a postdoctoral fellow in the laboratory of Prof. George Church at Harvard Medical
School, where she is constructing synthetic microbial genomes. She is broadly interested in using non-
canonical organisms for clinical, agricultural and bioindustrial applications. Nili is a leading member of
the Technology Working Group for the Genome Project Write (GP-write) international consortium.
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gRNA-SeqRET: Genome-wide guide RNA design and
sequence extraction

Lisa Simirenko, Ernst Oberortner, Ian K. Blaby, Jan-Fang Cheng
DOE Joint Genome Institute (JGI)

{lsimirenko,eoberortner,ikblaby,jfcheng}@lbl.gov

INTRODUCTION
The U.S. Department of Energy (DOE) Joint Genome Institute
(JGI) provides DNA sequencing and synthesis services to
scientific users via community science programs. The DNA
synthesis program covers all aspects of the synthetic biology
design-build-test cycle, enabling users to engineer biological
systems that are relevant to their research and the DOE
mission. One particular product type that the DNA synthesis
program offers is the design and construction of libraries
with a high degree of variants. Applications of such libraries
include, but are not limited to, CRISPR guide RNA (gRNA)
libraries for studying the phenotypic changes as a result of
changing gene expression, such as demonstrated by Schwartz
et al. [1].
Here, we present our recently developed in silico design

workflow for library variants: guide RNA and Sequence Re-
gion Extraction Tool (gRNA-SeqRET). The current version
enables (i) designing gRNA libraries that target user-specified
regions and (ii) extracting any arbitrary sequence region by
either keyword or by coordinates within a genome or the
whole genome of any prokaryotic organism. A common JGI
use case, for example, is the design of gRNA libraries that
target the up- and downstream regions of each gene’s start
codon for respectively activating (“CRISPRa”) or interfer-
ing (“CRISPRi”) gene expression. For such designs, gRNA-
SeqRET searches for gRNA variants for each gene in the
whole genome and scores and filters the discovered variants
based on predicted folding and potential off-target bindings.
The gRNA-SeqRET pipeline comprises freely-available soft-
ware tools and customized Python scripts, and is available at
https://grna.jgi.doe.gov under a modified BSD open source
license (https://bitbucket.org/berkeleylab/grnadesigner).

RESULTS & DISCUSSION
Due to the wide range of host organisms and type of projects
that our users work on, the specification for our tool in-
cluded the ability to find gRNA sequences for any genome,
and automatically select sequence regions both upstream
and downstream of the genes of interest. Another require-
ment was to evaluate (“score”) and filter out the top gRNAs
based on predicted RNA folding when attached to the scaf-
fold sequence. To address these requirements, we surveyed

previously developed CRISPR/gRNA design tools and de-
cided in favor of the CRISPR/Cas9 Target Online Predictor
(CCTop) [2] for integration into our gRNA design workflow.
CCTop is open-source, easy to integrate and close to meeting
our requirements.

To date, we have successfully evaluated gRNA-SeqRET on
several user projects. In two projects, for example, we utilized
the gRNA library design feature including (i) whole genome
gRNA libraries targeted for Pseudomonas putida consisting of
12,000 variants and (ii) both CRISPRi and CRISPRa gRNA li-
braries for 103 transcription factors inNannochloropsis ocean-
ica. In another user project, we utilized gRNA-SeqRET to
extract sequences up- and downstream of respectively the
start and stop codons of 45 genes in order to design both
N-terminal and C-terminal fluorescent tagged knock-in con-
structs for Arabidopsis thaliana.

METHODS
The first step in the design process (see Figure 1) is collecting
the user inputs through a web user interface (UI). The user
uploads the genome sequence in GenBank format and inputs
the name of the targeted genes, if not targeting all the genes
in the genome. The region of the gene to be targeted must be
specified by indicating the start and stop coordinates relative
to the start codon of each gene. For CRISPRa, for example,
the promoter region upstream of the start codon will be
targeted, represented by a negative number indicating the
number of upstream base pairs. For CRISPRi, on the other
hand, the region downstream of the start codon is targeted,
represented by a positive number. The protospacer adjacent
motif (PAM) sequence and the scaffold sequence for the
CRISPR associated (Cas) protein must also be provided, as
well as the length of the gRNA variants and how many are
to be designed for each gene.
Once the user submits these inputs, the application pre-

pares the inputs for CCTop, runs CCTop, and post-processes
the CCTop results. The web UI communicates with the back-
end asynchronously since, depending on the inputs and and
the size of the genome, the design process can take several
hours. Preparing the CCTop inputs involves converting the
user inputs into CCTop inputs. The gRNA-SeqRET back-
end converts the genome information from the uploaded
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Figure 1: The front-end (“web UI”) allows for user input and download of the final outputs. The input is processed asyn-
chronously on the back-end. The pre-processing step converts the web UI inputs into CCTop inputs. After running CCTop,
the post-processing step filters and scores each gRNA. Lastly, a custom Python script collects the pipeline outputs and makes
them available for download on the web UI.

GenBank file into (i) an indexed version of the genome se-
quence using bowtie, (ii) a Browser Extensible Data (BED)
file containing all the genome annotation and (iii) a FASTA
file comprising the sequence regions of the genes that will
be targeted. These three files, along with the PAM site, the
desired gRNA length, and other CCTop parameters serve as
input to CCTop. After a successful CCTop run, a comma sep-
arated value (CSV) file is available for each gene of interest
with information about each gRNA’s scores and offsite target
information. CCTop provides two scores for each gRNA. One
which takes into account the number of off-target sites in
the genome and their quality (i.e. the number of mismatches
and position with respect to the PAM), and a CRISPRater
score [3] that purports to be a measure of the gRNA effi-
cacy, based on experimental data. In addition to CCTop’s
scoring algorithms, we evaluate and score each gRNA based
on its predicted folding. The goal here is to select gRNAs
that (i) will not form hairpins and therefore increase the
likelihood of binding to its intended target and (ii) do not
interfere with the folding of the scaffold sequence to which
it will be fused. The folding score is calculated by counting
the number of unpaired bases in the gRNA when fused to
the scaffold. The final score of any gRNA is the product of
the two CCTop scores and our folding score. The gRNAs
are filtered based on the top scores and the desired number
of gRNAs for each gene, as specified by the user. The final
output of the gRNA-SeqRET design process is written to a
CSV file with six columns: (i) a unique gRNA name which
incorporates the targeted gene name, (ii) the gRNA sequence,
(iii) the PAM sequence, and the location of the gRNA in the

genome indicated by (iv) the start coordinate, (v) the end
coordinate, and (vi) the strand. On the web UI, the user can
download the CSV file. We also provide the download of
all input and output files as a gzipped tarball (.tar.gz) file,
including all the CCTop input and output files, execution
logs and scoring information.

The current version of gRNA-SeqRET supports processing
prokaryotic genomes. We are in the process of extending
gRNA-SeqRET for handling eukaryotic genomes, taking into
account exons and introns within genes. Also, we intend
to integrate with genomic databases, such as the Genomes
OnLine Database (GOLD, https://gold.jgi.doe.gov/) and the
Integrated Microbial Genomes and Microbiomes (IMG/M,
https://img.jgi.doe.gov/) system.
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1 INTRODUCTION
Genetic design automation (GDA) parallels early efforts in
electronic design automation (EDA) and recently also got to
use state-of-the-art EDA tools to generate gene-regulatory
circuits realizing simple combinational logic [4]. While his-
torically EDA quickly ran into unmanageable computational
complexity and hence devised clever approximate methods,
current GDA problems are yet too small to require such ap-
proximations. In contrast to EDA’s scalability, GDA suffers
from insufficient accuracy of part and device models in their
libraries. In particular, the design process does not account
for cell-to-cell variability and context effects [1].

The contribution of this work is twofold. First, we demon-
strate that better circuit topologies and gate assignments
can be found compared to the ones suggested by traditional
EDA tools, as for instance used in Cello [4]. Our main ap-
proach here is to efficiently enumerate all structural circuit
variants. Second, we introduce parametric uncertainty in
device models to mimic cell-to-cell variability and extend the
circuit scoring function to account for the incurred output
variability. Accordingly, two realizations of the same logic
circuit showing same medians (or means) across all input
assignments and hence leading to identical scores in the tra-
ditional setting, could now be scored very differently due to
their difference in output variability.

2 SYNTHESIS OF GENETIC CIRCUITS
In contrast to electronic logic circuits, current approaches
for combinational genetic circuits are highly limited. They
rely on hand-crafted libraries of individual logic gates and
their maximum size is limited by energetic aspects and toxic
effects on their host cell [4]. Furthermore, today’s EDA tools
focus on minimizing area and delay, which is not suitable
for genetic circuits as they do not consider the complex
biological interactions. Thus, we propose a synthesis method
to enumerate all circuit structure variants for the small logic
problems solvable by genetic circuits.
Combinational logic networks can be represented as Di-

rected Acyclical Graphs (DAG). Therefore, the problem of
finding all structurally different implementations of a Boolean
logic function is a DAG-enumeration problem, which quickly

* The authors contributed equally to this research.

Table 1: Synthesis results for sample functions with deter-
ministic parameters

Cello (SA) Cello (opt.) Proposed
Funct. Size Score Size Score Size Score
0x4D 5 28.82 5 88.62 5 575.25
0x78 5 27.21 5 254.64 5 467.01
0xCD 4 40.86 4 162.07 4 575.72

becomes infeasible due to its highly combinatorial nature.
Thus, we intermediately limit the problem to the enumera-
tion of all fanout-free circuit structures (every gate output is
connected to exactly one gate input), simplifying enumera-
tion and isomorphism checking. Redundancies on the gate
level inherent to fanout-free circuits are then removed by
post-processing, thus returning to a general DAG structure.
To measure the benefit of including structural variety in

genetic circuit synthesis, we synthesized all functions shown
in [4] using Cello’s library of genetic logic gates. We then
used Cello’s circuit score metric to rate the output identi-
fiability of the synthesized circuits. Finally, we compared
our results to the circuits synthesized by Cello. To cancel
out the influence of non-optimal assignments of biological
gates to circuit gates, we simulated all possible assignments
exhaustively for both Cello’s and our circuit structures.
Using our synthesis approach, we were able to improve

the circuit score of 25 of the examined 33 functions, while
no circuit performed worse than the corresponding circuit
synthesized by Cello. On average, the scores improved by
73% using approx. one additional gate. Table 1 shows the
results for three sample functions synthesized by Cello us-
ing its simulated annealing gate assignment algorithm (SA),
exhaustive gate assignment (opt.) and our proposed optimal
synthesis approach. Figure 1 shows the resulting circuits for
function 0x4D. The OR gate shown in figures 1a and 1b is
an implicit combination of two output signals and thus not
counted as a gate instance.
While the presented enumeration technique is only fea-

sible for small circuits, it can also be used to generate a
library of sub-circuits composed of gates of the biological
gate library, so called Supergates [2]. These can be used to en-
able classical technology mapping approaches like structural
mapping to produce a nearly complete variety of circuits.

19



IWBDA 2020, August 2020, Online Schladt, Kubaczka, Engelmann, et al.

(a) Cello (SA) (b) Cello (opt.) (c) Proposed

(d) Repressor legend

Figure 1: Synthesized circuits for function 0x4D

3 STATISTICAL EVALUATION OF GENETIC
CIRCUITS

During circuit optimization Cello relies only on median
transfer behaviour ignoring computational variability across
single instances due to context effects. To remedy this, we
incorporate statistical models during circuit optimization.
Given statistics of sensor input concentrations, we compute
approximate statistics of output concentrations involving
quasi-steady state transfer functions based on random ODE
models for the kinetics of the gates. To maintain a high de-
gree of flexibility, we use stochastic simulation to evaluate
circuits during optimization. To be precise, let a random vec-
tor 𝜽 ∈ 𝚯 represent the environment a circuit is embedded in.
Let thus 𝜽 parameterize a kinetic ODE model ¤𝒙 = 𝑓 (𝒙, 𝒖, 𝜽 )
for vectors 𝒖 ∈ R𝑁≥0 of 𝑁 input and 𝒙 = (𝒙𝑚, 𝒙𝑜 ) of arbitrar-
ily many intermediate and𝑀 output species concentrations
𝒙𝑜 ∈ R𝑀≥0 of the circuit. We then find 𝒙𝑠 =

(
𝒙𝑚,𝑠 , 𝒙𝑜,𝑠

)
solving

0 = 𝑓 (𝒙𝑠 , 𝒖, 𝜽 ) to obtain a quasi-steady state solution. Using
this solution, we can uniquely determine 𝒙𝑜,𝑠 for particular
realizations of 𝒖 and 𝜽 and find

𝑝
(
𝒙𝑜,𝑠

)
=
∫
R𝑁≥0

d𝒖
∫
𝚯
d𝜽 𝑝

(
𝒙𝑜,𝑠 | 𝒖, 𝜽

)
𝑝 (𝒖, 𝜽 ) (1)

with 𝑝
(
𝒙𝑜,𝑠 | 𝒖, 𝜽

)
= 𝛿 (𝑓 (𝒙𝑠 , 𝒖, 𝜽 )) given by a degener-

ate distribution. To inherit Cello’s modularity in gate assign-
ments, we factorize the joints 𝑝 (𝒖, 𝜽 ) = 𝑝 (𝒖)∏G 𝑝

(
𝜽 G

)
and 𝑝

(
𝒙𝑜,𝑠 | 𝒖, 𝜽

)
=
∏

G 𝛿
(
𝑓G

(
𝒙𝑠 , 𝒖, 𝜽 G

) )
over gates G and

the circuit’s input 𝒖. Despite of that, the exact calculation of
(1) usually remains intractable and we therefore approximate
the output statistics using a finite set of particular realiza-
tions (particles) representing the presumed true distributions.
Since this raises the need of a circuit scoring metric involving
probability distributions, we make use of the Wasserstein
distance [3] to qualify a particular circuit, which generalizes
Cello’s scoring metric to non-degenerate distributions. In
accordance to Cello, we determine the score by the mini-
mum distance between logarithmic output distributions cor-
responding to complementary values of the circuit’s Boolean
function. Fig. 2 shows sample output distributions (standard
deviations in table 2) and the score noise-power dependency.

Table 2: Empirical standard deviations of the logarithmic
output distributions of circuit 0x1D (lesser values are bold)

10 �̂� -/-/- -/-/+ -/+/- -/+/+ +/-/- +/-/+ +/+/- +/+/+
Proposed 5.6 5.7 6.2 5.6 6.5 5.4 6.2 5.6
Cello (opt.) 5.3 5.3 9.2 6.6 7.6 6.7 9.2 6.6

Proposed Cello (opt) Output (-/+) +/-/+ Input

-/-/-

3

2

1

0

-1

-/-/+ -/+/- -/+/+ +/-/- +/-/+ +/+/- +/+/+

Noise

Best Gate
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Figure 2: a) Output level histograms for circuit 0x1D. b) The
best assignment depends on the variance of the parameters.

Table 3: Synthesis results for sample functions using the pro-
posed statistical scoring incorporating structural variants

Cello Proposed
Funct. Size �̂� 𝚫𝝁 Score Size �̂� 𝚫𝝁 Score
0x08 4 1.47 1.39 27.86 4 1.29 1.61 159.31
0xC4 3 1.42 3.04 67.5 3 1.17 3.29 219.07
0xCD 4 1.00 1.98 6.74 4 1.46 2.81 98.27

4 CONCLUSION
The new synthesis approach effectively extends the search
space for robust circuits by including structural variants. In
combination with the new scoring metric, we improve iden-
tifiability of the Boolean outputs by not only increasing the
distance of complementary values in terms of expression lev-
els but also preferring symmetric, low leakage solutions. This
often comes with no cost in terms of increased circuit size.
We give average standard deviations and distances between
the means of complementary output distributions along with
their score and circuit size for some examples in table 3.
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ABSTRACT
Molecular cloning and bacterial transformation are among the most
used and essential molecular and cellular protocols in synthetic
biology. Biologists make use of such protocols to assemble genetic
constructs, one at a time, from a library of various genetic parts.
Building multiple, complex constructs, simultaneously, requires the
repetitive manual operations when exploring broader design space
of genetic combinations. Novel automated frameworks have the
potential to save time and resources while retaining standard and
reproducible results. Here we developed open-source programming
scripts that can auto-generate liquid handling protocols of modular
cloning (MoClo), bacterial transformation, and cell plating proto-
cols, which can be implemented automatically into Opentrons OT-2
liquid-handling robots. Once fully functional, these scripts will
be part of an ongoing effort to develop software/hardware-based
automation workflows for the assembly of larger genetic circuits,
bacterial transformation, and performance tests in live cells in a
high-throughput manner at the DAMP Lab.

INTRODUCTION
The ability to manipulate recombinant and synthetic DNA through
molecular cloning has revolutionized biology over the past few
decades [1]. Many application areas, particularly synthetic biol-
ogy, would benefit from increased throughput in molecular cloning
protocols. Therefore it has become an important goal for many aca-
demic and industry labs exploring large design spaces. Increased
throughput has allowed biologists to explore a broader swath of
biological devices with a particular purpose [2]. However, the lack
of a standardized, reproducible, and scalable “Build and Test” tools
and cycles have created a bottleneck in the experimental space
aiming to test and construct various types and sizes of genetic de-
vices. Automating molecular cloning processes using expensive
robotic workstations has traditionally been applied to cope with
this problem [3]. While automated liquid handling has traditionally
been exclusive to industry and a few academic facilities due to the
cost and complexity of using such a solution, recently developed
platforms, such as the Opentrons OT-2 robot, provide similar ca-
pabilities within the financial reach of small research laboratories
[4]. Given its affordability and flexibility, the OT-2 robot could be
a good starting point for laboratories new to automation. Here,
we propose to develop an end-to-end cloning pipeline using the
OT-2 robot [5], to automate modular cloning (MoClo) [6], bacterial
transformation, and cell plating, which can be easily replicated by
other laboratories.

PROTOCOL AND REPRESENTATIVE RESULTS
The end-to-end cloning pipeline is designed to assist users in lacking
programming experience while conducting biological experiments
in a biology laboratory. It is composed of two layers, a generator
script and a template script (Figure 1). Users of the robot can input
two input-CSV files to the generator script, one containing all input-
DNA part names, and the other describing the combinations of parts
desired to be assembled in a final construct. A final protocol script
is then generated for users to drag-and-drop into the Opentrons’
OT-2 API. Furthermore, the pipeline can be performed in one whole-
day tentative step (Figure 1A), or broken down into three separate
experimental protocols (Figure 1B). This way, the modular cloning
pipeline can be separated based on biological experimental designs,
such as modular cloning, cell transformation, and cell plating.

Figure 1: End-to-end cloning pipeline consisted of multiple
protocols, Modular Cloning (MoClo), Bacterial Cell Trans-
formation, and Cell Plating in an automated workflow.

We verified the efficiency and accuracy of the pipeline by evaluating
the modular cloning protocol results using the OT-2 robot. We first
developed a MoClo OT-2 liquid handling protocol script for the
assembly of 63 DNA constructs simultaneously, to explore an ample
design space of various input DNA concentrations (10, 20, and 40
nM) and three similarly sized genetic constructs (2955, 3152, and
3285 bp), which are composed of two-part, five-part, and eight-part
DNA assemblies respectively (Figure 2). Each reaction is cloned in
triplicates via the MoClo DNA assembly methodology [6] with a
total reaction volume of 20 uL to account for a reduction in the
consumables’ cost [3,7]. To validate cloning efficiency, we used
a benchtop thermocycler. We tested two MoClo protocols with
different thermocycling methods, i.e., traditional and isothermal
(Figure 2). Optimal transformed cell plating dilution ratios, for
2-part, 5-part, and 8-part assemblies, were incorporated into the
scripts with the respective values 3%, 30%, and 100%. Results show
that the traditional method yields the optimal cloning efficiency of
the highest desired white CFU yields (Figure 2B,C).
We then tested the ability of the pipeline to automate both bacterial
transformation and cell plating. We developed one OT-2 liquid han-
dling protocol script to test bacterial transformation and efficiency
validation using the DNA constructs, and another to test cell plat-
ing and cross-contamination assessment using both normal E. coli
bacterial cells (white CFU) and E. coli cells expressing the violacein
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Figure 2: OT-2 plating map with planned plating concentra-
tion and the corresponding locations. The table presents the
mean and standard error of the mean of the total number of
colonies per parts-assembly class, along with their cloning
efficiency (compared to the largest number of white CFU
counts), obtained from three biological replicates.

pathway (purple CFU). Once in the OT-2 robot, cells were heat-
shocked, then recovered, diluted, and plated onto single-well plates.
The OT-2 liquid handling protocol script for cell plating interca-
lates the two different cell types onto the same agar plate (Figure
3). By intercalating them, we expected to find potential plating
errors, and reveal the robot’s plating efficiency, corresponding to
cross-contamination. After plating, cells were incubated overnight
at 37°C. An example plate in Figure 3 show how the cell cross-
contamination test was performed. From counting colonies from
three biological replicates, we found the contamination rate to be on
average 11.5% (11 single-colony cross-contamination events across
96 colony spots on the plate) using not-filtered OpenTrons’ pipette
tips. The optimal cell plating volume found was 10 uL.

CONCLUSION AND FUTUREWORK
In this work, we aimed to develop an easy-to-follow prototypical
workflow that uses the OT-2 robot to automate the core processes
of a typical molecular cloning workflow: assembling and incubat-
ing Modular Cloning (MoClo) reactions, transforming E. coli cells
with MoClo products by heat shock, and the recovery and plat-
ing of transformed E. coli. We concluded that traditional thermo-
cycling, yielding a higher cloning efficiency, should be adapted
for OT-2 modular cloning protocol scripts. The highest percent-
age of white CFU was observed in the simplest DNA constructs
(2-part assemblies), and the three similarly sized constructs were
assembled. Thus, we can conclude that increasing the assembly
complexity of the DNA construct decreases the percentage of de-
sired white CFU yields. Finally, implementing filtered pipette tips
for plating cells may play a role in reducing cross-contamination

Figure 3: (A) Example plate result of the traditional method
(35 cycles at 37°C for 1.5 min. and 16°C for 3 min. followed
by one cycle at 50°C for 5 min. and 80°C for 10 min.) with 3
technical replicates per condition; and example plate result
of the isothermal method (2 hours at 37°C followed by one
cycle at 50°C for 5min. and 80°C for 10min.) with 3 technical
replicates per condition. (B) Example plate result of the plate
cross-contamination test with E. coli white colonies and E.
coli purple colonies.

ratio. The open-sourced scripts developed are available on GitHub
(https://github.com/DAMPLAB/OT2-MoClo-Transformation-Ecoli),
along with detailed setup instructions for the experimental proto-
col and the robotic deck setup instructions. In the future, we aim
to increase the throughput of such protocols (including internal
controls, e.g., intact plasmids) and will provide additional informa-
tion regarding the sequencing results of constructs obtained from
automating colony picking and mini-prep protocols using OT2.
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1 INTRODUCTION
Synthetic biologists often use diagrams to visualize the struc-
ture and functionality of genetic designs due to their com-
plicated nature. The Synthetic Biology Open Language Visual
(SBOLv) [1] is a standard for these diagrams. This standard
provides a set of glyphs for synthetic biology components
and how they can interact. These visual designs also have
a complementary data standard, the Synthetic Biology Open
Language (SBOL) [3], which represents the structural and
functional information for genetic designs.

When a synthetic biology designer is developing a genetic
circuit with SBOL and SBOLv, they have three main objec-
tives: 1) an ergonomic way to create and edit visual diagrams,
2) an ability to associate these diagrams with genetic part
information, and 3) a means to share their designs with oth-
ers. One such tool that can assist with these objectives is
SBOLDesigner [4], a graphical schematic editor for DNA-
level design. This tool has many useful features including
the ability to construct a DNA sequence from SBOLv glyphs,
import DNA part information from the SynBioHub reposi-
tory [2], and share resulting designs by uploading them to
SynBioHub. However, SBOLDesigner does not support the
latest features in SBOLv Version 2. SBOLv2 allows for the
inclusion of non-DNA components (RNAs, proteins, small
molecules, etc.), as well as a way of representing interactions
between them. Furthermore, SBOLDesigner requires local
installation to use.

This paper describes SBOLCanvas, an updated web-based
genetic design editor that can create visual diagrams using
all features of SBOLv2. Specifically, in addition to features
supported by SBOLDesigner, SBOLCanvas has the ability to:

• Create designs composed of multiple DNA sequences.
• Add non-DNA components to these designs.
• Link components via interactions such as genetic pro-
duction, repression, and activation.

• Markup the designs with colors and text annotations.
• Undo and redo designs edits.

Therefore, SBOLCanvas provides a new way for synthetic
biologists to specify and visualize the structure and function
of their designs.

2 SPECIFIC FEATURES
Multiple Strands & Molecular Species
The SBOL data standard supports more than just single DNA
circuits in a design. It allows for multiple circuits as well
as denoting interactions between those circuits and other
molecular species. Figure 1 demonstrates multiple circuits,
interactions, and molecular species.

Figure 1: An image exported from SBOLCanvas.

SynBioHub integration
SBOLCanvas allows for direct access to designs stored on
SynBioHub. Making it easy to integrate the parts you need
into your design. It also allows for saving your own designs
to SynBioHub for later access. SynBioHub has a feature that
allows you to store commonly used parts in a collection
making them easier to access within SBOLCanvas. In the
future, we plan to make this even easier by allowing users
to import this collection into the part menu, enabling the
ability to drag and drop these parts into a design.

Image Exporting
If a researcher wants to build and share a diagram of their
biological circuit, they currently have to use some graphi-
cal editor, such as Adobe Illustrator. This takes significantly
more time than it should. SBOLCanvas lets you export im-
ages (.png, .jpeg, .svg, and .gif) of your design, merging visual
and informational design into one task.

Ease of Use
SBOLCanvas lowers the barrier to entry by enabling anyone
with access to a web browser to visually design synthetic
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Figure 2: SBOLCanvas’ graphical user interface.

genetic circuits. SBOLCanvas’ graphical user interface (GUI)
is shown in figure 2. The primary way to interact with SBOL-
Canvas is to drag and drop items from the part menu on the
left. If a user has a strand selected, the user can also click
on a glyph, and it is added to the end. Interactions can be
added by selecting the two items to link, and then clicking
the interaction to add from the part menu, or by moving the
ends of existing interactions. For graphical work, SBOLCan-
vas has a visual design menu similar to those found in image
editors.

3 DISCUSSION
SBOLCanvas is being built from the ground up with these
new features in mind. It is a completely new code base, mak-
ing it as easy as possible to add new features. It is built
with Angular, MxGraph, and uses a stateless back-end that
leverages libSBOLJ 2 [5]. SBOLCanvas is under active devel-
opment, and there are some enhancements that are planned
in the near term, including:

• Support for combinatorial design to create many de-
signs from variant libraries of parts and devices.

• Tighter integration with SynBioHub to search for parts
and as a means to store designs during their develop-
ment life cycle.

• Improvements in support for hierarchical design in-
cluding Modules and Interactions.

• Support for automated addition of sequence tags and
scars for a variety of assembly methods.

• Use of parametric SVG to allow glyphs to be added
more easily and be easier to modify.

• Development of an SBOL layout Standard for exchange
with other tools such as VisBOL.

To request a feature or report an issue, please visit:
https://github.com/SynBioDex/SBOLCanvas/issues.
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1 INTRODUCTION
While many synthetic biology computer-aided design tools
are being used throughout theDesign-Build-Test-Learn (DBTL)
cycle to engineer circuits and produce a variety of chemicals,
these tools can be redundant, do not efficiently communicate
with one another, making difficult smooth and reproducible
runs. We introduce here the Galaxy-SynBioCAD portal, the
first Galaxy toolshed for synthetic biology and metabolic
engineering. The portal provides a simple design methodol-
ogy for synthetic biology making use of standardized data
exchange and models. It allows one to easily create work-
flows or use already developed shared workflows on Galaxy,
a widely-used web-based scientific analysis platform. The
portal is a growing community effort where developers can
add new tools and users can evaluate the tools performing
design for their specific projects. The tools and workflows
currently shared on the Galaxy-SynBioCAD portal cover
an end-to-end metabolic pathway design process from the
selection of strain and target to the calculation of DNA parts
to be assembled to build libraries of strains to be engineered
to produce the target (Figure 1).

2 RESULTS
The SynBioCAD portal gathers a set of about 20 published
tools under MIT and GPL licenses. All the tools have been
dockerized and wrapped into Galaxy nodes. The portal al-
lows a user to perform the design of metabolic pathways
in one or more steps as needed. The different steps of the
process are as follows:

• The user chooses a chassis strain. Currently all strains
with a genome-wide metabolic (GEM) SBML model
stored in the MetaNetX database are accessible. The
user also provides a molecule of interest in the form
of an InChI (International Chemical Identifier).

∗This research was funded by BioRoBoost and IBISBA H2020 programs and
the RCUK’s Synthetic Biology programs

Figure 1: The Galaxy-SynBioCAD Portal.

• A retrosynthesis program (RetroPath node [3]) is used
to determine whether the molecule to be produced
can be linked by biochemical reactions to the chassis
strain molecules. RetroPath creates a retrosynthetic
map and the individual metabolic pathways of the
retrosynthesic map are listed by the RP2Paths node [3].

• The Gibbs free energy is evaluated for each reaction
of each pathway by the Thermodynamics node (based
on eQuilibrator [5]). The production flows of each
pathway in the chassis strain are calculated by FBA
(CobraPy [4]).

• Pathways are ranked according to the results obtained
by Retropath (reaction score based on enzyme avail-
ability), eQuilibrator (Gibbs free enegry for reach re-
action), FBA/CobraPy (product flux, thermodynamic
feasibility), pathway length, or any other ranking func-
tion provided by the user.

• For each ranked metabolic pathway, the Selenzyme
node [2] is used to search and classify the enzyme se-
quences that catalyze the biochemical reactions. The
PartsGenie node [6] calculates the ribosome binding
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Figure 2: Literature pathways heatmap. Black squares indi-
cate the ranking position of engineered pathways reported
in the literature among the solutions generated by work-
flows on the Galaxy-SynBioCAD Portal.

site (RBS) sequences corresponding to different strength
for each enzyme sequence and generates a SBOL file.

At this stage of the process, the system produces a ranked
list of pathways, and for each reaction of each pathway a
set of enzyme and RBS sequences. These sequences can be
placed in different vectors with different replication origins
and under the control of promoters of different strengths.
The number of potential constructs can therefore be very
large.

• The OptDoE (Design of Experiments) [1] node allows
one to efficiently sample the space of potential con-
structs and to produce a user-predetermined number
of layouts including replication origins, promoter se-
quences, RBS sequences (for prokaryotes), enzyme se-
quences, and terminators. These constructions are all
produced in the standard SBOL format and can be
stored in databases such as SynBioHub.

• Depending on the assembly protocol chosen by the
user, the DNA sequences to be synthesized (or cloned)
are generated by the PlasmidGenie node [6] (for LCR
assembly) and DNA Weaver node [8] (for Gibson and
GoldenGate assembly).

3 BENCHMARKING AND DISCUSSION
To benchmark the pathways produced by the portal, a list of
experimentally expressed compounds in engineered organ-
isms (E. coli, S. cerevisiae, B. subtilis and Y. lipolytica) reported
in the literature was collected. Each target compound and
strain within that list was used to run a workflow generating
a collection of predicted pathways. The predicted pathways
were compared with their corresponding engineered path-
way in the literature. In order to find the literature path-
way among the top scored predicted pathways we used the
ranked-biased overlap algorithm [7] to adjust the weight of
the criteria entering the ranking function. Using adjusted
weights, Figure 2 shows the results of the ranked-biased
overlap optimization schema. Each row is a ranked list of
collections of predicted pathways for a given target molecule,
where the best ranking pathways are shown on the left-hand
side. The color code shows the global score that was used
to rank the pathways. The black squares correspond to the
predicted pathways that are the most closely similar to the
literature pathway. Overall, we find that our workflow has a
65.4% success rate (53 out of a total of 81) in retrieving the
literature pathway among the top 10 predicted pathways.

Contact
Jean-Loup Faulon (Jean-Loup.Faulon@inrae.fr). Additional
information (videos, tutorials) on the Galaxy-SynBioCAD
portal can be found at https://galaxy-synbiocad.org/ and
publications on the portal tools at https://www.jfaulon.com/
galaxy-synbiocad-portal/.
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1 INTRODUCTION
The LondonDNAFoundry at SynbiCITE (www.synbicite.com)
is currently adapting its rapid Design-Build-Test-Learn cycle.
The workflow is based on the use/reuse of standard, char-
acterised biological parts, automated robotic assembly of
constructs, and high-throughput screening. It incorporates
design of experiments (DOE) approaches for the purpose of
pathway optimisation.

2 STRATEGIC APPROACH
The Kitney Lab has undertaken a scoping study for the three-
gene lycopene pathway based on a simple operon design
with 810 promoter/RBS/gene order combinations, with a
view to identify the design and variables responsible for
the highest production titres. The choice of the pathway
and design was motivated not only by the comprehensive
background knowledge available for the pathway, but also
on the basis that 810 designs are:

• small enough to build all combinations using stan-
dard modular plasmid construction methods (such as
Golden Gate/MoClo [1] and BASIC assembly [2])

• large enough that DOE may be used (up to 10 possible
iterations)

• large enough to compute relevant metrics and draw
conclusions from them for any comparative study

Finally, the design space is also large enough that a work-
flow can be developed that is capable of scaling to larger,
more complex problems.

3 METHODS
Within the study, all automation tasks are carried out in
Python. Constructs are defined at a higher description level
with a data structure that allows the combination and permu-
tation of DNA parts. Parts are queried or retrieved directly
from databases such as SynBIS-Lite or SynBioHub [3], or
built de novo. The biopython [4] and pySBOL [5] modules are
used for these steps. DNA assembly of the constructs - both
for the BASIC and the CIDAR MoClo assembly methods -
are generated with basicsynbio [6] and the MoClo Python
framework [7] respectively.

Figure 1: All constructs are based on a single operon with a
total of 810 configurations. Promoters andRBSswith a range
of strengths are taken from SynBIS-Lite/SynBioHub. The or-
der of CrtE/B/I is also permutated.

The first stage of the study comprises how well-suited two
standard DNA assembly techniques (Golden Gate/MoClo [8]
[9] and BASIC assembly [2]) are for use in such aDOE project,
looking primarily at:

• economic and time efficiency
• ease of use, including flexibility when expanding ex-
isting toolkits

• influence on pathway performance, with a focus on
the influence of technique-specific scar sequences (as
described by [10])

In parallel, the standard DOE models (as offered by the
JMP package[11]) are compared, with specific reference to
how quickly and how accurately they converge onto the
fitness landscape (as defined by all 810 data points gathered
experimentally). All comparisons are carried out against
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Figure 2: Design of Experiments Cycle and Automated DNA Assembly Workflow

the datasets obtained for both construction methods. The
influence of the initial seeding is also assessed.

The second stage of the study will look at ways to mitigate
the influence of gene order on synthetic metabolic pathway
performance - and, more generally, how to reduce the influ-
ence of the genetic context, including (but not limited to) the
use of the RiboJ ribozyme, insulated promoters, bicistronic
RBSs and combinations thereof.

The final stage of the study investigates whether designing
pathways as operons or individual transcription units is
preferable.
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1 INTRODUCTION
Lack of automated tools for experimental design, execution,
and analysis is a key barrier to quickly evaluating biological
designs. Experimentalists often face challenges describing ex-
perimental plans in a format laboratories can act upon, while
labs have difficulty linking experimental data to metadata
and plans, making this an expensive manual undertaking [2].
Metadata describing contents, conditions, and context of
experimental samples is key to gaining insights from experi-
mental data, but acquiring, tracking, and maintaining it is
tedious, expensive, and error-prone.
We alleviate these difficulties with automation. As part

of the Synergistic Discovery and Design (SD2) project, we
have addressed these needs by developing a Round-Trip (RT)
architecture simplifying this process by automating several
steps where human intervention was previously required.
Figure 1 illustrates themajor RT components, proceeding left-
to-right on top creating an automation-assisted experiment.
RT attaches metadata to raw data as it returns from right to
left on the bottom. Key steps (cross-referenced in Figure 1,
with supporting components detailed in Section 2) include:

(1) Authoring an Experiment Request: Experimental-
ists, starting with a “notional” experiment in mind, au-
thor a semi-structured Experiment Request document.

(2) Annotating the Experiment Request: RT gener-
ates an Annotated Experiment Request that hyperlinks
experimental constructs to SBOL[6] definitions through
a simple Data Dictionary.

(3) Structuring the Experiment Request: Linked con-
structs and experiment sample tables are converted
into a Structured Request Template, formally defining a
set of minimal requirements for the experiment.

(4) Experimental Design: RT expands these to an Exper-
iment Design with metadata for every measurement of

This work was supported by Air Force Research Laboratory (AFRL) and
DARPA contracts FA875017CO184, HR001117C0092, and HR001117C0094.
This document does not contain technology or technical data controlled
under either U.S. International Traffic in Arms Regulation or U.S. Export
Administration Regulations. Views, opinions, and/or findings expressed are
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Figure 1: Round-Trip Architecture. (Component developer’s
affiliation noted in parentheses.)

every sample, plus a set of Lab Parameters configuring
a machine-executable laboratory protocol.

(5) Experiment Execution: The laboratory (Strateos)
conducts the experiment, generating Experiment Data.

(6) Check Expected vs. Actual Data: RT generates Ex-
pected Experiment Data and compares it with the Ex-
periment Data, checking that the laboratory fulfills the
design and identifying any discrepancies.

(7) ETL: The RT then stores experiment data, conducts
ETL processing, and annotates the Experimental Re-
quest with the final data products.

By adopting “make metadata easy” design principles—
providing human affordances, automating tedious metadata
design and encoding, and reacting and repairing as devia-
tions arise—this architecture providesmany benefits to exper-
imentalists. For example, it connects experimental data and
subsequent analyses with deeply-represented experimental
constructs by resolving user-friendly construct names. Ex-
periment Requests can be partial, and RT will fill in details
in experiment planning. RT also flags mismatches between
expected and actual data for follow-up and diagnosis.

2 ROUND-TRIP ELEMENTS
Here we highlight key aspects of software components and
data artifacts implementing themajor stages of RT. Each com-
ponent is involved in building up metadata through reducing
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Media Dilution B-Est. @ 16h Rep. Strain
SC Media 50x 0.0, 10 UWBF_24926,

0.05 uM UWBF_24952,
UWBF_24959

SC Media 50x 0.0 uM UWBF_24960,
UWBF_25784,
UWBF_24962

Table 1: Experiment Request Measurement Table

high-level experiment descriptions to machine representa-
tions, and then attaching measurement data to the metadata.
Semi-StructuredExperiments: Experiment Requests (ERs)
are documents including both prose and tabular descriptions
of an experiment. The prose provides context, motivations,
and anticipated results, along with lists of strain and reagent
descriptions. The ER also includes a measurement table and
a parameter table. The measurement table lists experimental
factors by column, and constraints on their values by row.
Table 1 shows an example measurement table indicating the
experiment should contain ten replicates of the strains in
the first row, each induced with either 0.0 or 0.05 uM beta-
estradiol at 16 hours. It also states that the number of repli-
cates of strains in the second row is still to be determined,
and that these are not induced (i.e., 0.0 uM beta-estradiol)
Hyperlinking Experiments: The Intent Parser (IP) [5] pro-
cesses the ER to identify constructs appearing in the Data
Dictionary, then links them to SBOL descriptions in SynBio-
Hub [4]. The Data Dictionary [1] maps each of (potentially
many) construct common names to a canonical definition
URI in SynBioHub. For example, the term “B-Est” in Table
1 is a common short-hand term that will be linked to the
beta-estradiol reagent definition. IP likewise links strain iden-
tifiers (e.g., UWBF_24926) andmedia to their definitions. This
provides experimentalists flexibility with common terms and
shorthand, while unifying them across experiments (e.g., an-
other ER might use Beta-Est. instead of B-Est.).
Structuring Experiments: Structured Requests (SRs) for-
mally represent the set of samples an experiment will gen-
erate. SRs take two forms: templates and expected samples.
The SR Generator creates a template capturing constraints
from the ER, but this may not map directly to samples (e.g.,
the second row in Table 1 omits replicate count). After exper-
imental planning (below), the SR Generator expands the SR
and an Experiment Design into expected samples, which can
be checked against actual samples on experiment completion,
also matching lab-specific identifiers (e.g., LIMS inventory
IDs) with ER common names via the Data Dictionary.
Machine Processible Experiments: The Experiment Plan-
ner (XPlan) [3] uses an SR template to create machine proces-
sible experiments that are suitable for laboratory execution.
XPlan uses this to constrain its search for an Experiment
Design, which in turn describes the expected measurements
of each aliquot in the experiment. XPlan dispatches this with

a set of Lab Parameters, instructing the lab how to config-
ure and run the experiment. XPlan decides not only how
to allocate samples to physical containers, but also which
samples to use. For example, XPlan will choose the number
of replicates for the strains in the second row of the ER in
Table 1 based upon the available containers.
Laboratory Execution: RT submits experiments to the Stra-
teos cloud laboratory for automated execution. Here, RT se-
lects from one of several Strateos experimental protocols,
such as growth curves and time series. In these protocols,
Strateos measures samples with a plate reader and flow cy-
tometer over several time points, including multiple induc-
tion and dilution steps, and returns both raw measurement
data and protocol execution traces. In future work, the RT
will also interface with laboratories via Aquarium1.
Metadata Validation and ETL: The SR Generator validates
data products by aligning metadata descriptions with ex-
pected data. It flags and explains any discrepancies to the
experimentalist and lab technicians. If able to successfully
match the data, the RT performs a series of ETL steps that
summarize results for the experimentalist, organized in terms
of the metadata on sample contents, conditions, and context.

3 VALIDATION
Over a four month period, we applied RT to process and
execute twenty three ERs, totaling fifty nine 96-well plates
of samples and approximately 10measurements per well. The
ERs span three distinct experimental protocols. With RT, we
can plan and attachmetadata to experimental samples within
approximately four hours (not accounting for experiment
execution time), whereas before it took approximately three
weeks to attach metadata to six 96-well plates worth of data.
This has allowed us to reduce laboratory idle time (due to
dependent experiments) from several weeks to a few days.
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1 INTRODUCTION
Yeasts are highly industrially relevant organisms[2] and are
among the most frequently genetically engineered, mak-
ing them prime candidates for accidental release or inten-
tional abuse. Despite the large body of literature available
on engineering model organisms such as these, significant
challenges remain for the detection of DNA engineering in
general. These challenges include the large of space of un-
known natural DNA, the tendency of engineered biological
systems to require unique parts to scale, and the fact that rela-
tively small changes to genotype can produce large changes
in phenotype. The first challenge hinders anomaly-based
approaches that use models of natural sequences to detect
what is unnatural (and possibly engineered), while the sec-
ond hinders signature-based approaches that use models of
engineering signatures to detect engineered sequences (the
simplest signature being a foreign part such as a promoter,
CDS, or terminator). As a result of the foregoing, it is nec-
essary to employ a variety of different approaches to detect
DNA engineering, at which point it also becomes necessary
to consider how to best integrate their decisions.

2 THE GUARDIAN SYSTEM
As shown in Figure 1, the GUARDIAN system for detect-
ing DNA engineering can be divided into four subsystems:
genome assembly, assembly-first analysis, reads-first analy-
sis, and integrated decision-making. For genome assembly,
GUARDIAN uses a customized de novo short- and long-read
assembly pipeline (PRYMETIME[1] - uses flye and Unicycler)
to produce high quality genome assemblies. The resulting
assemblies are then input to assembly-first analysis, which
can be subdivided into four subsystems: FAST-NA, HMM,
DL Models, and N-Gram. FAST-NA, HMM, and N-Gram are
anomaly-based approaches that model natural sequences
using Bloom filters, hidden Markov models, and N-gram lan-
guage models, respectively. DL Models is a more signature-
based approach that models engineering signatures using
Seq2Class DL models with/without Siamese networks.
In parallel with assembly-first analysis, reads-first analy-

sis is performed on the raw sequencing data using another
two subsystems: Targeted Search and JHU. Targeted Search

Figure 1: GUARDIAN system architecture.

is a signature-based approach that looks for known engi-
neering parts and scars among short and long reads using
the Burrows-Wheeler Aligner. JHU is a more anomaly-based
approach that uses Bowtie to filter out natural reads and
Megahit to assemble suspicious reads into contigs for BLAST.
Finally, all decisions made by GUARDIAN’s subsystems

are integrated using an expert-designed voting algorithm in
which a sample is called engineered if either FAST-NA or
N-Gram says “yes,” both JHU and Targeted Search say “yes,”
or a majority of all subsystems say “yes.”

3 RESULTS AND DISCUSSION
We tested GUARDIAN on sequencing datasets for 16 sam-
ples of S. cerevisiae (13 engineered, 3 not), 25 samples of Y.
lipolytica (19 engineered, 6 not), and 9 samples of P. pastoris
(3 engineered, 6 not). As shown in Figure 2, GUARDIAN’s
anomaly-based approaches had higher sensitivity and speci-
ficity than its signature-based approaches when applied to
these datasets, with the best (FAST-NA and JHU) having sen-
sitivity 0.8 and specificity 1. This suggests that our available
training data for natural sequences are better than our train-
ing data for engineered sequences. Approaches in the same
class were trained using similar training datasets (some syn-
thetically generated) distinct from the test datasets. Also note
that GUARDIAN’s overall performance was higher than any
of its individual subsystems (sensitivity 0.89 and specificity
1), which suggests the voting algorithm is well designed.
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Figure 2: Sensitivity plus specificity for GUARDIAN and its
subsystems.

Figure 3: Sensitivity of GUARDIAN’s subsystems by type of
engineering signature.

Figure 3 breaks down the sensitivity of GUARDIAN’s
subsystems by the types of engineering signatures found
in each sample. Nearly every subsystem had high sensi-
tivity (>80%) when detecting engineering in samples con-
taining non-integrating plasmid vectors. For genomic in-
serts, however, there is a difference in sensitivity between
GUARDIAN’s anomaly-based detection subsystems (HMM
and all subsystems to its left) and its signature-based de-
tection subsystems (TLong and all subsystems to its right).
The former have sensitivity >67% and the latter <57%. A
likely explanation for this difference is that there is typically
greater diversity among sequences inserted into the genome
compared to those found in standard plasmid vectors, which
would favor the subsystems trained to recognize unnatural
sequences as opposed those trained to recognize engineer-
ing based on a specific corpus of engineered sequences. Fi-
nally, most subsystems struggled to detect small (e.g. single
nucleotide) edits, with no subsystem achieving sensitivity
>40%, and most positive detections for small edit samples
were likely either spurious or based on contamination (e.g.
with a plasmid).

As GUARDIAN continues to evolve, new subsystems may
be added or new connections may be made between existing
subsystems. In such a scenario, we want to quickly learn a
new strategy for decision integration, ideally in a manner
that does not require significant subject matter expertise.
Figure 4 compares the performance of the current voting
algorithm with that of a range of subsystem decision weights
learned using two approaches: label-free fusion and linear

Figure 4: Sensitivity vs. specificity for different voting algo-
rithms (dots) and subsystem decision weights learned with
different ML algorithms (lines).

SVM fusion. The former learns weights based on subsystem
agreement, while the latter learns weights based on subsys-
tem performance. As shown in Figure 4, both approaches
are capable of learning weights with performance as good as
the current voting algorithm, and the latter appears to have
the highest possible sensitivity with no loss in specificity.
This suggests that we may be able to learn new weights for
subsystem decisions as GUARDIAN develops rather than
design a new voting algorithm. Going forward, we also plan
to extend GUARDIAN to better handle deletions, small edits,
and metagenomic sequencing datasets.
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1 INTRODUCTION
Synthetic biology has transformative potential in a variety
of application areas including agriculture, energy, materi-
als, and health. While much of the research in this field has
been in E. Coli, many applications require yeast and other
bacteria. Researchers often use trial-and-error, since infor-
mation can be difficult to locate. The goal of the Synthetic
Biology Knowledge System (SBKS) is to create an an open and
integrated resource that harnesses disparate, heterogeneous
data sources to accelerate scientific exploration and discov-
ery. This abstract gives an overview of the SBKS project,
while several other abstracts submitted to this workshop
explain different aspects in more detail.

2 SBKS CURATION PIPELINE
The core of SBKS is a curation pipeline (see Figure 1) that in-
tegrates knowledge found in both text and data sources. The
knowledge once harvested is encoded into the Synthetic Biol-
ogy Open Language (SBOL) [1], a rich data format (RDF) data
standard for genetic design. This SBOL representation is then
uploaded to the SBKS instance of the SynBioHub [2] data
repository. Once deposited, it can be searched and accessed
using either a graphical user interface (GUI) or programmat-
ically by its application programmers interface (API).

Text Mining Pipeline: Our initial text data set is all the
articles that have been published in ACS Synthetic Biology.
These articles are provided in richly annotated JATS XML
markup, which includes both a rich set of metadata and the
full article text. The metadata and citation elements of the
structured article file are harvested and converted into SBOL-
compliant RDF/XML with Dublin Core annotations suitable
for ingestion into SynBioHub. Among the steps taken during

Figure 1: SBKS curation pipeline.

this process is the employment of python scripts to match
article DOI’s to corresponding PubMed ID’s.
The XML files are also parsed to extract the full article

text. The article text is then processed using techniques for
named entity recognition (NER), which is a sub-task of text
mining. The goal of NER is to locate and classify named
entities present in text into pre-defined categories. We use
deep neural network models to perform NER on these arti-
cles. For the initial round of NER, standard biological entity
categories (e.g., genes and chemicals) are used since there
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is no labeled dataset for synthetic biology entities. Results
from this initial round are reviewed and corrected by domain
experts to create a more refined dataset with entities more
specific to synthetic biology that can be used to fine tune the
NER models. Named entities expected to be detected within
synthetic biology articles are also added to the articles as
suggested annotations, to be confirmed by expert annotators
in order to facilitate the creation of gold-standard synthetic
biology-specific training data.
Another component of the text mining pipeline is the

mapping of the social and conceptual structure of synthetic
biology ethics, which is accomplished with network analysis
and topic modeling. Building upon established bibliometric
techniques to identify the synthetic biology literature, we
located all 15,152 publications in the Web of Science pertain-
ing to synthetic biology and then derived from this set of
publications a smaller corpus of 562 ethical texts. Although
synthetic biology literature began to increase exponentially
around 2000, not much attention was devoted to ethics un-
til roughly 2010. Ethical discourse in this field is currently
dominated by small set of institutions, and scholars tend to
collaborate only with a few others. The next stage of the
ethics component will build upon this knowledge in order to
return known ethical concerns and relevant literature related
to SBKS users’ queries.

Data Mining Pipeline: Our initial data set for the data
mining pipeline are the synthetic biology parts and designs
found in the International Genetically Engineered Machine
(iGEM) registry of parts. Whilst the iGEM registry is large
and expanding, it is not easy to extract information from
parts to encourage reuse. As such a more standardized form
of the iGEM library was created by converting it into SBOL.
As part of the validation process we realised that there are
many spurious records either due to improper completion
of the record, making the information undecipherable, or as
records were simply created as test exercises. Furthermore,
many sequences have multiple records—one for each use
case, with different use cases sometimes using the sequence
in different ways. As such, we propose creating an iGEM
library of sequences with different ‘experiences’ or uses of
each sequence being linked to a core sequence. To help in
this process, we are using both simple filtering and hand
annotations as well as machine learning methods to create
‘useful unique entity’ records that are fully annotated.

In addition to the iGEM registry, parts are commonly re-
ported in the literature in the form of "toolkit" papers. These
papers almost always include part name, type, host organism
and characterization data. Sequence information is often in-
cluded as well, typically in the form of a table in supplemental
information. Transferring parts from primary literature into

an SBOL database will help to bridge the gap between highly-
characterized parts reported in the literature and design tools
which require data in a standardized format.

Finally, we plan to link part use to articles using the Ad-
dgene data set. Addgene is a company that stores plasmids
typically created for published research studies. Once we
have a good library of parts, we can use this library to anno-
tate the sequences of the plasmids being stored by Addgene,
and thus link parts to their uses in published research papers
connecting the data and text pipeline results.

User Interface
One final aspect of the SBKS project is the development of
a user interface that can access the information stored in
SBKS to assist a designer of a genetic circuit. SBOLCanvas is a
web application for creation and editing of genetic constructs
using the SBOL data and visual standard. SBOLCanvas allows
a user to create a genetic design from start to finish, with the
option to incorporate existing SBOL data from a SynBioHub
repository, such as SBKS. While SBOLCanvas is currently
able to efficiently create genetic designs for parts selected via
searches on SynBioHub, the end goal will be to have a design
tool that provides a synthetic biology designer a seamless
connection to knowledge about the parts that they are or
could use in their designs.

3 DISCUSSION
The SBKS project began less than a year ago, and it is being
executed by a team that met only a few months before that.
While the scope is ambitious, the progress so far is very
promising.We look forward to feedback from the community
about the needs and potential applications for SBKS.
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Synthetic biology aims to build artificial decision-making circuits 

that are programmable, predictable and perform a specific 

function1. Since the rise of synthetic biology in the 2000s, most 

synthetic circuits have been governed by protein-based regulators. 

Recently, however, there has been growing interest in circuits 

based on RNA regulators as a means to overcome some of the 

intrinsic limitations of protein regulators2.  

 The prokaryotic adaptive immunity system CRISPR 

constitutes a powerful platform for the construction of RNA-

driven synthetic circuits3. CRISPR interference (CRISPRi) offers 

several advantages over protein regulators for synthetic circuit 

design. Due to its RNA-guided nature, CRISPRi is highly 

programmable, allows for easy design of sgRNAs that can be 

highly orthogonal and whose behavior in different environments 

can be easily predicted in silico. It also imposes low burden on 

host cells2 and is encoded in shorter sequences than protein-based 

repressors, thereby facilitating circuit handling and delivery and 

reducing cost. A potential drawback of CRISPRi is the lack of 

cooperativity4. Cooperative protein transcription factors function 

non-linearly, a difference that might prevent the successful 

implementation of CRISPRi-based dynamic and multistable 

circuits4-6.  

The last few years have seen a growing interest in developing 

CRISPRi-based synthetic circuits. However, despite the enormous 

potential of CRISPRi for synthetic circuit design, the use of 

CRISPRi circuits in prokaryotes has been largely focused on logic 

gates and to the best of our knowledge none of the flagship 

circuits in synthetic biology (namely, the bistable toggle switch7 

and the repressilator8) have been re-constructed using CRISPRi. 

Here, we fill this unaddressed gap by demonstrating that CRISPRi 

can be used for building some of the most notorious (synthetic) 

circuit topologies9. To this aim, we adopted a design strategy 

aiming at providing our circuits with high modularity, 

predictability and orthogonality, and lo metabolic burden on the 

host, as detailed below. 

The main circuit components were all expressed from a single 

vector to avoid fluctuations in their stoichiometry. Circuit 

transcriptional units (TUs) were isolated from each other by 

strong transcriptional terminators and 200 bp spacer sequences. 

To prevent mRNA context-dependency and provide 

transcriptional insulation within TUs, a 20 bp Csy4 cleavage 

sequence10 was used flanking single guide RNAs (sgRNAs) and 

upstream of the ribosome binding sites (RBS) of the reporter 

genes. To avoid cross-talk between fluorescent reporters, 

orthogonal degradation tags11 were employed. Sequence repetition 

at the DNA level was minimized to prevent unwanted 

recombination events. The levels of dCas9 and Csy4 were kept 

constant by expressing them from constitutive promoters in a 

separate vector. All gene circuits were tested in Escherichia coli 

(MK01) incubated in a rich defined media (EZ, Teknova) for 

maximizing cell fitness while reducing variability. In order to 

speed up the design-build-test cycle, we adopted a previously 

described cloning strategy that allows for fast and modular 

assembly of synthetic networks12. 

Enabled by the intrinsic properties of CRISPRi and the favourable 

characteristics of our design, we managed to build for the first 

time a CRISPRi repressilator (named ‘CRISPRlator’, Figure 1), 

bistable toggle switch, and stripe-pattern-forming incoherent feed-

forward loop (IFFL, a.k.a. band-pass filter)9. Our mathematical 

model suggests that unspecific binding in CRISPRi is essential to 

establish multistability9. We also demonstrate that our CRISPRi-

based circuits can be easily combined together without cross-

reactivity or metabolic impact on the host, as exemplified by a 

combination of two stripe-forming IFFls or an IFFL plus a double 

inverter working in parallel but independently within the same 

cellular environment9. 

Our work demonstrates the wide applicability of CRISPRi in 

synthetic circuits and paves the way for future efforts towards 

engineering more complex synthetic networks, boosted by the 

advantages of CRISPR technology. 
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Figure 1: The CRISPRlator, a CRISPRi-based oscillator9. The closed-ring repression topology consists of three nodes (N1, N2 and 

N3), each comprising a single guide RNA (abbreviated here as sg1, sg2 and sg3) and a fluorescent reporter (mCherry, Cerulean 

and mCitrine) (top right). Shown is a montage displaying the oscillations of the three fluorescent reporters over time. Bacteria were 

grown in continuous exponential phase in a microfluidic device for 3 days and imaged every 10 min. Microscopy images (as those 

enlarged in the zoom-ins) are displayed together in a timeline montage (kymograph). Quantification of the population-level 

fluorescence of ~110 cells over time in shown below. Oscillations display a period of 10-12 h. 
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1 ABSTRACT
Synthetic biology has experienced multiple breakthroughs
in the past two decades, as novel cellular mechanisms are
discovered, and cutting-edge theoretical and experimen-
tal methods are developed [1–3]. One of the main goals
of synthetic biology is the development of molecular con-
trollers that can manipulate the dynamics of a given am-
bient biochemical network. When integrated into smaller
compartments, such as living or synthetic cells, con-
trollers have to be calibrated to factor in the intrinsic
noise arising from lower molecular copy-numbers [4–7].
In this context, biochemical controllers put forward in
the literature have focused on manipulating the mean
(first moment) and reducing the variance (second mo-
ment) of the target molecular species [8–10]. However,
many critical biochemical processes, such as cellular dif-
ferentiation and memory, quorum sensing and bacterial
chemotaxis, are realized via higher-order moments, par-
ticularly the number and configuration of the probability
distribution modes (maxima) [6, 7, 11, 12]. Such dynam-
ically exotic and biochemically important phenomena
cannot be achieved using controllers that target only the
mean and variance.

To bridge the gap, in this talk we put forward the sto-
chastic morpher controller [13] that, under suitable time-
scale separations, morphs the probability distribution of
the desired biochemical species into any predefined form.
The morphing can be performed at a lower-resolution,
allowing one to achieve desired multi-modality/multi-
stability (see Figure 1(a)–(d)), and at a higher-resolution,
allowing one to achieve arbitrary probability distribu-
tions. Properties of the controller, such as robustness
and convergence, are rigorously established using singu-
lar perturbation theory, and demonstrated on various
examples. Furthermore, we also propose a blueprint for

∗Corresponding author and lead contact.

an experimental implementation of the stochastic mor-
pher using DNA strand-displacement nanotechnology [3],
allowing one to experimentally design multi-phenotypic
synthetic cells (see Figure 1(e)–(f)).
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Figure 1: Panel (a) displays in black the uni-modal stationary probability mass function (PMF) of a production-degradation input
network, which is transformed into a desired output bi-modal form under the action of a lower-resolution stochastic morpher,
shown as the cyan histogram. Panel (b) displays the corresponding bi-stable sample path/noisy time-series. Panels (c) and (d)
show analogous plots when the input PMF is morphed into a tri-modal/tri-stable form. Panel (e) display a proposed experimental
scheme for the stochastic morpher, involving an implementation of the stochastic morpher via a DNA Holliday junction molecule
encapsulated in a vesicle, which switches between two distinct orientations 𝑌1 and 𝑌2, and catalytically produces the target
species 𝑋 via suitable DNA strand-displacement reactions.
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1 INTRODUCTION
Synthetic Biology describes the approach to apply engineer-
ing principles in a biological context. One central concept
of the field is the development of genetic parts that can be
used in a repeatable manner to build genetic circuits. These
genetic circuits are designed to control functions and the
behavior of the cells in which they reside. These circuits may,
for example, induce or suppress the production of different
proteins in the cell in response to environmental signals. The
genetic circuits can be used in many applications such as
biosensors or drug delivery systems [4].
Inspired by engineering principles, the components of

the genetic circuits are viewed in a more abstract way to
allow the accessible building of the desired functions and
modifications without the need to work directly on the DNA
sequence. Similar to electrical circuits, genetic circuits are
viewed as the combination of the known logic elements, like
AND or OR gates. However, the behavior of genetic circuits
is highly unpredictable compared to the binary behavior of
electrical circuits since the molecule counts are low, leading
to stochastic and noisy behavior [2].
Like electronic circuits, some input changes can cause

unwanted switching variations (glitches) in the output of
combinational genetic circuits. A hazard is the possibility
of that glitch occurring. Though glitches are a transient be-
havior that corrects itself as a steady-state is reached, these
unwanted variations can have drastic effects if the output
produces irreversible effects, i.e., apoptosis or an early drug
release. This means an in-depth analysis of non-avoidable
hazards is necessary.

This paper describes the usage of the probabilistic model
checker STAMINA [6] for determining the probability of
a glitch in a genetic circuit. STAMINA is an infinite state
stochastic model checker that reduces vast or infinite state
continuous time Markov chain (CTMC) models to finite state
representations using state space approximation methods.
These reduced models are then manageable by existing sto-
chastic model checkers like PRISM [5] and STORM [1].

2 RESULTS
The circuit used for the analysis is presented initially in
the Cello paper [7] and shown in Figure 1. This circuit is
interesting since a glitching behavior for this circuit was
observed experimentally. Further details are in [3].

Figure 1: Circuit diagram for circuit 0x8E. The three inducer
molecules are IPTG, aTc and Ara and the output is YFP. Fol-
lowing the American National Standard Institute the OR
gate is represented by and the NOR gate by . The
circuit was originally presented in the Cello paper [7].

The circuit reacts to the presence of the three inducer
molecules Ara, IPTG and aTc. The inducer molecules have to
be present for a prolonged time so that the input states can
propagate through the different levels of logic. Four of the
eight input combinations produce a high output indicated
by production of yellow fluorescent protein (YFP).
Figure 2 shows the probability of a glitch over time for

15000 Monte Carlo simulation runs using iBioSim [9] for
some input transitions with known hazards. The red graph
for example, shows the inducer transit from IPTG, aTc, Ara =
(1, 1, 1) to (1, 0, 0). The output signal is supposed to remain
low during this input change, but after 1000 seconds, over
70 percent of the circuits YFP glitches to the high state.

Running a stochastic analysis in STAMINA shows that in
73.3% of the cases, YFP exceeds our chosen threshold of 30
molecules of YFP. This information is useful when designing
genetic circuits: a designer can set a minimum threshold of
cases that are allowed to glitch before input restrictions are
needed. Depending on the purpose of this circuit’s outcome,
the threshold should be higher or lower. In the case at hand,
if the output of the circuit results in apoptosis or drug release,
input restrictions are necessary to avoid this input change,
since in 73.3% of the cases, the output is triggered early.

Table 1 shows the glitch probability of all input transitions
with known glitching behavior. The three columns of the
Table 1 are the input transition, the probability of the glitch
simulated in iBioSim, and the probability of the glitch cal-
culated with STAMINA. As Table 1 shows, the results from
iBioSim and STAMINA match in nine out of twelve cases. In
two cases, STAMINA is failing to converge, while in a third

39



IWBDA 2020, August 2020, Online Bücherl, Mante, Fontanarrosa, Zhang, Jepsen, Roberts, and Myers

Figure 2: Probability of a glitch occurring over time for in-
put changes known to have hazards calculated from 15000
Monte Carlo simulation runs in iBioSim. The legend shows
the state transition of the three inputs IPTG, aTc, Ara. In ex-
ample, for the blue graph the input transits from IPTG, aTc,
Ara = (0,1,0) to (1,1,1) with a glitch probability of 1.66%.

it is getting too high a result. We are currently investigating
the sources of these discrepancies.

Table 1: Glitch probabilities of input transitions simulated
with iBioSim and STAMINA. The order of the inputs is IPTG,
aTc, Ara.

Input Transition iBioSim STAMINA

(0, 1, 0) → (1, 1, 1) 0.0166 Incomplete
(0, 1, 0) → (1, 0, 0) 0.4021 0.3951 - 0.3958
(1, 1, 1) → (1, 0, 0) 0.733 0.7351 - 0.7360
(1, 1, 1) → (0, 1, 0) 0.6937 0.6947 - 0.6947
(1, 0, 0) → (0, 1, 0) 0.454 0.4549 - 0.4558
(1, 0, 0) → (1, 1, 1) 0.0168 Incomplete
(0, 1, 1) → (1, 0, 1) 0.9895 1.0
(0, 0, 0) → (0, 1, 1) 0.8256 1.0
(0, 0, 0) → (1, 0, 1) 0.9901 1.0
(1, 0, 1) → (0, 1, 1) 0.9905 1.0
(0, 1, 1) → (0, 0, 0) 0.8545 0.8580 - 0.8585
(1, 0, 1) → (0, 0, 0) 0.8736 0.8650 - 0.8658

3 DISCUSSION
As mentioned in the introduction, the inherent noisy and sto-
chastic behavior of genetic circuits requires a sophisticated
analysis. This paper presents some initial results using the
infinite state stochastic model checker STAMINA to perform
hazard analysis of complex genetic circuits. While iBioSim

can be used to analyze static hazards, it is not able to analyze
dynamic hazards or give insight into the causes of these haz-
ards. Probabilistic model checkers, such as STAMINA, can
provide such analysis.
Stochastic analysis can be used to predict the behavior

of the analyzed genetic circuits, which will be critical to
produce reliable genetic circuits design. Therefore, we plan
to perform a further and more detailed analysis of different
hazards for the presented genetic circuit and others.

This work uses a generic model generated within iBioSim
using default parameters for the different reactions. However,
we are planning to extend this work to use a characterized
dynamic model [8] in the future. This would enable the user
to predict glitch propensities and, in turn, help in the re-
design process to avoid the glitches the user deems critical
for the intended purposes of the circuit.

4 METHODS
The genetic circuit design and the generation of its model
were achieved using the software tool iBioSim using the
default, not on experimental data-based parameters. IBioSim
was also used for running stochasticMonte Carlo simulations
of the circuit to show its the glitching behavior. The model
was exported as an SBML file and converted to a PRISM
model using the SBML-to-PRISM translator implemented in
PRISM. Finally, a stochastic analysis was run in STAMINA.

REFERENCES
[1] Dehnert, C., Junges, S., Katoen, J.-P., and Volk, M. A storm is coming:

A modern probabilistic model checker. In Computer Aided Verification
(Cham, 2017), R. Majumdar and V. Kunčak, Eds., Springer International
Publishing, pp. 592–600.

[2] Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S. Stochastic
gene expression in a single cell. Science 297, 5584 (Aug. 2002), 1183–1186.

[3] Fontanarrosa, P., Doosthosseini, H., Borujeni, A. E., Dorfan, Y.,
Voigt, C. A., and Myers, C. J. Genetic circuit dynamics: Function
hazard and glitch analysis. Forthcoming.

[4] Khalil, A. S., and Collins, J. J. Synthetic biology: Applications come
of age. Nature Reviews Genetics 11, 5 (May 2010), 367–379.

[5] Kwiatkowska,M., Norman, G., and Parker, D. PRISM 4.0: Verification
of probabilistic real-time systems. In Proc. 23rd International Conference
on Computer Aided Verification (CAV’11) (2011), G. Gopalakrishnan and
S. Qadeer, Eds., vol. 6806 of LNCS, Springer, pp. 585–591.

[6] Neupane, T., Myers, C. J., Madsen, C., Zheng, H., and Zhang, Z.
STAMINA: Stochastic approximate model-checker for infinite-state
analysis. In Computer Aided Verification (Cham, 2019), I. Dillig and
S. Tasiran, Eds., Springer International Publishing, pp. 540–549.

[7] Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V.,
Strychalski, E. A., Ross, D., Densmore, D., and Voigt, C. A. Genetic
circuit design automation. Science 352, 6281 (Apr. 2016), aac7341.

[8] Shin, J., Zhang, S., Der, B. S., Nielsen, A. A., and Voigt, C. A. Pro-
gramming Escherichia coli to function as a digital display. Molecular
Systems Biology 16, 3 (Mar. 2020), e9401.

[9] Watanabe, L., Nguyen, T., Zhang, M., Zundel, Z., Zhang, Z., Madsen,
C., Roehner, N., and Myers, C. ibiosim 3: A tool for model-based
genetic circuit design. ACS Synthetic Biology 8, 7 (2019), 1560–1563.

40



Minimal model for protein expression accounting for
metabolic burden
Fernando N. Santos and Jesús Picó∗

Synthetic Biology and Biosystems Control Lab, Institute ai2, Universitat Politècnica de València (UPV)
{fersann1,jpico}@upv.es

1 INTRODUCTION
Design of synthetic genetic circuits without considering the
impact of host circuit interactions results in an inefficient
design process and lengthy trial-and-error iterations to ap-
propriately tune protein expression levels. Microorganisms
have evolved to reach an optimal use of cellular resources.
This balance is perturbed by circuit-host interactions result-
ing from the interaction among the cell environment from
which the cell takes substrates, its metabolism, and the needs
of the synthetic genetic circuit introduced in the cell host.
The resulting competition for common shared cell resources
introduces spurious dynamics leading to problems of mal-
functioning of the synthetic circuit due to lack of enough
cellular resources. Therefore, there is an increasing interest in
development of methods for model-based design of synthetic
gene circuits considering host-circuit interactions. Here we
present a medium-size model explaining host-circuit interac-
tions caused by competition for shared resources and over-
coming some of the drawbacks of either too over-simplified
or too complex over-parameterised [4] existing models. We
explicitly take into account relevant biological aspects and
lab-accessible parameters, like promoter and RBS strengths,
degradation of mRNA and proteins, generation of polysomes
and ribosomes density, nutrient uptake and metabolization
and biogenesis of ribosomes. The model, applied to E. coli,
is able to predict with great precision the cell growth, the
amount of free ribosomes and the effect of competition for
them on protein expression and growth.

2 RESULTS
Growth rate depends monotonically on the amount
of mature active ribosomes
In agreement with the accepted literature, our model predicts
a monotonically relationship between the specific growth
rate µ and the total amount of actively translating ribosomes
(i.e. those involved in translating complexes at a given time
instant) given by:

µ(si ) = maa

mc

νsi
Ksc + si

Φr ra , (1)

∗Both authors contributed equally to this research. This research was par-
tially supported by PAID-01-2017 and MINECO/AEI, EU DPI2017-82896-
C2-1-R.

where Φr ra is the total amount of ribosomes actively trans-
lating, si is the amount of intracellular substrate, Ksc is a
Michaelis-Menten parameter related to cell substrate uptake
and catabolic capacity, ν the maximum translation rate per
ribosome, mc the protein cell mass, and maa the average
mass of an amino acid. Figure 1 shows how Eq. 1 accurately
predicts the experimental values of µ obtained from [1].
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Figure 1: Experimental relationship [1] between the growth
rate and the amount of translating ribosomes (blue) and
predicition of the growth rate by appling Eq. 1 (red).

Only very small amount of free ribosomes is
compatible with truly competition for cell resources
Estimation of the amount of free ribosomes in the cell, r , is
key for assessing the competition among the cell circuits for
cellular resources. Our model predicts a very low amount
of r . If this was not the case, there would be no truly com-
petition to recruit them. In addition, having too many r in
excess would imply a superfluous use of energy for the cell.
To evaluate the range of typical values of r , we used experi-
mental data from [2] and evaluated the translation efficiency
per mRNA Yp/mRNA:

Yp/mRNA =
βpk

dmk
=

0.62
le

νsi
Ksc + si

r
dmk

Kk
C0 (si )

+ µ
, (2)

where βpk is the effective translation rate (protein/mRNA/t),
dmk is the mRNA degradation rate, le is the ribosome occu-
pancy length and Kk

C0 is a substrate dependent parameter
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essentially related to the RBS strength. For any given protein
and si , the amount of r will determine the required value of
Kk
C0 to attain the experimental value of Yp/mRNA. All param-

eters in Eq.2 are known but Kk
C0 , which we estimated to be

in the range Kk
C0 ⊂ [0.02, 0.2] (molec−1). From the results

shown in Figure 2, a maximum amount of r ≈ 350 could
confidently explain the translation efficiencies per mRNA
Yp/mRNA for almost all proteins in E. coli. This amount of r
agrees with the estimation r = N(350, 35) in [3].

Figure 2: Relationship between the RBS strength-related
termKk

C0 and the amount of free ribosomes r obtained using
the experimental data in [2] for non-ribosomal proteins in E.
coli. Thin lines correspond to the experimental value of the
translation efficiency per mRNA Yp/mRNA for each protein.
The red thick line corresponds to the mean for all proteins
and the green thick line corresponds to the approximated
mean when the term µr is neglected in Eq. 3.

Protein expression arises from the interaction of the
resource recruitment strength of different genes
We defined the dimensionless function Jk (µ, r ) which gives
the strength with which the k-th gene recruits cellular re-
sources to get expressed:

Jk (µ, r ) = Emkωk (Tf )
1

dmk/Kk
C0 (si ) + µr

, (3)

where Emk is related to the ribosomes density and ωk is the
transcription rate dependent on a transcription factorTf . The
resources recruitment strength function J (µ, r ) provides a
high level approach to understand competition among genes
to be expressed. Figure 2 shows that the term µr could be
neglected, this would make the J (µ, r ) a constant value only
dependent onTf . Thus, the dynamics of a protein k (without

active degradation) can be expressed as:

Ûpk = µ

[
mc

maalpk

Jk (µ, r )∑np
i=1 Ji (µ, r )

− pk

]
, (4)

where pk is the amount of the protein k , lpk its length and
np the amount of different protein-coding genes. The term
Jk (µ, r )/

∑np
i=1 Ji (µ, r ) shares similarities with Ohm’s law, be-

ing J (µ, r ) analogous to electrical resistance. Thus, increas-
ing the expression of a protein k (i.e. increasing the value
of Jk (µ, r )) will increase the term

∑np
i=1 Ji (µ, r ) for all the pro-

teins and thus reducing the expression of the rest of proteins.
Other models in the literature also exploit this analogy with
the Ohm’s law. However, in our model the J (µ, r ) function ex-
plicitly relates the relevant metabolic variables (e.g. growth
rate and ribosome availability) with the gene parameters (e.g.
promoter and RBS strength). This makes it specially useful
for its application to the model-based tuning of parameters
in synthetic gene circuits.

3 DISCUSSION
Our model captures the effects of competition for shared
cellular resources on protein expression and cell growth
while keeping a good balance between simplicity and avoid-
ing over-parametrization. Furthermore, it is able to explic-
itly relate relevant lab-accessible parameters (e.g. promoter
and RBS strength) with growth rate and protein expres-
sion. Key in the model is the defined resources recruitment
strength function J (µ, r ), which allows to understand easily
the protein-host interactions with explicit consideration of
relevant lab-accessible parameters. Using basic experimen-
tal data available in the literature the model was able to
predict the amount of active ribosomes, availability of free
ribosomes, growth rate, required RBS strength in very good
agreement with existing estimations. This assures its use for
model-based tuning of gene synthetic circuits accounting for
metabolic burden. In addition, the model can be easily inte-
grated within a multi-scale one considering the extracellular
environment at the bioreactor scale.
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1 INTRODUCTION
In this oral presentation we show how bacteria can be engi-
neered to master simple but non-trivial games by reinforce-
ment learning. We highlight our invention of a novel genetic
device we named “memregulon” (from“memory regulon”,
a biological equivalent to the memristor device in physics).
The memregulon combines the CAMERA analog memory [1]
with a genetic system that regulates its expression depending
on its history (Fig. 1). The system relies on an intracellular
mixture of two plasmids (e.g. co-transformed) with the same
logic gate, a fluorescent protein (GFP and RFP for plasmid A
and B respectively) and an antibiotic resistance gene. Plasmid
B is made to be indistinguishable from the original plasmid
A except for the fluorescent protein and the loss-of-function
mutation of the antibiotic resistance. We define a and b as
the copy numbers per cell of plasmid A and B respectively.
Previous work showed that they remain constant which was
proposed as a memory system [1].

Figure 1: The memregulon. a) Memregulon genetic map.
The b/(a + b) ratio is defined as the weight ω (memory).
ϕ=chemical input. Selection with Kanamycin changes the
weight (learning). [1] b) Tic-Tac-Toe game board with an ex-
ample of the gates used in one of our experimental imple-
mentations. The board is marked with numbers correspond-
ing to suitable chemical inputs of an engineered Escherichia
coli strain [2]. c) Truth table functionality.We describe a pro-
moter with the combinatorial logic of the gate 2 Λ 7.

2 PLAYING AND LEARNING THE GAME
We implement complex gene circuits by exploiting the distri-
bution of minimal gene circuits across a bacterial population.
The additivity of the outputs is similar to the signal inte-
gration by a perceptron to provide an output if the signal is
above a threshold, where the non-linearity is determined by
the sigmoid behaviour of the transcription regulation. The
output of several memregulons is combined using a winner-
take-all (WTA) algorithm in the software analysis of the
fluorescence.

Figure 2: Experimental set-up of bacteria playing the game
and learning from losses. a) Human (X) starts in position
5 and thus inducer 5 is added to every well. Because the
YES5 memregulon has a higher red fluorescence in position
1 than 4, bacteria (O) is considered to play 1. Next, the human
plays in position 4, the inducer 4 is added to every position
and the bacteria play again the position with the highest
red fluorescence (position 3). The bacteria lose as the human
plays 6 which triggers a Kanamycin dose in the previously
played positions 1 and 3. b) In the next game, the moves of
the bacteria will be 4 instead of 1 and 6 instead of 3.
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Theoretically, a library of one YES memregulon (Fig. 1c)
for each of N independent chemical inputs is complete be-
cause any Boolean function of N inputs can be computed by
WTA applied to weighted sums of inputs (Fig. 4). We have
designed an experimental set-up where living bacteria can
master the Tic-Tac-Toe game through reinforcement learn-
ing (Fig. 2). Playing requires the appropriate logic gates in
each of the 9 board positions. The move of the first player is
assigned to a chemical input which is added to every position.
The highest fluorescence value will indicate the move of the
second player. This is done iteratively until the game ends.
Resigns occur if no fluorescence value is above a threshold.
Reinforcement learning changes the memory of the bacteria
based on the result. Thus, negative reinforcement decreases
the weights of the activated memregulons. However, the in-
crease in expertise (Fig. 3) diminishes with iterations as the
probability of losing decreases after each learning.

Figure 3: Bacteria learning against randomplayerswith only
negative reinforcement (simulation data). Bacteria played
1st (a, c) or 2nd (b, d). We limited 1st and 2nd players to al-
ways play position 1 and 4 (or 4 and 1) in 2nd and 1st round
respectively. a) and b) Gain in expertise through learning.
Expertise was defined as percentage of positive results (wins
and draws) by testing every possible game played against a
random player. c) and d) Memregulon logic gates at each po-
sition, in red the weights changed at learnings.

An expert player was previously built (without learning)
using catalytic single-stranded DNA molecules [4] (realising
in vitro logic gates similar to (Fig. 3c,d), and in bacteria
there have been computational reports regarding simplified
learnings [4]. We have developed a software to simulate
the behaviour of the bacteria based on experimental data
characterised with our memregulon library (Fig. 1). Fig. 3
shows that bacteria can play against a random player and in
only 4 reinforcement learnings they reach 99% expertise.

Figure 4: Bacteria learning with negative reinforcement
(simulation data). a) Learning in a tournament of bacteria
(blue) vs bacteria (red). b) Learning of 100 pairs of bacteria
playing against each other using a random network of inter-
actions and weight crossovers in only 10 plays.

We have simulated a memregulon network with an initial
uniform set of weights which learned to above 90% wins (Fig.
4). Fig. 4a shows our results of simulating bacteria against
bacteria. Fig. 4b depicts a simulation of 100 parallel tourna-
ments of bacteria against bacteria. After each play, all 1st–1st
player and 2nd–2nd player pairs are considered for weight
crossover (where an offspring gets the addition of parent’s
weights, equivalent to experimentally mixing the cultures)
and the parents are replaced by the offspring if they have
more expertise. All 1st–2nd pairs are reshuffled. Importantly
in only 10 rounds the bacteria achieved higher expertise than
running single in 1,000 rounds. While reinforcement learn-
ing depends on the result, the genetic algorithm changes
the weights independently of the output, creating diversity
while the weight crossover maintains the initial expertise.
After re-shuffling, reinforcement learning is again applied.

3 CONCLUSION
Our simulation results show that our memregulon library
(Fig. 3) and even a simplified library of YES gates (Fig. 4)
could allow living bacteria to master Tic-Tac-Toe through
reinforcement learning if implemented experimentally. We
are currently conducting the experiments to validate this.
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1 INTRODUCTION
Chemical Reaction Networks (CRNs) are commonly used for
modelling in systems and synthetic biology [2]. The power of
CRNs lies in their expressivity; CRN models can range from
physically realistic descriptions of individual molecules to
coarse-grained idealizations of complex multi-step processes
[17]. However, this expressivity comes at a cost - frequently
choosing the right level of detail in a model is more an art
than a science. Themodelling process requires careful consid-
eration of the desired use of the model, the available data to
parameterize the model, and prioritization of certain aspects
of modelling or analysis over others.
The available tools for a CRN modeller are vast and in-

clude: extensive software to generate and simulate CRNs,
databases of models, model analysis tools, and many more
[5, 8, 10, 13, 15]. However, relatively few tools exist to aid
in the automated construction of CRN models from simple
specifications. For example, even though synthetic biologists
have taken a module and part-driven approach to their labo-
ratory work [3], models are still typically built by hand on a
case-by-case basis.
The BioCRNpyler∗ package is a software framework and

library designed to aid in the rapid construction of models
from common motifs, such as molecular components, bio-
chemical mechanisms and parameter sets. These customiz-
able motifs can be reused and recombined to rapidly gen-
erate CRN models in diverse chemical contexts at varying
levels of model complexity. Some similar tools exist include
[7, 12, 16]. What makes BioCRNpyler unique is an open-
source and object-oriented framework written in python
which allows complete control over model compilation by
developers as well as a large library of easy-to-use parts and
models relevant to synthetic biologists and bio-engineers.
The BioCRNpyler package is available on GitHub [1].

2 THE BIOCRNPYLER FRAMEWORK
BioCRNpyler is an open-source python framework (Figure
1) that compiles high-level specifications into detailed CRN
models saved as SBML [9]. Specificationsmay include: biomolec-
ular Components, modelling assumptions (Mechanisms), bio-
chemical context (Mixtures), and Parameters. BioCRNpyler

∗Pronounced as bio-compiler

is written in python with a flexible object-oriented design,
extensive documentation, and detailed examples to allow for
easy model construction by modelers as well as customiza-
tion and extension by developers.

Mixture
[contains components & 

default mechanisms]

Species and 
Reactions

Component
[knows its Mechanisms]

Mechanism
[A CRN “function”]

Global 
Mechanisms
[applied to all species]

Biochemical Context [e.g. in-vivo vs in-vitro]
Modelling Context [e.g. transcription & 
translation vs expression]

Reusable Parts [e.g. DNA Assemblies, 
Transcription Factors, Phosphoproteins, 
Integrases, & many more]

Reaction Schemas to model biochemical 
processes [e.g. Transcription, Translation, 
Cooperative Binding, & many more]

Compiled 
Chemical Reaction 

Network

Parameters
[Default “guesses” & 

custom parameter sets]

Figure 1: The hierarchical organization of classes in the
BioCRNpyler framework. Arrows represent compilation.

Species andReactionsmake up a CRN and are the output
of BioCRNpyler compilation. Many sub-classes exist such as
ComplexSpecies and reactions with different kinds of rate
function (e.g. massaction, hill functions, etc).

Mechanisms are reaction schemas, which can be thought
of as abstract functions that produce CRN Species and Reac-
tions. They represent a particular molecular process, such
as transcription or translation. During compilation, Mecha-
nisms are called by Components. Global Mechanisms are
called at the end of compilation in order to effect all species
of a given type or with given attributes, for example, dilution
of all protein Species.

Components are reusable parts; they know what kinds of
Mechanisms effect them but are agnostic to the underlying
schema. For example, a promoter is a Component which will
call a transcription Mechanism; similarly a Ribosome Bind-
ing Site (RBS) is a Component which will call a translation
Mechanism. However, the same Promoter and RBS can use
many different transcription and translation Mechanisms
depending on the modelling context and detail desired.

Mixtures are sets of default Mechanisms and Components
that represent different molecular and modelling contexts.
As an example of molecular context, a cell-extract model
requires reactions to consume a finite supply of fuel while a
steady-state model of living cells does not have a limited fuel

45



IWBDA 2020, August 2020, Online Poole and Pandey, et al.

0 1 2 3 4 5
time (hours)

10 3

10 2

10 1

100

101

102

103

104

Co
nc

en
tra

tio
n 

(A
U)

Species=6 Reactions=9
Expression Model

LacI
tetR
Cl

0 1 2 3 4 5
time (hours)

10 3

10 2

10 1

100

101

102

103

104 Species=9 Reactions=18
Transcription-Translation Model

LacI
tetR
Cl

protein
rna

0 1 2 3 4 5
time (hours)

10 3

10 2

10 1

100

101

102

103

104 Species=24 Reactions=41
E. coli Model

LacI
tetR
Cl

protein
free rna
bound rna

Figure 2: Using BioCRNpyler to compile the represillator at various levels of detail. Simulation parameters come from the
repressilator paper [6] and [4, 11]. Simulations were carried out with Bioscrape [14].

supply. As an example of modelling context, a simple model
of gene expression may have a gene catalytically create a
protein product while a more complex model might include
cellular machinery such as RNA-Polymerase and Ribosomes
with Michalis-Menten kinetics.

Parameters are designed for flexibility; they can default to
biophysically plausible values (such as a default binding rate),
be shared between Components and Mechanisms, or have
specific values for Component-Mechanism combinations.
This system is designed so that models can be produced
quickly without full knowledge of all parameters and then
refined with detailed parameter files later.

RepressilatorEcoli = TxTlDilutionMixture(name = "e coli", 
components = [placI_tetR, ptetR_cl, pcl_lacI], 
parameter_file = parameter_file)

RepressilatorEcoliCRN = RepressilatorTxTl.compile_crn()

RepressilatorTxTl = SimpleTxTlDilutionMixture(name = "txtl", 
components = [placI_tetR, ptetR_cl, pcl_lacI], 
parameter_file = parameter_file)

RepressilatorTxTlCRN = RepressilatorTxTl.compile_crn()

RepressilatorExp = ExpressionDilutionMixture(name = "expression", 
components = [placI_tetR, ptetR_cl, pcl_lacI], 
parameter_file = parameter_file, #can use multiple parameter sources
parameters = expression_params) #custom parameters take precedent

RepressilatorExpCRN = RepressilatorTxTl.compile_crn()

parameter_file = "default_parameters.txt"

expression_params = {("negativehill_transcription", "k"):2.8}

lacI = Species(name= "lacI", material_type = "protein")
tetR = Species(name = "tetR", material_type = "protein")
cl = Species(name = "cl", material_type = "protein")

pLac = RepressablePromotor(name = "pLac", transcript = "tetR", repressor = lacI)
pTet = RepressablePromotor(name = "pTet", transcript = "cl", repressor = tetR)
pCl = RepressablePromotor(name = "pCl", transcript = "lacI", repressor = cl)

placI_tetR = DNAassembly(name = "lacI_tetR", promoter = pLac, rbs = "BCD8", protein = tetR)
ptetR_cl = DNAassembly(name = "tetR_cl", promoter = pTet, rbs = "BCD8", protein = cl)
pcl_lacI = DNAassembly(name = "cl_lacI", promoter = pCl, rbs = "BCD8", protein = lacI)

Expression CRN models gene expression 
(with leak) and dilution.

Modular Components are combined 
together to produce diverse biochemical 
circuits. 

E. coli CRN models transcription via RNA-
Polymerase, translation via ribosomes, 
mRNA-degradation via endo-nucleases, 
background cellular loading, and dilution.

Transcription-Translation CRN models 
transcription (with leak), translation, and 
dilution.

Parameters default for rapid model building 
and can be programmatically set via 
dictionaries or custom parameter files.

Mixtures determine the context and level 
of detail used to model Components. 

Figure 3: Python code generating three repressilator CRNs.

3 THE BIOCRNPYLER LIBRARY
The BioCRNpyler library contains a growing collection of
Mechanisms, Components and Mixtures as well as exten-
sive Jupyter notebooks. Currently, this library is geared
towards synthetic biological applications with numerous
Mechanisms for transcription, translation, gene regulation,
catalysis, molecular binding and many more. Components
include common synthetic biological parts such as Promot-
ers, RBSs which can be combined into DNA-assemblies to
produce RNA and Proteins, as well as more specific parts
such as dCas9. Mixtures include both models of cell-like sys-
tems growing at steady state and extract-like systems with

finite resources. Importantly, for different modelling contexts
BioCRNpyler includes Mixtures with different default levels
of complexity. The ease in generating increasingly complex
models is illustrated in Figure 3 which shows code to compile
a repressilator from a few common Components into multi-
ple CRNs of very different levels of complexity. Simulations
from these models are shown in Figure 2.

4 FUTUREWORK
Weplan on extensively adding to available parts in the library.
We will also add a module to import SBOL files to automati-
cally generate models of DNA constructs commonly used in
synthetic biology. Finally, we will connect BioCRNpyler to
a parameter inference pipeline to characterize models from
experimental data.
Acknowledgements:Wewould like to thank the Caltech BE240 class
andMurray lab for extensive testing of this software and discussions
of relevant models, parts, and used. In particular, we would like to
thank Matthieu Kratz, Liana Merk, and Ankita Roychoudhury for
contributing to the software library.
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1 INTRODUCTION
Data standards are essential to exchange information about
the engineering of biological systems. The Synthetic Biol-
ogy Open Language (SBOL) is a community-driven standard
that facilitates the exchange of data relating to the design,
implementation, testing and refinement of engineered bio-
logical systems [4]. Versions 1 and 2 of SBOL have gained
widespread adoption, with over 170 developers, 29 SBOL sup-
porting software tools and 42 institutions involved in their
development and deployment (as of June 2020). Recently,
SBOL was refactored to simplify its data model, resulting in
the release of the SBOL3 specification [1].
SBOL data is created using both bespoke software tools

and through the use of the SBOL specific software libraries
such as pySBOL [2] and libSBOLj [6]. However, the creation
of SBOL data using these libraries is often limited to tool
developers with programming skills. To address this issue,
numerous graphical computer aided design (CAD) tools have
been developed to allow non-programmers to capture data
from the design, build, test and learn (DBTL) cycle in SBOL
format. However, visual design tools often support only a
subset of features of the SBOL data model. Visual editing can
be a slow and rather manual process that does not scale well
for large designs such as genomes.

Previously, we have described a language, ShortBOL,which
provides a human readable/writable short-hand for describ-
ing biological designs in SBOL [3]. ShortBOL was developed
for synthetic biologists familiar with the SBOL data model
who wish to rapidly describe synthetic biology designs us-
ing a text based scripting language instead of using a tra-
ditional programming language. Here, we describe a new
release of ShortBOL, version 2.0. This new version sees the
introduction of two new modes of use, as well as support
for SBOL 3.0. The new modes of use of the language alter
the levels of abstraction to consider two major categories
of synthetic biologists with different expertise and back-
grounds: (i) User mode for synthetic biologists with little to
no understanding of the SBOL data model, and (ii) Devel-
oper mode for synthetic biology developers, familiar with
programming and the SBOL data model. The new ShortBOL
user-mode syntax simplifies the generation of SBOL data
for the first category of users. The latter category of users

are supported through full access to the terms of the data
model. SBOL 3.0 support is provided for both these different
levels of abstraction. We illustrate these two modes using
examples developed in SBOL3. ShortBOL as a service can be
accessed from http://shortbol.org and the code is available
at https://github.com/intbio-ncl/shortbol.

2 EXPLORING SBOL3 USING SHORTBOL2
ShortBOL was originally designed to be easy to use by syn-
thetic biologists who understand the fundamentals of the
SBOL data model. A standard template library is incorpo-
rated within ShortBOL, allowing the introduction of new
ShortBOL language terms and different aspects of genetic
designs to be generated. SBOL3 support is provided via addi-
tional templates within the ShortBOL2 application.

We have also developed a tutorial and set of examples that
illustrate the use of SBOL3, and its comparison to SBOL2, to
aid developers in transitioning to the new version of the stan-
dard. For example, Figure 1 shows a side by side comparison
of the TetR inverter module of the classical genetic toggle
switch example [5] written using ShortBOL2 in developer
mode for both SBOL2 and SBOL3 (Fig.1.). The ShortBOL2
application features support for generating both SBOL2.0
and SBOL3, the choice of which is selected by the user from
the application menu. Depicting SBOL as ShortBOL allows
the structure of SBOL3 to be viewed and also compared to
the equivalent representation in SBOL2.0. SBOL is a data
exchange format and SBOL data produced by different tools
are all compatible. However, with the introduction of SBOL3
there is not currently compatibility between the SBOL2 and
SBOL3 data models. As tooling for the data model is devel-
oped converters will become available.

3 ABSTRACTING SBOL3 USING SHORTBOL -
USER MODE

The SBOL3 data model can still be unwieldy for designers
unfamiliar with computational data representations. Short-
BOL2 also introduces further templates that provide a more
abstract version of the ShortBOL language, aimed at the av-
erage user who does not wish to work with the SBOL3 data
model at a detailed level. This mode makes designs shorter
and easier to understand. As an example, Figure 2 shows a
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Figure 1: ATetRInverter device shown in ShortBOL for SBOL
2.0 and SBOL3. The change from the use of ModuleDefini-
tion to a single FunctionalEntity, introduced in SBOL3, is il-
lustrated by a side-by-side comparison of the designs.

ShortBOL2 representation of the SBOL3 approach to defining
the LacI inverter module of the genetic toggle switch. These
ShortBOL templates allow for a more succinct representa-
tion of the design, which is then expanded out into the full
representation on conversion into SBOL. Developers are still
free to use the more expansive representation, if they wish,
which is closer to the SBOL3 data model and allows expres-
sion of details that are not part of typical use patterns. The
ShortBOL user mode has slight constrictions and is achieved
using composition to create some SBOL3 objects behind the
scenes. However, these constrictions are only present when
working with very niche aspects of the data model.

Figure 2: A ShortBOL2 design for the LacI inverter module
demonstrating the inhibition of TetR protein production by
LacI protein in Developer mode and the more abstract ver-
sion in User mode.

4 CONCLUSIONS AND FUTUREWORK
We have expanded ShortBOL1.0 to support SBOL3. Short-
BOL2 aims to provide an easy to use tool for the composition
of SBOL3 related data. This latest version introduces a user
mode providing a more abstract version of ShortBOL where
the SBOL data model can be used in a less granular fashion.
ShortBOL2 allows the structure of SBOL3 to be explored
succinctly by developers wishing to become familiar with
the SBOL data model, who can gain exposure to the termi-
nology and approach without having to work with the SBOL
code libraries. Furthermore, users can also produce SBOL
data without being exposed to the full details of the SBOL3
data model. ShortBOL makes it easier to prototype SBOL3
designs, and in the future it may be possible to simplify the
ShortBOL syntax even further to provide a language that
shields a user entirely from the SBOL3 data model.
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1 INTRODUCTION
The software consists of a set of tools that are used to define
symbolic models in Matlab and to work easily and effectively
with them. This is aimed to both inexperienced users, who
need a simple environment to be able to simulate and model;
and advanced users, who seek to automate (or reduce) much
of the modeling, simulation, and analysis process.

2 DESCRIPTION OF THE TOOL
The initial work has been directed to the development of a
common framework for model abstraction and tools integra-
tion. Then, other tools have been programmed in order to
facilitate the construction of reduced-order models [4].

The tools available so far are:
• Modelling: Model construction withmodular approach
for reusing model parts or the whole system model.
Also, a simple syntax is used for reactions definition.
This tool transform reactions to internal model object.
Furthermore, it generates a symbolic equation model
in Matlab that can be used for simulation or system
analysis.

• Invariant equations: From model connection graph,
invariant species equations are found [3]. User must
select the independent species that will be used in
reduced models.

• Quasi Steady State (QSS) analysis: system dynamics
not only depends on kinetic parameter. Some variables
can exhibit negligible dynamics because they have
higher order magnitude than others. For catching all
QSS alternatives, dynamic simulations are drawn for
system parameter guesses and initial concentration
values. Then time response characteristics are calcu-
lated for confirming or rejecting QSS hypothesis.

• Flow analysis simplification: another approach formodel
reduction is to simplify small fluxes that are not rel-
evant in the total balance of every species. So, flow
trends are plotted and user can choose to make it zero

∗All authors contributed equally to this research. This research was partially
supported by PAID-01-2017 and MINECO/AEI, EU DPI2017-82896- C2-1-R.

or fixed in its steady state and compare if the simula-
tion with this assumption is inside tolerance response.

Integration with existing workflows
The software follows the SOLID principles of object-oriented
design: it is made up of a set of tools and each one performs
a specific task, achieving the so-called open/closed principle
that allows any user to expand the functionality but keeping
the original one intact. This is a crucial advantage because
it will allow the tool to be integrated into existing Matlab
workflows effortlessly, and the user community could also
extend the original functionality.

Model construction
It is the first and the basic tool. We could use the standard
SBML language for system definition [2]. It is used broadly
and it is very powerful, but in the first version of SBModEns
we don’t want to exploit all model functionality of SBML. So,
we have developed a simple syntax (inspired in Open Mod-
elica) to define biological models from chemical reactions
or symbolic mathematical equations. In future releases we
want to extend our system for importing SBML models.

Balanced equations for every reaction are drawn with
kinetic constant (law of mass actions are assumed). The Vari-
ables (species names) and parameters (kinetic constants) are
extracted and initial concentration values and parameter
guesses are fixed. For example, an implementation of the
antithetic controller [1] would be the following with our
syntax:

0 -> z1, mu=1.0.

x2 -> x2 + z2, theta=1.0

z1 + z2 -> 0, nu=1.0

z1 -> z1 + x1, k1=1.0

x1 -> x1 + x2, k2=1.0

x1 -> 0, gamma1=1.0

x2 -> 0, gamma2=1.0

Listing 1: Definition of the model of the antithetic
controller with our syntax.

And with just this code we have defined everything we
need to use the rest of the tools that will be presented from
now on.
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Figure 1: QSS analysys table: it shows model response error
statistics for one extra species in QSS assumption. In left list
check boxes one can select the species in QSS

Tools simplify and automate working with models
First, there is a parser tool that automatically converts the
model defined in our syntax to a symbolic equations model
in Matlab by applying the law of mass actions. Then, it is
possible to simulate the model (even if it has algebraic loops,
which is a common case when using the quasi-steady-state
approximation). Furthermore, it is even possible to do sto-
chastic simulations because we have information on the
chemical reactions that make up the model.
Many of the existing tools in Matlab require an explicit

ode function of the model (e.g., optimization tools, simulink,
etc.), so there is another parser that automatically generates
the code of these functions without dependencies to our tool
and it can even generate S-Functions. As a result, this set
of tools can be easily integrated into different workflows in
Matlab.
Thanks to having the symbolic model in Matlab, there is

a mathematical analysis tool that can calculate equilibrium
points, linearize the model, find eigenvalues, calculate the
Jacobian matrix, etc. This allows to standardize and automate
this type of analysis, which democratizes the use of these
techniques and allows users not to waste time programming
them.

The open/closed principle allows us to extend the original
functionality easily. For example, we have developed a tool
that applies a contractivity test. Contractivity is a technique
for analyzing the stability of a system, and the advantage it
has over another approach like Lyapunov is that the test is a
list of mechanical steps that can be programmed, however,
its results are usually quite conservative. Once we have pro-
grammed the test, it is virtually free to apply the test in each
of the models that we have already defined and this could
lead to valuable insights.

Finally, there is a tool that converts symbolic models into
code for LaTeX documents. In this way, one can automate
the process of writing the models on the paper.
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1 INTRODUCTION
Whole genome sequencing (WGS) is an attractive method
for evaluating genetic engineering. Yet, WGS is not often
used, despite increasing evidence of unintended results of
genetic engineering detected with WGS [1, 5, 7, 10–13], and
many unpublished accounts of WGS revealing unintended
edits in engineered industrial strains. Clearly, WGS is needed
to detect and validate genetic engineering.
WGS is particularly needed for engineered yeast strains

with deletions[3], plasmids[4], insertions[9], and SCRaM-
bLEd chromosomes[2, 6]. For WGS results to be useful, it
must be possible to accurately resolve yeast genome integra-
tions and episomal plasmids. Such ability may also enable
detection of synthetic parts within mixed or unknown sam-
ples. This is not possible with current methods. Assembly
of genetic engineering lacks accuracy, completeness, and
contiguity, and synthetic parts are not labeled.

Here, we report an integratedworkflow, named Prymetime,
that uses sequencing reads from inexpensive NGS platforms,
assembly and error correction software, and a list of genetic
parts to achieve accurate whole genome sequences of yeasts
with genetic parts annotated. We show it can accurately re-
produce many edits in one genome and detect engineering
signatures in a complex metagenomic sample.

2 DEVELOPING THE PIPELINE
We set a standard that our genome assembly workflow must
be able to resolve chromosomal integrations and multiple
plasmids used in yeast engineering. To achieve this standard,
we needed to integrate both short and long read sequenc-
ing, along with assembly algorithms for chromosomes and
plasmids. This hybrid approach is necessary to achieve ac-
curacy, contiguity, and contigs with both chromosomes and
closed plasmids. The final workflow, called Prymetime, is
depicted in Figure 1. Prymetime is an acronym for "Pipeline
for Recombinant Yeast genoMEs That Identifies Markers of
Engineering."

Figure 1: Prymetime software pipeline depicting the hybrid
assembly approach.

Validation with a heavily engineered yeast strain
We built a S. cerevisiae CEN.PK113 strain containing an inte-
grated carotenoid pathway, the native 2𝜇 plasmid, a dCas9
plasmid, and a gRNA plasmid, shown in Figure 2a. We named
this strain "FEY_2." This strain captures a number of engi-
neering features common in metabolic engineering and syn-
thetic biology. The particular challenges in this strain for
genome assembly are two plasmids that share a great deal
of sequence, and parts repeated from the genome. These
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Figure 2: Prymetime software pipeline depicting the hybrid assembly approach.

high-identity features can easily confuse assembly software.
We sequenced FEY_2 with an Oxford Nanopore MinION

and Illumina iSeq 100 to obtain long and short reads, re-
spectively, at a read depth of 40X. We observed that in this
step it is key to use tagmentation-based sequencing library
preparations to obtain sufficient reads from plasmids. The
reads were then passed through the Prymetime software
package, resulting in a complete S. cerevisiae genome with
the exact engineering signatures intended. A visualization
of this assembly is shown in Figure 2b. This plot is produced
automatically in a Prymetime run for facile identification of
engineering signatures.

Detecting signatures in metagenomic samples
We next attempted to resolve signatures of engineering in a
metagenome assembly with Prymetime. Publicly available
reads from the Zymo mock metagenome[8] were combined
with reads from another heavily engineered yeast strain to
simulate detection of an engineered strain in a mixed sample.
Integrations and plasmids were completely resolved even at
a dilution of 1:1000 (Figure 2c). This shows that synthetic
biology parts can be resolved in mixed samples, even when
the strain containing the part is present at only one cell
per thousand. Therefore, Prymetime may be used to detect
known engineering signatures in unknown, mixed samples.

3 DISCUSSION
Our approach permits rapid, on-site acquisition of reference
quality yeast genome sequences and annotation of genetic
parts, overcoming barriers in strain validation and detection
of parts in mixed samples. To do this, we used inexpensive
sequencing platforms and the Prymetime software package.
With read depth of 40X, we estimate that up to 30 S. cerevisiae
genomes can be sequenced on one MinION flow cell and up

to 4 genomes can be sequenced on one Illumina iSeq flow
cell and still achieve useful results. Thus, it is now possible to
accurately detect and validate genetic engineering in yeasts
with whole genome sequencing. The Prymetime script is
avialable at https://github.com/emyounglab/prymetime.

4 ACKNOWLEDGEMENTS
The authors thank James Kingsley at WPI for his help imple-
menting Prymetime on WPI’s server. This research is based
upon work supported in part by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Re-
search Projects Activity (IARPA) under Finding Engineering
Linked Indicators (FELIX) program contract #N66001-18-C-
4507. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of ODNI, IARPA, or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright an-
notation therein. This work is also supported by Worcester
Polytechnic Institute startup funds.

REFERENCES
[1] Anton, B. P., Fomenkov, A., Raleigh, E. A., and Berkmen, M. Com-

plete genome sequence of the engineered escherichia coli shuffle
strains and their wild-type parents. Genome Announcements 4, 2 (2016),
e00230–16.

[2] Blount, B. A., Gowers, G.-O. F., Ho, J. C. H., Ledesma-Amaro, R.,
Jovicevic, D., McKiernan, R. M., Xie, Z. X., Li, B. Z., Yuan, Y. J., and
Ellis, T. Rapid host strain improvement by in vivo rearrangement of
a synthetic yeast chromosome. 1932.

[3] Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P.,
and Boeke, J. D. Designer deletion strains derived from saccharomyces
cerevisiae s288c: A useful set of strains and plasmids for pcr-mediated
gene disruption and other applications. Yeast 14, 2 (1 1998), 115–132.

[4] DiCarlo, J. E., Conley, A. J., Penttilä, M., Jäntti, J., Wang, H. H.,
52



Accurate, Complete, and Contiguous Engineered Yeast Genomes with Prymetime IWBDA 2020, August 2020, Online

and Church, G. M. Yeast oligo-mediated genome engineering (yoge).
ACS Synthetic Biology 2, 12 (Dec 2013), 741–749.

[5] Gallegos, J. E., Hayrynen, S., Adames, N., and Peccoud, J. Challenges
and opportunities for strain verification by whole-genome sequencing.
bioRxiv (2019).

[6] Gowers, G.-O. F., Chee, S. M., Bell, D., Suckling, L., Kern, M., Tew,
D., McClymont, D. W., and Ellis, T. Improved betulinic acid biosyn-
thesis using synthetic yeast chromosome recombination and semi-
automated rapid LC-MS screening. 868.

[7] Li, J., Manghwar, H., Sun, L., Wang, P., Wang, G., Sheng, H., Zhang,
J., Liu, H., Qin, L., Rui, H., Li, B., Lindsey, K., Daniell, H., Jin, S., and
Zhang, X.Whole genome sequencing reveals rare off-target mutations
and considerable inherent genetic or/and somaclonal variations in
crispr/cas9-edited cotton plants. Plant Biotechnology Journal 17, 5
(2019), 858–868.

[8] Nicholls, S. M., Quick, J. C., Tang, S., and Loman, N. J. Ultra-deep,
long-read nanopore sequencing of mock microbial community stan-
dards. GigaScience 8, 5 (05 2019). giz043.

[9] Ronda, C., Maury, J., Jakočiunas, T., Baallal Jacobsen, S. A., Ger-
mann, S. M., Harrison, S. J., Borodina, I., Keasling, J. D., Jensen,
M. K., and Nielsen, A. T. CrEdit: CRISPR mediated multi-loci gene

integration in saccharomyces cerevisiae. 97.
[10] Schwarzhans, J.-P., Wibberg, D., Winkler, A., Luttermann, T.,

Kalinowski, J., and Friehs, K. Non-canonical integration events in
pichia pastoris encountered during standard transformation analysed
with genome sequencing. Scientific Reports 6 (Dec 2016), 38952 EP –.
Article.

[11] Solis-Escalante, D., van den Broek, M., Kuijpers, N. G., Pronk,
J. T., Boles, E., Daran, J. M., and Daran-Lapujade, P. The genome
sequence of the popular hexose-transport-deficient saccharomyces
cerevisiae strain eby.vw4000 reveals loxp/cre-induced translocations
and gene loss. FEMS Yeast Res 15, 2 (2015).

[12] Veres, A., Gosis, B., Ding, Q., Collins, R., Ragavendran, A., Brand,
H., Erdin, S., Cowan, C. A., Talkowski, M., and Musunuru, K. Low
incidence of off-target mutations in individual crispr-cas9 and talen tar-
geted human stem cell clones detected by whole-genome sequencing.
Cell Stem Cell 15, 1 (2014), 27 – 30.

[13] Young, A. E., Mansour, T. A., McNabb, B. R., Owen, J. R., Trott, J. F.,
Brown, C. T., and Van Eenennaam, A. L. Genomic and phenotypic
analyses of six offspring of a genome-edited hornless bull. Nature
Biotechnology (2019).

53



Decodon Calculator: Degenerate Codon Set Design
for Protein Variant Libraries

Dimitris Papamichail∗
papamicd@tcnj.edu

The College of New Jersey
Ewing, New Jersey, USA

Nicholas Carpino
The College of New Jersey
Ewing, New Jersey, USA

Tomer Aberbach
The College of New Jersey
Ewing, New Jersey, USA

Georgios Papamichail
New York College
Athens, Greece

1 INTRODUCTION
Mutant libraries representing protein variants are increas-
ingly used to optimize protein function. Protein Engineer-
ing involves screening mutant libraries for novel proteins
that show enhanced expression levels, solubility, stability, or
enzymatic activity. To reach such objectives, it is often nec-
essary to modify extant proteins, developing variants with
improved properties [3, 4]. However, there exists a massive
space of potential variants to consider.

Computational design of combinatorial libraries [1, 2, 6, 7]
provides a reasonable approach in the development of im-
proved variants. Library-design strategies seek to experi-
mentally evaluate a diverse but focused region of sequence
space in order to improve the likelihood of finding a ben-
eficial variant. Such an approach is based on the premise
that prior knowledge can inform generalized predictions
of protein properties, but may not be sufficient to specify
individual, optimal variants. Libraries are particularly appro-
priate when the prior knowledge does not admit detailed,
robust modeling of the desired properties, but when exper-
imental techniques are available to rapidly assay a pool of
variants.

The design of mutant protein libraries typically involves
a manual process in which required sites for mutation are
selected and ambiguous degenerate codons (those containing
mixtures of nucleotides) are designed to introduce controlled
variation in these positions. This is particularly useful in
cases where definitive decisions regarding specific amino
acid substitutions are non-obvious [4]. The design of the pro-
tein variant library is complemented by use of synthesized
degenerate oligonucleotides which enable annealing based
recombination. Custom oligonucleotide overlaps enable the
targeted introduction of crossovers at only desired positions,
in turn enabling the desired level and type of diversity in a
combinatorial library.

∗Corresponding author

Table 1: Degenerate Bases and their codings

Degenerate Base Actual Bases Coded

N A or C or G or T
B C or G or T
D A or G or T
H A or C or T
V A or C or G
K G or T
M A or C
R A or G
S C or G
W A or T
Y C or T

2 THE PROBLEM: TARGETED MUTANT PROTEIN
LIBRARIES

Traditional mutant protein library design methods involve
the incorporation of a single degenerate codon (thereafter
referred to as decodon) at each position where amino acid
substitutions are explored. Decodons contain ambiguous
bases (degenerate bases), as shown in Table 1.
An online tool called CodonGenie [5] was created to aid

the effort of designing decodons that code for any provided
set of amino acids. The CodonGenie tool ranks candidate
decodons by specificity, attempting to minimize coding of
undesirable amino acids and/or STOP codons. Even so, when
using a single decodon to code for a set of amino acids, it is
often unavoidable to code for additional unwanted amino
acids. Using an example from [5], when coding the non-polar
residues A, F, G, I, L, M and V, CodonGenie picks decodon
DBK ([AGT][CGT][GT]) as its top choice, which, in addition
to the desired set, codes also for amino acids C, R, S, T, and
W. In total, the decodon DBK codes 26 total DNA variants,
18 DNA variants coding for desired amino acids, and 8 DNA
variants for undesirable ones.
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In our work we explored the coding of a set of amino acids
by potentially multiple decodons. The usage of annealing
based recombination of degenerate oligos containing the
decodons can produce libraries on the productive portion
of the space by eliminating unwanted mutations, therefore
improving the yield of beneficial variants and the overall
quality of the library. In turn, this method can significantly
reduce labor costs assaying the pool of variants, at the ex-
pense of additional oligo synthesis, whose comparative cost
is modest and continuously dropping.

The Decodon Calculator Tool
We have designed and implemented an algorithm that, given
any set of amino acids, produces the minimum number of
decodons necessary to code for exactly this set, i.e. without
coding for extraneous amino acids or STOP codons. There are
15 nucleotide codes (“letters”), ranging from the completely
unambiguous A, C, G and T representing a single nucleotide,
to the completely ambiguous N representing all 4 nucleotides.
There are 153 = 3, 375 decodons that can be assembled from
this 15-letter alphabet of ambiguous codes, compared to the
43 = 64 codons that can be constructed from the standard
4-letter alphabet of unambiguous nucleotides.

Using our algorithm we calculated minimum cardinality
decodon sets for all 220 − 1 = 1, 048, 575 possible amino
acid subsets. Our results indicate that 6 decodons are always
sufficient to code for any amino acid subset, where at most 4
decodons are sufficient to encode more than 90% of all amino
acid subsets. Our algorithm also produces an example of a
decodon set of minimum cardinality for each amino acid
subset.
We also built a web tool called Decodon Calculator that

allows the calculation of the minimum number of decodons
needed to code any amino acid subset. Once a set of amino
acids is selected and the Submit button is pressed, results
are displayed on the bottom of the screen, as shown in in
Figure 1. In this particular example, we can observe that the
non-polar residues A, F, G, I, L, M and V can be coded by the
two degenerate codons DTB and GBA, which code for 12
desirable DNA variants, in contrast to the 26 variants of the
single best decodon generated by CodonGenie, 8 of which
are undesirable.

The Decodon Calculator can be accessed at
http://algo.tcnj.edu/decodoncalc/.
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Figure 1: Calculating theminimumnumber of decodons nec-
essary to encode the amino acid set { }
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1 ABSTRACT
The tRNA processing system is highly conserved in ani-
mals and plants. The processing capabilities have been re-
cently harnessed for producing small guide RNAs used in
CRISPR/CAS9 applications [5]. The RNAs of interest can
be flanked by tRNAs and incorporated in a synthetic intron.
The architecture can be represented as (tRNA-sgRNA1-tRNA-
sgRNA2-tRNA-sgRNA𝑛-tRNA) named (Polycistronic tRNA-
sgRNA, PTG). The PTG is transcribed by a Pol-II polymerase,
after which the endogenous tRNA processing RNAses free
the sgRNAs that can then be used in different CRISPR/CAS9
applications. The latest and most exciting being Prime Ed-
itors [1]. Nonetheless, the PTG assembly can only be per-
formed by Golden-Gate-like (GGL) approaches. Optimal GGL
overhangs can be computed on the variable sgRNA regions,
however manual design is error prone especially for large
multiplexed designs. Furthermore, Prime Editors (PE) are
significantly more complex to design than standard sgRNAs
which further complicates the design of synthesis strate-
gies. Therefore, we developed and experimentally validated

a python CAD tool (PolyGEN, Polycistron Generator, Fig. 1B)
capable of automating the design of oligonucleotides for syn-
thesising PTGs through GG assembly.

2 OUTLINE
The problem with building intron-codified tRNA-sgRNA-
tRNA polycistrons is their repetitive nature, which compli-
cates the assembly in conventional DNA synthesis. This issue
can be solved by using Golden Gate assembly [3, 5]. Type-II
restriction enzymes allow scarless assembly as these cut sev-
eral bases downstream of their recognition site. Sites can be
added using custom primers with PCR. The short length of
sgRNAs allows the amplification of tRNA and gRNA-tRNA
scaffolds that will share the RNA of interested added on the
3’ and 5’ side respectively. Therefore, the sgRNA is divided in
two fragments and is assembled by Golden Gate cloning. A
4 bp overlap region inside the sgRNA should be chosen that
will provide the overhangs for Golden Gate assembly. This
selection is not a trivial process and tools have been gener-
ated for easing this process [4]. Furthermore, in the case of
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Figure 1: (A) Experimental workflow using the computationally designed primers. Based on a template sequence, computed
primers can bind to the unchanging gRNA-tRNA backbone and produce inserts capped off by unique overlaps. During Golden
Gate assembly, the overlaps are exposed by BsaI and the entire construct is allowed to assemble in a uniquemanner. (B) Home-
page of the PolyGEN webapp. (C) PCR amplification of unique inserts for pUU105-pUU107. (D) Sequencing of the generated
scarless, PTG exemplified by plasmid pUU107. Highlighted in red are the overlap regions.
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Prime Editing the design of an extended sgRNA required by
the Murine Leukaemia Virus (MLV) retrotranscriptase fused
to nCAS9 is also not trivial.

Boosting multiplexed Prime Editing requires the automa-
tion of primer design for assembly. We designed and imple-
mented a python engine for automated generation of primers
for multiplexed Prime Editing. We use python3, Biopython,
iBioCAD [3] and packed them in a docker image for devel-
opment of a Webapp using Flask assuring portability. We
hope that PolyGEN will lower the burden of associated with
designing PTGs for Prime Editing. Our tool provides the
foundations for automating synthesis of CRISPR tools that
will help in the design of complex phenotypic outputs gen-
erated by foreseeable CRISPR applications.

3 ALGORITHM
The proposed algorithm requires a user to provide the de-
sired RNAs for the PTG together with their type (sgRNA,
pegRNA, smRNA etc.) and two BsaI restriction sites from a
plasmid, which will take up the generated PTG, as inputs.
Precomputed sets of BsaI 4 bp overlaps, with experimentally
validated optimized efficiency for correct assembly [3], were
adopted for the algorithm. Compatibility of used overlaps
is critical for correct assembly, as certain overlap pairs are
prone to mismatching and causing incorrect assembly [3, 4].
The sets are increasing in size from 10 to 50 overlaps to en-
able one-pot assemblies of varying complexity. For designing
the PTG, the smallest possible set with overlaps in all nec-
essary linker regions is selected. The linker regions are the
variable regions within each custom RNA (e.g. the spacer
in a sgRNA). These overlaps will then become the borders
of the final parts used in Golden Gate assembly, effectively
shifting the ends of each part to facilitate optimal assembly
(Fig. 1A,D). Using the new ends and desired melting temper-
atures, the algorithm will compute primers for producing
the newly designed parts from a plasmid containing a tRNA-
gRNA template via PCR. Since the primers will be designed
with a BsaI recognition site and optimal overlap, the PCR
products (Fig. 1C) will then also include these features and
can therefore be used in a subsequent Golden Gate assembly
reaction (Fig. 1A). The computed primers together with the
generated PTG are put out by the algorithm to be visual-
ized and verified in arbitrary further software. In this way,
PolyGEN combines several existing ideas on assembly and
design automation [3, 5] to create a tool for simple and user-
friendly work with polycistrons. In addition, by working
with existing gRNA-tRNA templates, this workflow allows a
quick and cheap production of parts which only requires or-
dering short primer sequences to include each part’s variable
sequence. PolyGEN largely extends iBioCAD for generating
multiplexed RNA production that can be used in the context
of CRISPR, Prime Editing or microRNA synthetic biology.

4 EXPERIMENTAL VALIDATION
We experimentally tested the PolyGEN tool by automatically
generating primers for a three-parts PTG that contains a
sgRNA targeting Boyle’s protospacer [2]. We created three
different plasmids that carry the protospacer in position 1
(pUU105), 2 (pUU106) and 3 (pUU107). The oligos were syn-
thesized by a commercial provider and pUU017 was used as
template for generating each PTG fragment (Fig. 1C). After
amplification the fragments were cleaned with a PCR pu-
rification kit. Then a BsaI assembly was performed using
pUU086 as acceptor vector as described by New England
Biolabs protocol. The reactions were transformed in E. coli
TOP10 and a candidate for each PTG version was sequenced
by Sanger’s method (Microsynth, Germany). The sequencing
results showed that two out of three PTGs were assembled
successfully without mutations in the overhangs (Fig. 1D).
We sent a second candidate for the failed assembly with
successful results.

5 DISCUSSION
Our experimental validation provides evidence for the power
of PolyGEN with an estimated assembly time of 4 days from
primer arrival to sequencing results and minimal experimen-
tal complexity. The clean amplification of the PCR products
provides evidence for further lab automation which is cur-
rently under investigation in our research group.

6 DATA AND CODE AVAILABILITY
PolyGEN git repository: https://github.com/jurquiza/polygen.
We deposited the sequences for pUU017, pUU086, pUU105,
pUU106 and pUU107 in https://public-registry.jbei.org/folders/598.
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1 INTRODUCTION
As engineered organisms such as yeasts and other fungi are
increasingly used to combat pests[2] and manufacture chem-
icals at an industrial scale, the risk of their accidental release
or nefarious use increases as well. Given that real-world sam-
ples contain many different cell types and that engineered
microorganisms can be diluted and effectively masked by
their metagenomic context, there is an increasing need for
automated methods to detect DNA engineering at the level
of individual cells. Even when bulk sequencing methods can
be used to detect rare sequences, they are still unable to de-
termine with confidence whether two sequences came from
the same cell, which is often a necessary condition for detect-
ing DNA engineering. Lastly, while single-cell sequencing
datasets permit this degree of resolution, they are also highly
multi-dimensional and can present a significant challenge
for a human analyst to evaluate.
To address the need for single-cell sequencing to detect

DNA engineering, we have developed a targeted sequenc-
ing pipeline for yeast as part of the Guard for Uncovering
Accidental Release, Detecting Intentional Alterations, and
Nefariousness (GUARDIAN) project. The pipeline leverages
Mission Bio’s Tapestri, a microfluidic instrument that en-
ables users to encapsulate cells in droplets and mix them
with reagents for purposes such as cell lysis, target amplifi-
cation, and DNA barcoding. In addition, we have developed
a single-cell sequencing analysis pipeline that produces cus-
tomized visualizations to summarize and de-dimensionalize
targeted single-cell sequencing data to permit their analysis.

2 GUARDIAN SINGLE-CELL SEQ. PIPELINE
As shown in Figure 1, the GUARDIAN single-cell sequencing
pipeline is comprised of five main stages, beginning with
single-cell library prep using Mission Bio’s Tapestri instru-
ment and library amplification using a panel of 100 ampli-
cons designed to detect engineered yeast (in particular, S.
cerevisiae, Y. lipolytica, and P. pastoris). Next, the single-cell
libraries are sequenced in bulk using typical next-generation
protocols, and the resulting data are processed bioinformat-
ically to map reads to amplicons and group them by cell
barcodes. Finally, the processed single-cell sequencing data

Figure 1: GUARDIAN single-cell sequencing pipeline.

are analyzed and visualized using using amplicon heatmaps
and cell cluster plots.

Figure 2 is an example of the amplicon heatmaps generated
by the analysis portion of the pipeline. In evaluating these
heatmaps to determine whether a sample is engineered, we
generally look for co-occurrence of (1) reads for amplicons
targeting natural sequence features for a particular yeast
species with (2) amplicons targeting non-natural features
of engineering for said species. For the heatmap in Figure
2, we conclude that it most likely represents a sample of
the yeast knockout strain BY4742 based on the following
observations: first, most of the amplicons for S. cerevisiae
features are present in >95% of cells and co-occur with each
other (see Box A). In addition, reads are present for amplicons
targeting the expected knockout junctions in BY4742 for
the auxotrophic markers URA3 and LEU2, and reads are
absent for amplicons targeting the LYS2 marker sequence.
Second, we conclude that this sample likely has a small sub-
population of engineered cells (0.4%) containing a plasmid
with the Pagtef1 promoter and Tagtef1 terminator, since
amplicons for these sequence features co-occur with those
for S. cerevisiae and plasmid features such as the F1 origin
and LacZ reporter (see Box B). The percent of cells in which
these amplicons occur also exemplifies the typical limit of
detection for our pipeline: 1 in 500 engineered cells following
analysis of less than 10,000 cells. Lastly, there are also reads
for Y. lipolytica amplicons present (see Box C), but they occur
in only 0.1% of cells and most importantly do not co-occur
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Figure 2: Amplicon heatmap for sample of BY4742 contain-
ing 1 in 500 engineered cells. Blue triangles quantify by size
the co-occurrence of the column amplicon in cells contain-
ing the row amplicon (0% to 100%). Orange triangles quantify
by size the average number of reads for the column ampli-
con in cells containing the row amplicon (0 tomax threshold
of 100 reads). Row and column amplicons are identical and
are ordered by the overall percent of cells in which they oc-
cur. NEUTRAL amplicons are those primarily used to geno-
type a sample, while POSITIVE and NEGATIVE amplicons
are used to call sample engineered based on the presence and
absence of their reads, respectively. The internal-internal,
internal-flanking, and flanking-flanking labels on the col-
umn amplicons refer to whether their primers occur within
or adjacent to the sequence features that they detect.

with each other, indicating that they are likely the result of
non-specific amplification.

3 RESULTS AND DISCUSSION
We tested the GUARDIAN pipeline on 50 samples (tubes of
lab-grown cells) in total, including 12 samples of S. cerevisiae
(6 engineered, 6 not), 31 samples of Y. lipolytica (19 engi-
neered, 12 not), and 7 samples of P. pastoris (1 engineered,
6 not). As shown in Figure 3, human-in-the-loop analysis
of amplicon heatmaps generated with the pipeline yielded
an overall sensitivity of 0.88 and specificity of 0.92. The
best performance was achieved for P. pastoris, followed by Y.
lipolytica and S. cerevisiae. The differences in sensitivity be-
tween these organisms are largely explained by differences
in the types of engineering features found in each sample. In
particular, S. cerevisiae was the only organism tested in this

Figure 3: Sensitivity plus specificity for the GUARDIAN
single-cell pipelinewhen applied to three target yeast organ-
isms (overall and by organism). Sensitivity plus specificity
equal to 2 or 0 indicates perfectly informed or misinformed
performance, respectively, while a sum equal to 1 indicates
performance no better than random.

batch that had some samples containing small nucleotide
edits and no other signature of engineering, making them
more difficult to call engineered (and impossible to call using
amplicon heatmaps alone). Moving forward, we plan to in-
corporate variant calling into our analysis pipeline to enable
detection of smaller edits. We also plan to automate some
analysis of the amplicon heatmaps and other visualizations
to better highlight portions that are indicative of engineering
or that are possibly the result of experimental defects such
as non-specific amplification. Finally, we are also working
to apply Tapestri to single-cell whole-genome sequencing
(WGS)[1] to enable application of a separate WGS analysis
pipeline that is being developed as part of the GUARDIAN
project.
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1 INTRODUCTION
Droplet microfluidics has the potential to eliminate the test-
ing bottleneck in synthetic biology by screening biological
samples encapsulated in water-in-oil emulsions at unprece-
dented throughput [2]. Sophisticated screens require func-
tional and complex devices that perform exactly as designed.
Effective performance characterization and predictive design
of droplet microfluidic components has been hampered due
to low-throughput and expensive fabrication with standard
soft lithography techniques. This has limited droplet mi-
crofluidics to proof-of-concept devices. Even when some of
these barriers are removed through rapid prototyping, devel-
oping a robust dataset to effectively represent all parameters
as a "lookup table" is near impossible.
One solution to explore how design parameters affect

performance in microfluidics is through machine learning.
Although machine learning can make accurate microfluidic
design automation tools, standard development pipelines re-
quire a large, naively-generated training set (Figure 1, left).
These approaches become intractable in cases where gener-
ating labeled data is particularly time or money-intensive.
Training data-restricted models can benefit from active

learning algorithms, in which the model queries an "oracle"
(the user) during the training process to only generate or
label the data it predicts would best improve model perfor-
mance (Figure 1, right) [6]. Through structured data gen-
eration, the amount of training data needed for an accurate
model can be significantly reduced, speeding up the time to
predictive design and eliminating unproductive user efforts.

Here, we present a novel experimental paradigm to rapidly
generate microfluidic design automation tools. Efficacy of
thismethodwas tested against a previously generated dataset
for a droplet generator design tool (DAFD) [3, 4]. Thismethod
can be extended to additional microfluidic components or
fabrication methods, provided a method for data generation
is high-throughput enough.

2 RESULTS
Efficient data generation for active learning algorithms ne-
cessitates evaluation of the quality of unlabeled data (infor-
mativeness and/or diversity) used in each round of model
training [6]. Informativeness is the predicted amount that a

specific datapoint can improve the model, whereas diversity
is the spread of the data used across the design space. Here,
previously generated data is pooled as "chips" (i.e., all data-
points generated using the same microfluidic device), which
includes 1̃000 datapoints pooled as 43 chips that were fab-
ricated with previously developed rapid prototyping work-
flows [5]. Data was pooled in this way to minimized future
microfluidic devices that need to be made, the most resource-
intensive step in the data generation process.

To initially explore the advantages of active learning, three
data quality metrics were implemented: (1) random choice;
(2) greedy sampling (GS), which chooses the most different
chip to the training set [7]; and (3) query by committee (QBC),
which chooses the most informative chip [1]. In all cases,
the model is seeded with one chip randomly picked from the
training set.

In greedy sampling, optimal candidates are chosen by the
maximum average distance of the geometric features of the
chip from the existing labeled training set (Equation 1). All
features of each datapoint is normalized to avoid bias.

𝑑𝑑𝑝 =
1

𝑁𝑡𝑟𝑎𝑖𝑛

𝑁𝑡𝑟𝑎𝑖𝑛∑
𝑖=1

| |xdp − xi | | (1)

Alternatively, the potential "information" gained through
adding a specific datapoint can be evaluatedwithQBC (Equa-
tion 2).

𝐼 (𝑥) = 1
𝑃

𝑃∑
𝑝=1

(𝑦𝑝 (𝑥) − 𝑦 (𝑥))2

𝑦 (𝑥) (2)

In QBC, the quality of each unlabeled point is evaluated by
the variance of each prediction across 𝑃 regressors. Each re-
gressor is trained on a bootstrapped collection of the training
set. Points with high information are estimate to be those
with a large variance in predicted value. In this study, results
were normalized by the mean prediction to avoid bias for
larger values. Each iteration, the chip with the max average
variance was chosen as the next datapoint.

These methods were implemented into the DAFD frame-
work, consisting of 4 neural networks (NN) predicting the
droplet size and generation rate in the dripping and jetting
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Figure 1: Comparison between a normal machine learning pipeline (left), in which a large training set it fed into the model
and active learning (right), in which the model queries a user for more data after "seeding" with a small initial dataset.

regimes (Figure 2). Regressor accuracy was tested on a ran-
domly partitioned 20% of the total dataset and evaluated
using root-mean-square error (RMSE). Across all NNs, GS
performed better than or equivalent to random choice. This
was distinct in regime 2: an RMSE of 0.9 was achieved with
100 and 150 fewer datapoints for size and generation rate, re-
spectively. This indicates that diversity of data is the most im-
portant characteristic of the training set. QBC had improved
performance than random choice in some cases, however,
performed worse when predicting droplet size in regime 2.
Poor performance by QBC could be from poor initialization
or balancing data selection over the 4 regressors.
3 CONCLUSION & FUTUREWORK
Here, we have shown that active learning can provide a de-
sign framework to streamline the experimental workflow

Figure 2: RMSE error across all four regressorswith different
active learning algorithms. Curves and shaded regions are
the mean and standard deviation, respectively (N=3)

for developing design automation tools. While model im-
provement was variable while simultaneously training four
regressors, this framework can be improved through devel-
opment of a more sophisticated algorithm accounting for
both diversity and informativeness. Model seeding could also
be improved through formal Design of Experiments (DoE),
giving a high-quality base model for further data generation
and model evaluation cycles.
While this first study has used an existing dataset ex-

ploring how microfluidic device parameters affect droplet
generation, we can extend this approach to de-novo models
of different components (droplet sorter, merger, etc.). This
method can also be used to rapidly perform transfer learn-
ing for using a device with custom fluid classes or different
fabrication methods. Development of a streamlined pipeline
for design automation is a necessary step for the standard-
ization of microfluidics, and further spread its adoption by
non-experts.
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1 INTRODUCTION
Droplet microfluidics is well poised to improve the gold
standard in many fields such as synthetic biology [2]. How-
ever, the lack of available design automation tools that can
create a microfluidic droplet generator based on a desired
performance, forces the design process to be iterative, ineffi-
cient, and costly, thus, hampering the wide-spread adoption
of droplet microfluidics in the life sciences. Machine learn-
ing and design automation tools have advanced many fields
with new capabilities, such as genetic circuit design, cell
pattern synthesis, and multi-cellular mass formation design
[1, 8, 9]. The recent introduction of low-cost rapid micro-
fabrication techniques enables generation of large-scale ex-
perimental datasets which was previously not viable in a
realistic cost and time-frame [7]. We previously developed
an open-source machine learning based design automation
tool, DAFD (dafdcad.org) [5], which can utilize the avail-
able data to provide both performance prediction and design
automation. However, to achieve accurate performance pre-
diction and design automation a full-factorial search in flow
conditions (25) and an orthogonal design of experiments
for geometry search (25 devices) were used resulting in a
total 625 experiments. By analyzing the the contribution
of each device to the exploration of the design-space, we
identify a more efficient method to map approximately the
same design-space with just 5 chips. Therefore, by utilizing a
low-cost fabrication method droplet generation design-space
was explored, analyzed, and understood, which in turn en-
ables design automation of high-performance and high-end
droplet generators in a viable and realistic cost-frame.
2 CONFIDENCE ELLIPSES
The observed performance of a microfluidic droplet genera-
tor can be summed up in two parameters: droplet diameter
and generation rate. Since, all the 25 microfluidic devices
were tested at the same 25 flow conditions, the devices that
show a larger variation in the observed performance induced
by changing the flow condition, is more efficient in explor-
ing the design-space. A confidence ellipse can be drawn by
using the variance of the 25 observed data per device in both
directions (droplet diameter and generation rate) as given in
Eq. (1): (

𝑥

𝜎𝐹

)2
+
(
𝑦

𝜎𝐷

)2
= 𝑠 (1)

Figure 1: The performance range of a given microfluidic
droplet generator design can be estimated by confidence el-
lipses. Using a dataset generated through a low-cost rapid
prototyping method and a low-cost fluid combination, per-
formance range of each design and the amount of perfor-
mance overlap are approximated. This analysis reduces the
necessary number of designs that should be fabricated and
tested for extending design automation tools to cover new
high-end fluid combinations and fabrication techniques.

where 𝜎𝐹 is the variance in generation rate, 𝜎𝐷 is the vari-
ance in droplet diameter, and 𝑠 defines the size of the ellipse
(confidence value). Since droplet diameter and generation
rate are independent and by assuming a Gaussian distribu-
tion, Eq. (1) becomes a Chi-Square distribution [4], therefore,
for a 95% confidence, 𝑠 = 5.991. Using the covariance matrix
of the data of each device, the eigenvectors are calculated to
determine the angle that the ellipse takes.
3 EFFICIENT DESIGN-SPACE EXPLORATION
The workflow consists of three phases. Phase 1 starts with
cost and time-efficient exploration of the entire design-space
using low-cost desktop micromilling to generate the initial
large-scale dataset as we previously reported [6]. In phase
2, machine learning models are fitted to the data and using
metrics such as coefficient of determination the accuracy of
the predictive models and the sufficiency and diversity of the
dataset are verified. Afterwards, iso-contours of the Gauss-
ian distribution (confidence ellipses) [3] for the data points
generated with a single device are used to determine the
contribution of each device in exploring the design-space.
The devices with a confidence ellipse that shows a lot of
overlap with other confidence ellipses signifies an inefficient
exploration. On the other hand, the devices with a confidence
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Figure 2: Phase 1: Low-cost rapid prototyping and design of experiments methods are used to generate a large-scale dataset.
Phase 2: Machine learning based performance prediction and design automation accuracy and data sufficiency are verified.
The dataset is analyzed to find a reduced number of devices that cover a similar design-space. Phase 3: The identified designs
can be used for extending the capabilities of design automation tools to support high-end fluids and fabrication methods.

ellipse that has a minimum overlap and encompasses a larger
design-space demonstrates a more efficient search. There-
fore, in phase 3, we can remove the inefficient devices and
determine the minimum number of devices that can be used
to explore the design-space. Consequently, by significantly
reducing the number of microfluidic devices necessary to
explore a design-space, high-end fabrication methods and
fluid combinations could be used to extend the design au-
tomation tool to support high-performance microfluidics in
a time- and cost-efficient manner.

4 CONCLUSION AND FUTUREWORK
Machine learning algorithms enable accurate microfluidic
design automation. However, generating large-scale datasets
required for training these algorithms are resource intensive.
Therefore, efficient frameworks are required for extending
design automation tools. In here, we used information in-
ferred from a dataset generated using low-cost material to
efficient create a dataset for high-end material.
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1 INTRODUCTION
In recent years, synthetic biology has drawn significant
interest for both scientific research and industrial applica-
tions such as biofuel and pharmaceutical production. One
good example is indigoidine, bacterial natural dye with an-
tioxidant and antimicrobial activities [4]. Synthetic biology
process, however, requires multiple iterations of Design-
Build-Test-Learn (DBTL) cycles for optimal production of

∗This work was part of the DOE Joint BioEnergy Institute
(http://www.jbei.org) supported by the U. S. Department of Energy,
Office of Science, Office of Biological and Environmental Research, through
contract DE-AC02-05CH11231 between Lawrence Berkeley National
Laboratory and the U. S. Department of Energy.

target biomolecules, which is time-consuming and labor-
intensive due to low availability of advanced tools and high-
throughput workflows. Here we propose a versatile and ro-
bust droplet-based microfluidic platform that enables high-
throughput iterations of DBTL cycles (Figure 1a). The heart
of our system is a digital microfluidic (DMF) chip that enables
reactions in parallel using nL droplets as reaction vessels
as described in our earlier publications [1]. In addition to
DMF manipulations for mixing and transporting droplets
containing biological parts, proposed platform with 100 dis-
crete chambers is capable of parallel electroporation with
different conditions, and additional reservoirs allow recovery
incubation and screening on chip.
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Figure 1: Microfluidic optimization of biosynthetic pathways. (a) concept of the workflows. (b) Fabricated microfluidic devices
with 100 reaction chambers in 384 well format. (c) Multiple samples loaded on chip. (d) Demonstration of active mixing of
samples in droplets with DMF.

Figure 2: Experimental results of on-chip transformation and indigoidine production. (a) CRMAGE results to knockout GalK.
On-chip CRMAGE achieved over 90% of mutation. (b) Modified indigo-producing strain. (c) Successful indigoidine production
quantified at OD612. Error bars denote standard deviation of biological triplicate.

2 EXPERIMENTAL
Assembled microfluidic chip is shown in Figure 1b, and its
384-well based configuration is compatible with state-of-
the-art liquid handling robots and eliminates the complex
processes of formation and loading of droplets to the chip.
Loaded samples in droplets are kept inside the oil preventing
the evaporations (Fig. 1c), and DMF manipulation enables
active mixing and electroporation on-chip (Fig. 1d). In addi-
tion, our microfluidic chip is manufacturable with commonly
used processes, which is suitable for cost-competitive target
molecules such as indigoidine.

3 RESULTS AND DISCUSSION
We adapt CRISPR-based MAGE (CRMAGE) recombineer-
ing with our platform for efficient gene-editing processes
[3], first targeting an enzyme galactokinase (galK). E. coli
colonies on MacConkey plates with red color indicate the
wildtypes and white colonies indicate the mutants with galK
knockout (Fig. 2a), confirmed by sequencing the genome.
With optimized assay protocols (e.g., concentrations of gRNA
and Cas9 inducer, anhydrotetracycline), wildtype killing rate
achieved over 90% with on-chip transformation.
We then targeted glutamine synthetase (glnA) and blue-

pigment synthetase (SFP/bpsA) enzyme related with indigoi-
dine production (Fig. 2b). For the initial round, we designed
oligos and gRNA sequence for CRMAGE plasmids targeting

T7 promoters [2]. These mutations were screened by an-
tibiotics (kanamycin), and indigoidine production rate with
IPTG inductionwas quantified bymeasuring absorption spec-
tra at 612nm (Fig. 2c). Results clearly indicates the successful
production of blue pigments. After quantification, CRMAGE
plasmid can be self- eliminated by inducing rhamnose for
the next round targeting different loci.

4 CONCLUSION
We have developed a droplet-based microfluidic pathway op-
timization system, which successfully demonstrated on-chip
CRISPR-based gene editing and quantification of indigoidine
production rate. With the results shown above, we believe
our fully-automated system with capable of 100 reactions
at a time would dramatically accelerate the DBTL cycle of
biosynthetic pathways for emerging synthetic biology appli-
cations.
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1 INTRODUCTION
Many biological experiments are described in text docu-
ments, such as laboratory notebooks, capturing information
such as the purpose, execution, and results of an experiment.
In such descriptions, however, authors typically present in-
formation in a highly personal and idiosyncratic manner, at
varying levels of detail and often omitting critical informa-
tion. Consequently, this lack of consistency lead to a variety
of issues commonly encountered when attempting to com-
pare experimental reports created by different authors or to
build upon those results in new work. Humans can some-
times infer sufficient information to interpret such informal
documentation of experiment designs, but this is typically
an ad-hoc, challenging, and error-prone process, not partic-
ularly susceptible to automation. At the same time, precise
and unambiguous specifications of both elements and their
combinations can be expressed in machine-readable repre-
sentations such as SBOL [2], but making use of these tools
is difficult for many investigators.

A “middle-ground” approach combining both accessibility
and representational precision, however, has been known at
least as far back as Winograd’s SHRDLU system [4], using
machine feedback and prompting to shape human input into
a semi-structured form that can be readily interpreted and
checked by machines. We have applied this approach to de-
velop Intent Parser, a tool that combines a word-processing
interface with structured tables and assisted linking to def-
initions to provide a simple interface for incremental cod-
ification of experiment designs. Use of this tool can help
synthetic biology collaborations by reducing the time and
skills required to produce precise experiment designs, en-
abling automatic checking for errors and ambiguities, and
simplifying interpretation of experimental data.

2 INTENT PARSER ARCHITECTURE
Fundamentally, the Intent Parser acts as a link between a
user-friendly document editor (in this case Google Docs)
and a repository of formal definitions (in this case SynBio-
Hub [3]). By linking these and adhering to certain document

∗Supported by AFRL and DARPA under contract FA875017CO184. This doc-
ument does not contain technology or technical data controlled under either
U.S. International Traffic in Arms Regulation or U.S. Export Administration
Regulations. Any opinions, findings and conclusions or recommendations
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Figure 1: Architecture of Intent Parser: a Google Docs add-
on sends user requests to a “back-end” server that inter-
acts with databases of definitions (SynBioHub) and termi-
nology (SBOL Project Dictionary). Results return to the add-
on, which offers the user choices and alters the document.

conventions, the tool allows users to generate unambiguous
machine-readable descriptions of experiment design. In our
implementation, we have chosen to use Google Docs for the
editor, SynBioHub [3] as the repository (in combination with
the SBOL Project Dictionary interface [1]), and to output
experiment design specifications in JSON.
Intent Parser is implemented as an “add-on” to Google

Docs using the Google Docs API to implement the architec-
ture shown in Figure 1. Once installed, this add-on provides
a file menu of operations that can be performed on any
Google Doc. Users conceiving of an experiment write up an
experiment description in a Google Doc and invoke requests
around two workflows: 1) grounding document text with
links to definitions in SynBioHub [3], and 2) defining, vali-
dating, and exporting experiment requests that make use of
those definitions. These requests can be made at any time,
supporting an incremental and collaborative approach to
experiment design.
When the user makes a request in the add-on, an HTTP

request is sent to the Intent Parser Server, which then parses
the document and returns an HTTP response with the result
back to the add-on. The server is a backend that carries out
requests by interacting with SynBioHub [3], which provides
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Figure 2: Screenshot of Intent Parser in action on a document from the DARPA SD2 program, showing a measurement table
with reagents linked to definitions in SynBioHub [3]. The navigation panel on the right suggests links to add, in this case a link
for the term “Glucose” (document location not shown), providing both a best guess and a number of potential alternatives.

information about referenced elements in SBOL format [2],
and with the SBOL Project Dictionary [1], which provides a
spreadsheet interface that tracks shorthand and lab-specific
names. Figure 2 shows an example of linking information
found on SynBioHub to names and terminologies on the
Google Doc.
Experiment designs are based on tables following a spe-

cific format, for which templates can be generated from an
add-on menu item. In this abstract, these tables are referred
as Intent Parser tables. Validation and export requests are
sent to the Intent Parser Server to validate the contents of
Intent Parser tables parsed from the Google Doc. Validation
follows a predefined data schema that checks for the required
information, using SynBioHub and the SBOL Project Dictio-
nary to validate that all terms extracted from the table are
properly grounded. From these, the server generates both
reports on validity and JSON representations of experiment
design.

3 CASE STUDY: DARPA SD2 PROGRAM
The DARPA Synergistic Discovery and Design (SD2) pro-
gram aims to accelerate scientific discovery by machine-
assisted integration of experimental design, build, test, and
learning, and is testing these aims via a collaboration of over
100 researchers across over a dozen organizations. In SD2,
Intent Parser is used by both data scientists and experimen-
talists to define and request experiments via Google Docs.
Stakeholders including data scientists, subject matter ex-

perts, and experimental labs were consulted to help deter-
mine a format that was sufficiently general to specify exper-
iment designs spanning across multiple challenge problems,
protocols, laboratories, and experiment designs. The infor-
mation recorded in these experiment requests includes the
name of the lab to execute the experiment, which measure-
ments are to be taken and at what time points, amounts of
reagents, strains, and media to be used in each sample, as
well as experimental conditions and parameters such as cul-
turing temperature. As users describe the experiment, they

also check its validity and required number of samples with
Intent Parser. Finally, when when the experiment design is
validated and all parties are satisfied, the users can request
that the experiment be executed.
The generality of the approach is demonstrated by the

breadth of usage in this program: during a four month pe-
riod, 19 SD2 users from various organizations generated 34
experimental requests in multiple different areas of investi-
gation, resulting in a total of 16,876 experimental samples
executed using three different protocols and collecting data
from a variety of instruments. Because these experiments are
generated systematically with grounded definitions, meta-
data assignment and analysis has been greatly simplified and
accelerated, helping enable faster analysis and more effective
sharing of data and analyses across the SD2 program.

4 CONTRIBUTIONS
Intent Parser provides a user-friendly process for describ-
ing experiments, grounding narrative design descriptions in
links to a SynBioHub repository, and generating and validat-
ing specifications for wet-lab experiments. The positive ex-
periences of users in the SD2 program suggest this approach
has value, and should continue to be elaborated. Potential
future directions include improving integration and UI, in-
creasing scope of descriptions, and using natural language
processing to extract additional semantic content from prose.
This tool is actively developed at SD2E’s GitHub reposi-

tory https://github.com/SD2E/experimental-intent-parser.
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1 INTRODUCTION
Sharing information about biological experiments between
researchers is often challenging. Reagents, strains, and ge-
netic constructs are often given “shorthand” names that are
ambiguous (e.g., “ara” for L-arabinose), differ between re-
searchers (e.g., “L-arab” vs. “Arabinose”) or are unknown
outside of a particular group (e.g., “plasmid 37”). Likewise,
the particular combinations used in each sample of an exper-
iment are often expressed in variable personal shorthands,
often accidentally omitting important details.
Humans can sometimes infer sufficient information to

interpret such informal documentation of experiment de-
signs, but this is typically an ad-hoc, challenging, and error-
prone process, not particularly susceptible to automation.
At the same time, precise and unambiguous specifications
of both elements and their combinations can be expressed
in machine-readable representations such as SBOL [2], but
making use of these tools is difficult for many researchers.
Common machine-readable terminology also typically needs
to be agreed upon in advance, which is often onerous or im-
possible given the ongoing evolution of terms in research
projects—indeed, some studying the philosophy of science
argue that the ability to define terminology is a good marker
for the conclusion of a scientific investigation! [3]

The SBOL Project Dictionary helps bridge this gap with a
simple spreadsheet-based interface that allows researchers
to collaboratively and incrementally construct a shared ter-
minology. This interface provides a structured format of tabs
and columns for researchers to link lab-specific names to
shared names, aliases, and canonical definitions using SBOL.
Software tooling can then access this set of relations at any
time in order to translate metadata terms into an evolving
common vocabulary, thereby supporting simple post-hoc
integration and debugging across collaborators.

2 ARCHITECTURE
Figure 1 shows the architecture used to implement the SBOL
Project Dictionary. This implementation is based on two key

∗This work was supported by the Air Force Research Laboratory (AFRL) and
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technology or technical data controlled under either U.S. International
Traffic in Arms Regulation or U.S. Export Administration Regulations. Any
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Dictionary Maintainer

Dictionary Writer

Google Sheets

SBOL Project Dictionary

Figure 1: Architecture of SBOL Project Dictionary: the dic-
tionary is held in a Google Sheet, which is maintained and
synchronized with canonical storage of names, aliases, and
definitions in SynBioHub. Users interact either directly or
through tools using a Dictionary Writer API, and receive
email notification of integration problems to resolve.

pre-existing tools: Google Sheets, which provides a collabora-
tive spreadsheet editing interface and API for software tools,
and SynBioHub [4], a database server for sharing synthetic
biology information encoded in SBOL [2]. These are linked
by configuring a Dictionary Maintainer service to connect
to a particular Google Sheet and SBOL collection in SynBio-
Hub. Periodically, the Dictionary Maintainer updates and
synchronizes. First, it ensures the Google Sheet is configured
to follow a specified format, including protecting regions
that should not be user-editable. It then validates all of the in-
formation in the SBOL Project Dictionary and synchronizes
with SynBioHub, creating SBOL objects as needed to store
new dictionary entries, importing SBOL links when matched
by a new entry in the dictionary, and reporting errors to the
user via a status column in the spreadsheet.
In particular, the SBOL Project Dictionary provides and

maintains spreadsheet columns for the following:
• A single common name, which is the researchers’ cur-
rent consensus on a human-friendly term for each
entry, e.g., "Synthetic Complete Media"

• Aliases, which are alternative terms shared between
researchers, e.g., "SC Media", "Synthetic Complete".
There may be many such aliases per entry.
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Figure 2: Screenshot of the SBOL Project Dictionary as deployed in the DARPA SD2 program showing key entry columns,
including name, type, canonical SynBioHub URI, laboratory UIDs, grounding definition, and status.

• AURL for an entry in SynBioHub, which is guaranteed
never to change once an entry has been created.

• Type information (e.g., RNA, DNA, cell strain, media).
• Lab-specific identifiers for each distinct set of collabo-
rators, such as personal shorthands, obsolete terms, or
laboratory information management systems (LIMS)
unique identifiers (which are generally not human-
interpretable). Each lab gets its own column, and there
may be many identifiers for each item in each lab.

• Links to a canonical definition, e.g., to curated databases
such as ChEBI, NCBI taxonomy, or UniProt, or to the
suppliers of complex reagents.

• Status, time last updated, and errors such as type mis-
matches or detection of duplicate identifiers.

All of these except for the SynBioHub URL and status can
be freely edited by researchers at any time, reflecting the
ongoing evolution of their private and shared vocabularies
(note that ensuring a term’s definition remains coherent
over time is not generally machine-checkable, and is thus
left to the researchers sharing the document). The SBOL
Project Dictionary provides different tabs for six main types
of vocabulary items—genetic constructs, strains, proteins,
reagents, collections, and attributes—with drop-down menus
supporting sub-types on each tab as needed.
Users can create and edit entries directly by browsing to

the Google Sheet or via software tools they set up to interact
with a provided Dictionary Writer API, written in Python.
Once entries have been established, other tools can then use
the definitions in SynBioHub for integration and display of
metadata, mapping between private names, common names,
and detailed canonical definitions as needed. When such
mappings fail, the SBOL Project Dictionary also provides a
“Mapping Failures” tab into which such problems can be re-
ported. Periodically, the dictionary scans this tab and emails

the provided contacts for a laboratory to let them knowwhen
there are missing entries or errors in entry columns that they
are responsible for, such that they can update those entries
and resolve mapping failures. This feedback closes the loop
to enable not only incremental and post-hoc integration but
also incremental and post-hoc error resolution

3 CASE STUDY: DARPA SD2 PROGRAM
In DARPA’s Synergistic Discovery and Design (SD2) pro-
gram, the SBOL Project Dictionary forms a key component in
integrating a design-build-test-learn round trip between ex-
perimentalists, laboratory automation, and data analysts [1].
Over a period of approximately a year and a half, the SD2
deployment of the SBOL Project Dictionary has been used to
curate collaborative terminology for more than 1000 terms:
521 genetic constructs, 304 strains, 54 proteins, 89 reagents, 7
collections, and 62 attributes, a sampling of which are shown
in the screenshot in Figure 2. A large fraction of these have
been entered and updated incrementally by hand by many
different participating researchers, while others have been
uploaded using automation—particularly entries for labora-
tory LIMS identifiers. The entries in the SD2 dictionary have
been used to support the integration of data and metadata
for dozens of experiments spanning four performing labora-
tories and five different working groups of researchers, each
involving different organisms, goals, and technologies.
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1 INTRODUCTION
The field of synthetic biology, still in its early stages, has
largely been driven by experimental expertise, and much of
its success can be attributed to the skill of the researchers in
specific domains of biology. There has been a concerted effort
to assemble repositories of standardized components [3, 7];
however, creating and integrating synthetic components re-
mains an ad hoc process. Additionally, many of the ethical
issues concerning the re-purposing of living organisms and
their biological processes for processes in the chemical engi-
neering, pharmaceutical, and allied industries remain open
areas of philosophical research and social discourse.
The Synthetic Biology Knowledge System (SBKS) is a

repository system designed to aid synthetic biologists by
interlinking the synthetic biology literature through the ap-
plication of ontologies. While many of these linking tasks
are concerned with DNA/protein sequences, the organisms
they are cultivated in, or chemical products of cellular pro-
cesses, it is equally important to interlink the various ethical
issues that concern the tailoring biological life in the form of
bacteria and yeasts for participation in industrial processes
to consider. Thus, an additional linking task for the SBKS
is to link pertinent bioethics articles to biological entities,
processes, and products that are central to the research of
synthetic biologists. In this paper, we make a preliminary
analysis of the state of the ethical discourse in the burgeoning
synthetic biology discipline.

2 DATA AND METHODS
The data come from the Web of Science, and we focus in
particular two corpora. The first consists of literature from
synthetic biology as a field in general, and the second consists
of a subset that discusses ethics and ethical implications
of synthetic biology work. There exists a well-established
focus on iterative strategies for defining interdisciplinary
fields [4], and a burgeoning literature applies established
approaches to synthetic biology [3, 6, 7]. Shapira et al. [7]
conducted an extensive review of search strategies to extract
synthetic biology publications, detailing the consequences
of all query inclusions and exclusions made by previous

literature; we employ their query, which was verified by
multiple practicing synthetic biologists.

3 RESULTS
Synthetic Biology
We quickly review the findings of the entire synthetic biol-
ogy field. The field delineation strategy mentioned above
produced 15,152 publications between 1900 and 2019.1 The
earliest publication meeting the selection criteria was in 1913.
After 1990, one observes an abrupt increase in texts produced
and an exponential increase starting around 2000. Looking
at the keywords listed by authors, the top two are by far
“synthetic biology” and “metabolic engineering”; other top
keywords include e. coli, “systems biology”, “protein engi-
neering”, and “dna”. The top three fields represented in syn-
thetic biology publications are biochemistry and molecular
biology, biotechnology and applied microbiology, and bio-
chemical research methods; the top three publication outlets
are ACS Synthetic Biology, Nucleic Acids Research, and PNAS.
Keywords, fields, and journals related primarily to ethics and
the social implications of research are notably absent from
even the top 20 keywords, sub-fields, and publication outlets.

Synthetic Biology Ethics
The ethics corpus contains 572 publications between 1993
and 2019. Figure 1 visualizes the number of publications per
year in this period. A key finding is that the growth starting
in 2010 resembles that of synthetic biology more generally
starting at 2000; there appears to be a ten-year lag before
ethics became a focal topic within synthetic biology.

A correlated topic model (CTM) using stemmed terms [1]
suggests that there are nine distinct topics within synthetic
biology ethics. Figure 2 plots the proportion of the corpus
devoted to each of these nine topics and provides the five
most distinctive keywords for each topic. The clustering
of the five keywords results from the explicit modeling of
correlations among them. One notable finding is that no
single topic dominates synthetic biology ethical discourse:

1We exclude 2020 because the year is not yet complete.
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Figure 1: Yearly number of ethics publications

Figure 2: Proportion of topics in ethics corpus

the most prevalent topics each constitute just above 15%
of the corpus, and there is a relatively steady decline in
prevalence to the least popular topic, which constitutes 6-7%
of the corpus. One may see abstract discussions, for example,
in Topic 2 that is more philosophical and in Topic 1 that is
more political. Topics 5 and 9 appear to occupy a middle
ground (re: abstractness), as they discuss medical and food
safety, respectively. Other topics, such as 3 and 4, seem to be
more focused on concrete synthetic biology practices.
Our final point pertains to the social structure underpin-

ning synthetic biology ethics. Figure 3 plots the number of
unique authors and addresses per year. Following the trend
from Figure 1, there is a sharp increase in both the unique
number of authors and institutions in the synthetic biology
publications. One sees in a similar dramatic increase in the
fields producing these publications.
These trends suggest that ethical reflection within syn-

thetic biology is at a unique point in its development. “In-
visible colleges” [2, 5] describe a form of social organization
in new fields where a core set of intellectuals organizes the
activities underlying the new field. We conducted a detailed

Figure 3: Unique authors and addresses producing ethics
publications each year

network analysis of relationships between authors and in-
stitutions (to be shown in presentation/poster). Synthetic
biology tends to resemble a field transitioning out of an
invisible college structure. A core community between col-
laborators still dominates the field, but this community is
rather large and is supplemented by several other commu-
nities. Institutions—connected when researchers from each
collaborate—are organized into four rather distinct groups:
one consisting mostly of U.S. institutions, another consisting
mostly of European institutions, a third of largely Chinese
institutions, and a four of primarily Japanese institutions.
However, synthetic biology ethics remains dominated by a
central set of institutions, and authors within this ethics net-
work tend to collaborate only with a small number of other
authors. The SBKS and related knowledge systems should
incorporate the diverse topics we have identified and the
texts from the distinct social and institutional communities.
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1 INTRODUCTION
The field of synthetic biology has seen exciting growth in
the last few years. Though the amount of data and publica-
tions has increased tremendously, the numerous available
data sources are fragmented, and locating relevant data for
genetic design is a challenging task. For example, finding
biological part performance and sequence data remains a
manual process of sifting through articles and supplemen-
tal material. To address this, we are developing a synthetic
biology knowledge system that integrates disparate data
and publication repositories to deliver effective and efficient
access to available information.
Scientific articles contain a wealth of information about

experimental methods and results on biological designs. Due
to its unstructured nature and multiple sources of ambigu-
ity and variability, however, extracting information from
text is a difficult task. We are exploring various text mining
approaches to identify concepts and entities in published
articles in order to link each article to other elements in our
knowledge system.

This paper describes our work using named entity recogni-
tion (NER), a sub-field of text mining, to mine existing litera-
ture. The goal of NER is to locate and classify named entities
present in text into pre-defined categories. For synthetic
biology, examples of such categories are names of genes,
vectors, and regulatory elements. NER in biology domains
has additional challenges due to the pace of new named enti-
ties being added, lack of naming convention, lengthy names,
presence of special characters, and frequent and variable use
of abbreviations.

2 METHODS
Deep neural network approaches have been applied to NER
on biomedical texts. Specifically, state-of-the-art approaches
use Long Short-Term Memory (LSTM) [2] with Conditional
Random Field (CRF) [3] models and Transformers [6]. In
our experiments, we use two deep neural network mod-
els developed for biomedical NER, namely HUNER [7] and
BioBERT [4].

HUNER (Humboldt-Universität Named Entity Recogni-
tion) uses a combination of bidirectional LSTMs and CRFs.
LSTMs are a type of deep learning model known as recurrent
neural networks that can learn sequential data. Recurrent
neural networks have an internal state to retain context from
previous inputs, enabling them to learn sequences of data
such as speech and text. In a bidirectional LSTM, each input
sequence is presented both forwards and backwards so that
context before as well as after the word being modeled are
captured. A CRF is a discriminative probabilistic graphical
model that models the conditional distribution of output
variables given observed values. CRFs can also take con-
text into account in making predictions for a data sample,
making it ideal for predicting sequential data. In HUNER, a
bidirectional LSTM is used to encode forward and backward
contexts for the input word, which are then concatenated
and fed to a CRF to predict the NER tag for the word.

BioBERT (Bidirectional Encoder Representations from
Transformers for Biomedical Text Mining) uses another type
of deep neural network model called a Transformer. Trans-
formers are also designed to learn sequence data. Instead
of relying on recurrent connections, however, Transform-
ers use an attention mechanism to weigh the relevance of
each input in producing the output. BioBERT is pre-trained
on top of BERT [1], a general-purpose language representa-
tion model. This pre-training was conducted over PubMed
abstracts and PubMed Central full-text articles to adapt to
biomedical text mining tasks. In our work, the BioBERT out-
put is fed into a simple feed forward neural network for the
final NER prediction.
3 DATA
HUNER Data. The HUNER dataset consists of 34 different
corpora covering five entity types: Chemicals, Cell Lines,
Genes/Proteins, Species, and Diseases. The data was parti-
tioned into 60% training, 10% validation, and 30% testing.
ACS Data. The American Chemical Society (ACS) Data com-
prises of full text articles from the Synthetic Biology Journal.
The data set contains 1,545 articles between the years 2011
and 2019.
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Figure 1: Annotations discovered by our NER model in an ACS article

4 RESULTS
Results onHUNERTest Data. Table1 shows the F-1 scores
for HUNER and BioBERT on a subset of the HUNER dataset.
F-1 is the harmonic mean between the precision and recall,
where precision calculates howmany instances are predicted
correct out of all instances and and recall calculates how
many instances are correctly predicted out of all the cor-
rect instances that should have been predicted. The results
show that BioBERT obtained a higher F-1 score for all of the
datasets except for OSIRIS.

Table 1: HUNER and BioBERT F-1 scores on HUNER Data

Entity Type Corpus BioBERT HUNER

cellline
Gellus 0.924 0.714
JNLPBA 0.818 0.649
CLL 0.883 0.730

chemical

SCAI Chemicals 0.931 0.778
CHEBI 0.877 0.804
CHEMDNER patent 0.915 0.855
CHEMDNER 0.920 0.889
CDR 0.937 0.929

disease

miRNA 0.894 0.823
NCBI Disease 0.923 0.854
CDR 0.903 0.837
SCAI Disease 0.855 0.801

gene

BioCreative II GM 0.898 0.779
miRNA 0.807 0.697
Variome Gene 0.928 0.823
IEPA 0.913 0.824
BioInfer 0.932 0.846
DECA 0.731 0.688
OSIRIS 0.811 0.874

species

Variome Species 0.823 0.701
s800 0.834 0.725
miRNA 0.955 0.909

Preliminary results on ACS Data. Our ultimate goal is to
extract this type of information from the ACS dataset. To
determine the efficacy of applying NER on biology-specific
corpora to identify synthetic biology entities, we used our
NER model to predict the entity types on 100 randomly se-
lected ACS articles. Figure 1 shows entity mentions found by
NER in an article. Each mention is associated with a single
entity type. The BRAT annotation software [5] was used to
create and view annotations. Figure 2 shows a word cloud
that illustrates how often the Chemical types were men-
tioned in the ACS dataset. The larger the term is in the word
cloud, the more often it was identified by NER in the set of
ACS articles. Annotations found by the NER model will be
reviewed and enhanced by domain experts to create a more
refined dataset for fine tuning the model.

Figure 2: Word cloud of Chemical entities found by NER

5 DISCUSSION
This work presents the application of deep neural network
models to identify entities mentioned in scientific articles.
The approach described here to extract information about
the contents of an article can be used to link publications to
data in our knowledge system. The integration of disparate
data sources will allow researchers to effectively and effi-
ciently locate related work, enabling maximal leverage of
previous research, and has the potential to greatly accelerate
exploration and discovery of synthetic biology research.
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1 INTRODUCTION
Visual depiction is an essential tool for both the develop-
ment and sharing of engineered designs, including those
in synthetic biology. The field’s determination to develop
a well-defined standardized approach for design engineer-
ing naturally necessitates a well-defined standard for design
visualization. To achieve this, the Synthetic Biology Open
Language Visual (SBOLv) [1] was created, providing a stan-
dardized graphical notation for visualization of biological
systems. SBOLv is a complementary standard to the Syn-
thetic Biology Open Language (SBOL) [3] standard, which
provides a data format that stores both functional and struc-
tural information for a given synthetic biology design.
VisBOL was the first visualization tool to directly inte-

grate both SBOLv and SBOL. Implemented in JavaScript,
VisBOL was developed for rendering SBOL files on the Web.
Currently, it is utilized by web applications such as SynBio-
Hub [2]. Although VisBOL has undoubtedly been useful for
visualizing DNA circuits, it has become increasingly out-
dated as new versions of SBOLv have been released. This
paper presents VisBOL 2.0, a heavily redesigned version of
the original VisBOL that extends support to more general ge-
netic circuits, further improving web-based visual depiction
of synthetic biology designs.

2 RESULTS
By redesigning the architecture of the VisBOL code base,
VisBOL 2.0 fixes many of the issues that were causing the
VisBOL visualization tool to slowly become obsolete.

Interaction Rendering
The main issue that prompted a redesign of VisBOLwas inad-
equate interaction visualization. SBOL version 2 introduced
the capability to represent interactions between different
parts of the design. However, the original VisBOL was built
to render only simple DNA circuits. The architecture of the
VisBOL rendering pipeline made mapping interaction partici-
pants to glyphs in the depiction difficult, making consistently
accurate interaction rendering placement problematic. In an
effort to work around this problem, interactions were ren-
dered separately from the circuit. Figure 1 shows an example
of VisBOL attempting to render a genetic design with inter-
actions.

Figure 1: Original VisBOL’s rendering of a genetic design
with interactions. Note that interactions are rendered sep-
arately.

VisBOL 2.0 overcomes this issue by redesigning the ren-
dering process and utilizing a different backing data struc-
ture. VisBOL 2.0 constructs the display using a graph data
structure, regarding part glyphs as nodes and interactions
as edges. Each glyph is assigned its own unique identifier,
enabling seamless mapping of interaction participants to
glyphs in the rendering. The glyphs are then rendered recur-
sively, consistently placing each glyph and its interactions
in the correct location. Figure 2 demonstrates VisBOL 2.0’s
rendering of the same genetic design the original VisBOL
attempts to render in Figure 1.

Viewing Tools
Another important issue with the original VisBOL tool was
its lack of visual customization. VisBOL did not support resiz-
ing/scaling of its depictions. This limitation became a prob-
lem when rendering genetic designs that included hundreds
of glyphs; viewing the entire design at once was impossible
as it was too large. An inability to view glyphs on a range
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Figure 2: VisBOL 2.0’s rendering of the genetic design seen in figure 1. Note that interactions are rendered in their correct
locations rather than being rendered separately.

made it frustratingly difficult for users to track what section
of the design they were viewing, thereby compounding the
effect of not being able to resize large renderings.

VisBOL 2.0 addresses these problems by utilizing paramet-
ric SVG and tracking the index of each glyph in the display
during rendering. Parametric SVG enables VisBOL 2.0 to
resize glyphs in real time without restarting the entire ren-
dering process, making resizing the display efficient and
seamless. Keeping track of the index of each glyph in the
display allows VisBOL 2.0 to either display glyphs within a
certain range or by pages of custom length, making it easier
to keep track of what section of the design is being viewed.

Software Scalability
As the original VisBOL attempted to adapt to added capa-
bilities of new SBOL versions, the open-source code base
became increasingly difficult to maintain. Since there is not
a strict separation of different concerns in the original code,
such as gathering relevant information and rendering, imple-
menting significant changes or adding new features to the
software, such as interaction rendering, became increasingly
difficult.
VisBOL 2.0 implements a separation of concerns, strictly

dividing the tasks of parsing design information, creating the
backing data structure, and rendering the display. This allows
significant changes and new features to be implemented
seamlessly. It also enables VisBOL 2.0 to quickly add support
for all future SBOL versions.

3 DISCUSSION
VisBOL 2.0 is currently under active development. Listed
below are enhancements we plan to begin working on soon:

• Subscribing to a parametric SVG library rather than
manually adding new SBOLv glyphs.

• Saving layouts in a standard format enabling exchange
with other tools such as SBOLCanvas.

• Improving handling of interaction collisions.
• Enabling users to create constraints for visualization.

VisBOL 2.0’s source code can be found on GitHub at
https://github.com/VisBOL/visbol-js/tree/visbol_redesign.
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1 INTRODUCTION
With the massive growth of community designed parts, open-
source repositories such as SynBioHub [2] have become
increasingly popular among synthetic biologists as a con-
venient way to store and share their genetic designs online.
However, the sheer size of such repositories make it difficult
to simply browse for the desired parts. The reference in-
stance (https://synbiohub.org) contains over 100,000 publicly
available parts in its repository, not counting the various pri-
vate repositories added by users. Currently, users can only
find a part based on a keyword in the part’s description, or
through various filters such as date of creation, creator, or
collection. However, prior to this work, it was not possible
in SynBioHub to search for similar sequences.
Well-known tools such as BLAST already exist, but are

not well-suited for sequence-based searching, as its use of
a local alignment algorithm (which aligns a substring of
the query sequence to a substring of the target sequence)
is more suited for finding patterns between divergent se-
quences within other domains, which can lead to false posi-
tives. VSEARCH [3], an open-source alternative to the USE-
ARCH [1] tool, uses a more suitable global alignment algo-
rithm, which is more effective at comparing similarities over
entire sequences.

VSEARCH was implemented in SynBioHub through SBOL-
Explorer [4], a tool that enhances search by applying PageR-
ank, clustering analysis, and other techniques. Users can
either use sequence-based searching through SynBioHub’s
web interface (Figure 1), or through SynBioHub’s API by
sending GET requests using curl or other languages to get a
JSON formatted output instead of a page of results. Various
options allow the user to tweak their their search results,
which may affect the runtime of VSEARCH.

2 RESULTS
With the addition of a new sequence search page at
(https://synbiohub.org/sbsearch), users can search by either
entering their sequence into a text box or uploading a FASTA
or FASTQ file. Table 1 shows the various options that users
can adjust when sequence searching.

For users who prefer the command line, SynBioHub’s
API documentation (https://synbiohub.github.io/api-docs/
#search-endpoints) provides instructions to write a GET re-
quest using either curl, Python, or JavaScript. An example
of a Python script querying for exact matches of a sequence
via file upload is shown below:

import requests
response = requests.get(

'http://localhost:7777/search/file_search='
+'%2FUsers%2Fericyu%2FDownloads%2Fseq.fsa&'
+'search_exact=true&',
params={'X-authorization': '<token>'},
headers={'Accept': 'text/plain'},

)
print(response.status_code)
print(response.content)

After submitting the GET request to SynBioHub, users will
receive a JSON-formatted output similar to the result below:

[{"type":"http://sbols.org/v2#ComponentDefiniti
on","uri":"https://synbiohub.org/public/igem/
BBa_J06480/1","name":"BBa_J06480",
"description":"R0079.B0015",
"displayId":"BBa_J06480","version":"1"}]

3 DISCUSSION
Further work is being continually done to add support for
more options when using sequence searching through Syn-
BioHub. Additionally, sequence searching will be used as
part of the Synthetic Biology Knowledge System (SBKS) that
leverages existing data repositories and publications to cre-
ate a single interface in order to deliver effective and efficient
access to collectively available information.

4 METHODS
VSEARCH was made accessible in SBOLExplorer through an
endpoint implemented in Python using the Flask package,
allowing SynBioHub’s NodeJS backend to query
SBOLExplorer.
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Figure 1: Sequence search tool on SynBioHub

Table 1: Description of search options available to users.

Option Name Description Default Value

Search Method Ability to search by exact match or by some iden-
tity threshold (see "Pairwise Identity Definition")

Global

Number of Results Number of hits before stopping search. Note that
a higher number of results will lead to an increase
in search time.

50 results

Minimum/Maximum Sequence Length All sequences below or above the base pair thresh-
old specified will be excluded from the database
for comparison.

Min: 20bp
Max: 5000bp

# of Failed Hits Before Stopping Number of false matches before stopping search. N/A
Percent Match Float between 0 and 1 specifying percentage iden-

tity to query sequence. Anything below the thresh-
old will not be included in the search results.

0.8

Pairwise Identity Definition Formula to calculate percentage match between
query and target sequence.

Edit distance exclud-
ing terminal gaps
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1 INTRODUCTION
Synthetic biology is a movement to standardize genetic en-
gineering and make it more repeatable. An important ad-
vancement was the development of standardized genetic
parts known as BioBricks, which can be composed using
restriction enzyme assembly [3]. The iGEM (international
Genetically Engineered Machines) competition is an impor-
tant synthetic biology outreach activity which is run by the
iGEM foundation in keeping with their principles of the ad-
vancement of synthetic biology via education, competition,
and development of an open and collaborative community.
As part of the iGEM competition students submit records
of any ‘parts’ they create to the iGEM registry (http://parts.
igem.org/Main_Page). The iGEM registry was converted to
the Synthetic Biology Open Language (SBOL) data format, a
standard language for describing genetic designs, [2] and a
preliminary analysis of the data was carried out to predict
the size of a potential library as well as quantify current
problems with the registry data set.

2 RESULTS
The ultimate goal of our analysis is to develop a library of
parts (basic and composite) that are well annotated enough
to be easily reused and computationally modelled. To do this,
this paper proposes thinking of two separate types of data,
the innate versus the experimental. The innate data of a part
would be the sequence and factors that relate solely to the
sequence (such as the fluorescence of GFP). Any data related
to the context of the part is considered ‘experience’ data. For
example, the strength of a promoter is experience data as
it relates to the organism in which it is used. We suggest a
library that contains core parts and their innate data and
links in each ‘experience’ of part use and the data related to
that via a provenance annotation. This library model facil-
itates the reuse of parts as it highlights the ‘popularity’ (a
useful heuristic for confidence) of a part via the number of
experiences it has. This also facilitates inter-organism work
as it more clearly separates the data linked to a particular
model organism and encourages the collection of experi-
mental data (such as strain and growth medium) for every
measured property of a part.
As a step towards the development of a library, we ana-

lyzed the iGEM SBOL Data set created in 2017. The initial

analysis provides an estimate of the number of unique se-
quences that are useful in future genetic engineering designs.

A detailed analysis is shown in Table 1. This table is based
on the sequential application of filters based on the type
of part represented using the Sequence Ontology (SO) [1].
The first filter applied was the minimum length filter ("Se-
quences Over Minimum Length" column). The minimum
length used is shown in the column "Minimum Length Pa-
rameter". Initially, the minimum length for many parts is
set to 6 base pairs (bp) or the equivalent of 2 codons/amino
acids (aa). However, for CDS 40 bp (about 13 amino acids)
was used as the shortest human enzyme found in UniProt
(Cytochrome P450 2A7) is 20aa (60bp). As plasmid and plas-
mid vectors generally contain a CDS their minimum length
was also increased to 40bp. This simple filter removes almost
2,000 components which had no sequence associated with
it or a very short sequence. The next filter that was applied
looked at unique sequences per SO Type. It removed any
exact sequence copies. However, as it worked by SO type
the same sequence may, for example, still be repeated as
both a terminator and CDS. This can be seen as 33,113 is the
total number of unique sequences over a minimum length
whereas by role the total is 33,588. Thus 475 sequences are
repeated exactly but given different SO types. The final filter
of which considers looking for basic parts. Components may
be ‘basic’ or they may be ‘composite’. Basic parts do not
contain any sub-parts whilst compound parts have one or
more sub-parts.

3 DISCUSSION
The initial analysis has indicated that there are probably
fewer than 18,000 unique, non-composite sequences which
might lead to well described parts with complete records.
However, the filtering is not exact. For example, the exclu-
sion of all composite parts is perhaps too strict as there are
composite parts (such as the double terminator BBa_B0015)
which are useful, and others such as Engineered Regions
which would be expected to have sub-parts. As a rough pass,
removing parts such as terminators that contain promoters
as sub-parts and thus are likely to be mis-annotated, useless,
or both, it is a simple and effective heuristic.
The initial filtering removed roughly 45% of the data.

Whilst some of this may be too conservative and worth
revisiting, there are also parts contained in the final 17,851
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Table 1: iGEM Conversion. A sequential filtering was carried out to try and determine the ‘useful unique entities’ in the con-
verted iGEM dataset. Analysis was carried out per SO type as expectations for different types are different (e.g. RBSs would be
expected to be shorter than chromosomes). Sequence count provides a simple count of the number of sequences, sequences
over the minimum length is the number of sequences with a length greater than that specified by the minimum length pa-
rameter, unique sequences over a minimum length takes the previous count but removes any duplicate sequences within the
category. Finally, an analysis was carried out to filter out composite parts; NB: this assumption may be too stringent for types
such as Engineered Region.

SO Type iGEM Types Minimum
Length
Parameter

Sequence
Count

Sequences
Over
Minimum
Length

Unique
Sequences
Over
Minimum
Length

Unique
Over
Minimum
Length
Basic
Parts

CDS Basic, Coding 40 7,689 7,198 6,788 6,188
Chromosome Cell 6 73 13 13 10
Engineered Region Composite, Device, Gener-

ator, Intermediate, Inverter,
Measurement, Project, Re-
porter, Signalling, Transla-
tional_Unit

6 20,171 19,477 17,664 3,700

Mature Transcript
Region

RNA 6 595 556 538 485

oriT Conjugation 6 41 39 39 20
Plasmid Plasmid 40 609 526 484 398
Plasmid Vector Plasmid_Backbone 40 404 379 369 353
Polypeptide Domain Protein_Domain 6 769 718 700 665
Primer Primer 6 582 574 567 567
Promoter Regulatory 6 3,106 2,965 2,770 2,495
Restriction Enzyme
Assembly Scar

Scar 6 40 26 25 24

Ribosome Entry Site RBS 6 525 494 454 448
Sequence feature DNA, Other, Terminator 6 3,149 2,734 2,581 1,923
T7 RNA Polymerase
Promoter

T7 6 35 32 28 24

Tag Tag 6 288 263 233 222
Terminator Terminator 6 388 381 335 329
Total 38,464 36,375 33,588 17,851

that still need to be filtered out to create the final part library.
We suggest further work on refining part sets based on SO
type considering sequence similarity clustering, automated
sequence annotation, andmachine learning based on the part
descriptions provided. We hope to be ready to present the
resulting library in the expanded paper arising from this ab-
stract in January. Additionally, we note that whilst the iGEM
registry is a large repository of synthetic biology informa-
tion it does have several drawbacks: 1) The un-standardised
nature of fields used, 2) the lack of part verification, 3) the
lack of part removal, and 4) part duplication. We suggest that
to create a useful library of parts from the iGEM library these

four concerns must be addressed, either during a conversion
process to SBOL or in the registry itself.
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1 BACKGROUND
Natural cells preserve robust growth and endure environ-
mental changes by dynamically adapting cell metabolism by
means of complex regulatory networks [6]. However, these
complex regulation strategies are the result of years of evo-
lution and they are not compatible with production levels
demanded by the industry. Major improvements in yield,
titer, and productivity can be achieved by balancing pathway
gene expression. There are two different ways of doing this
balancing: static control, and dynamic pathway regulation.
Static pathway regulation strategies (Figure 1A) are opti-

mized for a particular situation, and therefore they are inca-
pable of responding to growth and environmental changes
that occur during fermentation in a bioreactor [10]. Dynamic
balancing addresses the robustness pitfalls of static control
through the application of feedback and feedforward regu-
lation (Figure 1B). This makes it possible to obtain higher
titers as compared to static regulation [9]. Despite a growing
number of success stories, engineering dynamic control re-
mains extremely challenging [5]. Moreover, the performance
specifications for synthetic gene circuits and components
change significantly with variations in parameters such as
temperature, host organism, growth media formulation, and
position of the genes in the genome [8]. Model-based de-
sign, relying on the principles of control engineering, can
provide a powerful formalism to engineer dynamic control
circuits and address these challenges. These, together with
the tools of synthetic biology, can lead to robust and efficient
microbial production at industrial levels [6, 8].

2 METHODS
In this work, we propose using amulti-objective optimization
(Figure 1C) approach to optimally tune a recently developed
dynamic pathway regulation strategy [4]. The metabolic
pathway we used is a phenylpropaniod pathway to produce
the metabolite Naringenin (Figure 1A). The controller used to
regulate the pathway is the novel antithetic controller [1] in
combination with our recently proposed extended metabolic
biosensor [4] (Figure 1B). These two pieces together imply a
complexity that needs several objectives to be fulfilled simul-
taneously (i.e. low titer error, fast response to perturbations,

parametric robustness, and closed-loop stability among oth-
ers). In general, these objectives are in conflict and a trade-off
must be reached. Multi-objective optimization has shown to
be a valuable tool in these situations [3]. With the dynamic
system model at hand (developed in [4]), the following steps
are necessary for a successful multi-objective optimization:
i) define the multi-objective problem (objectives to be opti-
mized), ii) perform the optimization to obtain the solutions
(Pareto Front and Pareto Set), and iii) select among the re-
sulting solutions the ones that fulfill the requirements of the
design. The result of this optimization is a set of guidelines
for the implementation of the biosensor and the controller
in vivo. Then, when this approach is combined with a col-
lection of parts previously characterized, the results can be
interpreted as suggestions about how to select parts like
RBS, promoter, plasmid, or enzyme (gene variant) from the
collection.

3 DISCUSSION
Several authors have recently explored approaches to help
in the tuning of the antithetic controller [2, 7]. Nevertheless,
these models and their level of detail are not enough to assist
in the in vivo implementation of the system.
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Figure 1: Dynamic pathway regulation: Biosensor and controller parameter tuning.
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1 BACKGROUND
This research is based on our previous work on construction
of various plant natural product biosynthetic pathways in mi-
croorganisms. The engineered metabolic network contains
six different enzymes, and by using different combinations of
these enzymes, various plant natural products can be formed.
For instance, the coexpression of three enzymes can lead to
the production of the well-known cardioprotective molecule
resveratrol (Figure 1)[7]. Plasmids containing selected genes
are transferred into Escherichia coli. The engineered strains
can be grown in a bioreactor to produce the desired products,
which diffuse into the growth media. The products can then
be isolated from the media and purified.

As these products are valuable as pharmaceuticals or health-
benefiting compounds, it is desirable to optimize their pro-
duction process within the cell. We present a probabilistic
computational model to enable efficient product yield estima-
tion and optimization through stochastic simulation. Optimal
yield can be found by tuning parameters such as enzyme and
substrate concentration in the computational model,which
offers significant efficiency as a computer simulation takes a
few seconds where one laboratory experiment can take days
or months, along with being more costly.

2 COMPUTATIONAL MODEL
The computational model is built as a system of variables
that represent each intermediate in the pathway. The system
functions on enzymatic rates that determine when and how
frequently one molecule is converted into its successor. The
rate of catalysis of an enzyme, v, is given by the Michaelis-
Menten kinetic equation shown in Equation 1 below:

𝑣 =
𝑘𝑐𝑎𝑡 [𝐸] [𝑆]
𝐾𝑚 [𝑆] (1)

where [𝐸] is the enzyme concentration, [𝑆] is the substrate
concentration, and 𝐾𝑚 and 𝑘𝑐𝑎𝑡 are enzyme-specific kinetic
constants. The rate of catalysis changes as the concentration
of substrate changes at each step in the pathway.
Our metabolic model is a probabilistic model. Each enzy-

matic rate in our model represents the probability of the
occurrence of the corresponding enzymatic reaction. The

model moves stepwise, and at each step evaluates every rate
and updates the corresponding reactant and product vari-
ables. The higher the rate of an enzyme at a step, the more
likely it is to update at that step, in comparison to other
reactions with lower rates. This probabilistic functionality
means the model varies with each simulation, just as a bio-
logical system would vary with each trial. Figure 2 shows
a high-level view of the probabilistic model describing the
path (colored in blue) that consists of three concurrent steps
for producing resveratrol in Figure 2. For each enzyme, the
model checks if there is substrate available to be converted.
It then calculates the rate, 𝑣 , which is a function of the sub-
strate and enzyme properties, as shown in Equation 1. The
model then decrease the concentration of the substrate and
decrease the concentration of product by 1𝜇𝑀 based on the
probability represented by the evaluated rate 𝑣 .

3 RESULTS AND DISCUSSION
The model can successfully simulate the production of any of
the products with a reasonable resulting concentration. As of
now, experimental data and optimization efforts have been
focused on the production of one of the most useful products
of the pathway, resveratrol. The production of resveratrol is
shown in blue arrows in Figure 1. Table 1 contains the kinetic
data for each of the enzymes utilized in resveratrol produc-
tion, obtained from the literature. The catalytic efficiency of
these enzymes, calculated as 𝑘𝑐𝑎𝑡/𝐾𝑚 , gives a comparable
rate for each enzyme. This resveratrol synthesis path model
was constructed using the PRISM modeling language [4]. Its
discrete-event stochastic simulator was used to generate a
large number of simulation traces, which were averaged to
give the estimate of product yield of resveratrol.
Using different combinations of rates from different en-

zymes for TAL and 4CL made a negligible difference on the
yield of resveratrol. The efficiency of STS is significantly
lower than that of TAL and 4CL and thus, is the rate lim-
iting enzyme. All three kinetic values for TAL from Table
1 used in the simulation gave a similar resveratrol yield of
around 170 mg/L, even though they have vastly different
rates. In contrast, changing the concentration of STS within
the system has a direct effect on the yield of resveratrol. At
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Figure 1: Plant natural product biosynthetic pathways previously established by Wang, et al. in E. coli [7].

Table 1: Enzyme Kinetics Data.

Enzyme Genus 𝐾𝑚 (𝜇𝑀) 𝑘𝑐𝑎𝑡 (1/𝑠) 𝑘𝑐𝑎𝑡/𝐾𝑚 ( 1
𝑠�𝜇𝑀 ) Source

TAL Saccharothrix 15.5 0.015 0.967 [1]
TAL Saccharothrix 1492.2 155 103.87 [2]
TAL Streptomyces 433.3 336.5 1287.7 [2]
4CL Arabidopsis 25.1 16.33 650.51 [3]
STS Arachis 6.6 1.8 × 10−3 0.287 [5] [6]

module resveratrol_pathway
[] tyr>0 → 𝑣(Kcat_TAL, Km_TAL, E_TAL, tyr):(pca’=pca+1);
[] pca>0 → 𝑣(Kcat_4CL, Km_4CL, E_4CL,pca)
:(pcoa’=pcoa+1)&(pca’=pca-1);

[] pcoa>0→ 𝑣(Kcat_STS, Km_STS, E_STS, pcoa)
:(resveratrol’=resveratrol+1)&(pcoa’=pcoa); endmodule

Figure 2: The PRISM model for resveratrol biosynthesis.

a concentration of 25, 50, and 100 mg/L of STS in the culture,
resveratrol yield was around 44, 85, and 173 mg/L, respec-
tively, indicting that improvement of the STS expression
level in E. coli could be an effective approach to enhance
the production of resveratrol. The concentration of STS in
the culture may be improved through genetic manipulation
(codon optimization, strong promoter, etc) and high-density
fermentation, which will be tested in our future work.

In summary, we have constructed a computational model
that can simulate a plant natural product biosynthetic path-
way to produce different industrially viable products. We

have used this simulation to analyze the production of resver-
atrol, and identified STS as the limiting enzyme in the path-
way. Future directions include experimenting with differ-
ent model parameters to further improve the production
of resveratrol, along with applying these techniques to the
other related primarymetabolic pathways and their products.
Another goal is to include part of the central metabolism
of E. coli, highlighted in red in Figure 1, to model how the
availability of malonyl-CoA affects system.
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