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Foreword 

 

Welcome to IWBDA 2018! 
 
The IWBDA 2018 Executive Committee welcomes you to Berkeley, CA, for the Tenth International 
Workshop on Bio-Design Automation (IWBDA). IWBDA brings together researchers from the 
synthetic biology, systems biology, and design automation communities. The focus is on 
concepts, methodologies, and software tools for the computational analysis and synthesis of 
biological systems.  
 
The field of synthetic biology, still in its early stages, has largely been driven by experimental 
expertise, and much of its success can be attributed to the skill of the researchers in specific 
domains of biology. There has been a concerted effort to assemble repositories of standardized 
components; however, creating and integrating synthetic components remains an ad hoc process. 
Inspired by these challenges, the field has seen a proliferation of efforts to create computer-aided 
design tools addressing synthetic biology's specific design needs, many drawing on prior 
expertise from the electronic design automation (EDA) community. IWBDA offers a forum for 
cross-disciplinary discussion, with the aim of seeding and fostering collaboration between the 
biological and the design automation research communities.  
 
IWBDA is proudly organized by the non-profit Bio-Design Automation Consortium (BDAC). BDAC 
is an officially recognized 501(c)(3) tax-exempt organization.  
 
This year, the program consists of 17 contributed talks and 14 poster presentations. Talks are 
organized into 5 sessions: Design Automation, Machine-Learning, Standards, Applications, and 
Modeling. In addition, we are very pleased to have two distinguished invited speakers: Dr. Hector 
Garcia Martin from Berkeley National Lab, and Prof. Hana El-Samad from UCSF. 
  
We thank all the participants for contributing to IWBDA; we thank the Program Committee for 
reviewing abstracts; and we thank everyone on the Executive Committee for their time and 
dedication. Finally, we thank MINRES Technologies, Teselagen, DSM, Twist Biosciences, 
Amyris, BBN Technologies, Digibio, and Cytoscape for their support. We also thank the Brower 
Center for hosting IWBDA 2018. 
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decision making in complex biological networks. They are an exciting mixture of biologists, 
engineers, physicists and mathematicians who are constantly pushing technological, 
experimental, and computational boundaries. For example, they use variability between 
genetically and environmentally identical cells, coupled with quantitative measurement of single 
cells and rigorous computational modeling, to unravel cellular wiring diagrams and probe their 
dynamical properties. They develop technologies to monitor dynamic signal propagation across 
whole networks in single cells with unprecedented precision and scale. They also develop 
efficient computational tools for the modeling and analysis of spatio-temporal cellular dynamics. 
They harness the power of these tools to probe coordination and signal integration in cellular 
stress responses, such as the Environmental Stress Response. 
 
In 1939, Walter Cannon wrote in his book The wisdom of the Body: “The living being is an 
agency of such sort that each disturbing influence induces by itself the calling forth of 
compensatory activity to neutralize or repair the disturbance”.  Since this remarkable statement 
that postulates the use of feedback control to support life, we have come to appreciate that the 
use of feedback loops is ubiquitous at every level of biological organization, from the gene to the 
ecosystem.  In this talk, we introduce a technology to systematically pinpoint and study 
feedback operation in endogenous biological systems. We also discuss how building synthetic 
feedback control with modular architecture and predictable operation would be immensely 
enabling for biotechnology, and present some ideas on how this might be achieved. 
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make the DNA changes we intend, the end result on cell behavior is usually unpredictable.  In 
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1. INTRODUCTION

Most canonical synthetic biology projects involve the de-
sign, construction, and testing of genetic circuits to perform
some function in biological systems. While a recent large
focus has been placed on genetic circuits in E. coli, there
are other contemporary areas of biology that can use syn-
thetic biology ideas and approaches to solve problems. One
of these newer areas is the field of direct cell-type conver-
sions, in particular with human induced pluripotent stem
cells (iPSCs). These cells are derived from healthy mature
human tissue and are considered functionally equivalent to
embryonic stem cells in the sense that they are thought to
be able to di↵erentiate into any other cell or tissue type
in the human body. This can be accomplished in a vari-
ety of ways including surface-condition based methods, me-
dia growth factor methods and genetic methods. Many re-
cent successes rely primarily on the use of genetic methods
- specifically directed di↵erentiation via transcription factor
(TF) over-expression[2]. This last method is one that can
benefit from synthetic biology, and especially, bio-design au-
tomation (BDA). A key current challenge in the stem cell
field is how to use genetics to di↵erentiate iPSCs into other
cells types that can be useful for diagnostics or therapies.

When using TF over-expression based methods, a ma-
jority of the work comes down to identifying the subset of
TFs in the genome that can successfully convert cell type
‘A’ to cell type ‘B’ when overexpressed. Historically this
identification process has been rooted in expert knowledge
from groups that had extensive expertise in the genetics of
one or more cell type. While this approach has resulted
in some significant successes, these methods are generally
low-throughput and many valuable conversions are still un-
known. Furthermore, recent work in our group has resulted
in the definition and production of a ‘TFome’ of all known
TFs in the human genome composed of 1768 genes - thus ex-
haustively screening all possible combinations of TFs of even
a relatively small size is essentially impossible with current
methods.

Some recent e↵orts[1, 3] have instead attempted to ap-
proach this problem computationally using transcriptomics
data to identify TF combinations that are likely candidates

Figure 1: Computational workflow overview. Raw data
for predictive analysis is pulled from online sources and
markers from literature. Based upon the desired con-
version, TBA analysis is run to determine likely lineage-
determining factors and then this list is refined by RNA-
seq analysis and an experiment can be designed using
basic probability

to perform a specific conversion, although these methods
have a few key limitations - they exclusively rely on some-
times sparse transcriptomics data, they output one final so-
lution as opposed to an experimental design, they do not
leverage other types of next-generation sequencing data, and
they have no intrinsic feedback loop for evaluating outcomes
to automatically design the next round of experiments.

Here we present a software tool that uses open-chromatin
data and transcriptomics data to output an experimental de-
sign in which a subset of the human TFome is multiplexed to
identify cells that seem to be most successful in that screen.
The most promising candidates from this screen are then
sequenced for RNA expression and open chromatin and the
data is used to inform the next multiplex experiment. This
tool is first being applied to known TF-based conversions,
but is being developed as generally as possible for use as a
tool for any desired novel conversion.



Figure 2: Preliminary results for TF combination candidates to convert iPSCs into bipolar neurons, dermis blood
vessel endothelial cells, and T-cells. Genes are shown in rank order according to a significance score from analysis of
open-chromatin data (DNAse-seq). RNA-sequencing analysis yields a results for gene quantity in units of Reads Per
Kilobase of transcript, per Million mapped reads (RPKM)

2. TBA

TBA takes all of the open chromatin sites within a cell
type as input. Next, a set of GC-matched background se-
quences equal in size to the number of open chromatin sites.
For each of the open chromatin sites and background se-
quences TBA calculates the best match to hundreds of DNA
binding motifs drawn from the CISBP JASPAR library. The
quality of a sequence’s match to a motif is quantified as a
motif score (aka log likelihood ratio score). A TBA model
scores the probability of observing open chromatin at a se-
quence by computing a weighted sum over all the motif
scores computed for that sequence. The weight for each
motif is learned by iteratively modifying the weights (ini-
tialized from random values) until the model’s predictive
performance no longer improves. By examining the weight
of each motif, we can assess whether the presence of each mo-
tif is positively, negatively or not correlated with the bind-
ing of a transcription factor. The significance of each motif
can be quantified using an in silico mutagenesis approach
in which the performance of a trained TBA model is com-
pared to a perturbed model which has one motif removed.
Given the prominent role lineage determining factors play
in establishing open chromatin sites within each cell type,
we would expect the motifs assigned a high rank by TBA to
correspond to lineage determining factors.

3. RNA-SEQ ANALYSIS

Given a rank ordered list of TFs that are likely active
in a given cell type, we further prune this list with RNA-
sequencing data. Since many TFs have the same or very
similar binding motifs (and therefore the same TBA score),
this step significantly prunes the list of candidates and gives
extra confidence in the TBA analysis. This analysis is done
with a standard pipeline for RNA-seq analysis - raw FASTQ
data files are trimmed and aligned to the human genome,
HOMER is used to call peaks from alignment regions, which
then uses annotations to determine which genes are expressed
at which quantities (in RPKM).

4. EXPERIMENTAL DESIGN

Once a rank-ordered list of TFs for a given conversion are
produced, we must determine how many TFs to consider in
a given experiment. This is currently calculated based upon
the number of cells that are transfected, the e�ciency of
the reaction, and how many TFs can be integrated into the
genome in one reaction. In our standard experimental set-
up, we can reliably integrate at least 20 genes, we transfect
1M cells in one reaction, and have a >10% e�ciency. Since
the number of possible combinations of TF integrations is
approximated by 2n, we currently perform screens with the
top 16 TFs for each cell type. We perform the transfection
and then plate into a 10cm dish. We allow the cells to recover
for two days, after which we select and then proliferate for
two weeks. Then, using a surface marker from literature, we
separate the cells with a positive marker reading using FACS
and perform RNA-seq on that population. Based upon these
results, we can modify the list of conversion factors from the
original prediction.

5. EXPERIMENTAL VALIDATION

We are currently validating our predictions for converting
TFs for two cell types we can already reliably di↵erenti-
ate with published factors (bipolar neurons and endothelial
cells) and one new conversion (T-Cells) of potentially high
value. Based upon the outcomes from this validation, we will
modify the prediction results by either adding considerations
for network biology, alternative splice forms, or expression.
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ABSTRACT 
TeselaGen's DESIGN software provides a unified interface 
and compute infrastructure for the design of a hierarchical 
and combinatorial system of DNA assembly reactions, and 
the generation of instructions for how to build those DNA 
assemblies. The platform provides a standardized system for 
tracking the relationships between design elements (parts 
and annotation), designs and assembly protocols. Among 
features supporting the design process is the ability to create 
Design Templates that can be reused across designs. A 
number of assembly reaction types are supported including 
Type IIs Endonuclease (Golden Gate, MoClo, etc.), Flanking 
Homology (Gibson, InFusion, etc.). The system optimizes 
assembly reactions to take advantage of a variety of DNA 
sourcing options. 

CCS CONCEPTS 
• ​Information systems ​ → ​Information systems 
applications ​; ​Enterprise information systems​; Enterprise 
applications 
• ​Information systems ​ → ​Information systems 
applications ​; ​Decision support systems​; Expert systems 

KEYWORDS 
Synthetic Biology, DNA Design, Recombinant DNA, 
Biotechnology, Combinatorial Design, Hierarchical Design, 
Golden Gate, Gibson 

1 INTRODUCTION 
The TeselaGen Synthetic Evolution​tm​ enterprise platform for 
synthetic biology consists of four major software modules; 
DESIGN, BUILD, TEST, and EVOLVE. Within the DESIGN 
module, the TeselaGen Hierarchical Design Editor (HDE) 
plays the crucial role of capturing the human designer’s 
intent as a design data structure, subsequently passing it to 
the protocol design engine ​j5 ​ [1] in order to generate both 
human and machine readable protocols. HDE supports 
several important synbio workflow requirements: 

● Capture of combinatorial + hierarchical designs. 
● Scar-less design of large scale DNA libraries. 
● Cost optimization including part re-use where warranted. 
● Sourcing material from best available options. 
● Design Templating to aid the design process. 

 
 

 

Figure 1:  TeselaGen’s four part enterprise system for 
guiding synthetic biology workflows. 

2 DESIGN CAPTURE 
The fundamental role of the DESIGN module is the accurate 
capture of the designer’s intent. Earlier versions of the 
DESIGN module allowed for combinatorial designs, but not 
hierarchical designs. The new HDE editor provides both 
design modes in a single interface. Target designs are 
constructed 5’ to 3’ left to right by moving parts from a parts 
library to columns in a whiteboard style user interface. 
Alternatives for any given part are listed as entries within a 
column. The user has the option of partitioning the target 
design into a set of sub-designs in a hierarchical fashion. 
The user can also specify the naming scheme and the 
preferred DNA assembly chemical reactions.  

 
Figure 2:  Hierarchical Design Editor. A two level 
combinatorial design specifies four Gibson assemblies that 
generate intermediates that will be reactants for a final 
Golden Gate assembly. 
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3 PART RE-USE and SOURCING 
Part reuse is important when the size of the built library is 
large and cost is a constraint. Without part reuse the cost of 
a library can grow with the number of parts ~O(n), with part 
reuse ~O(log(n)). HDE utilizes the ​j5 ​ algorithm when 
designing a set of combinatorial assembly reactions which 
automatically maximizes part reuse within a combinatorial 
design. Hierarchical designs are also be optimized for part 
reuse across designs with utilities that check if intermediate 
stretches of DNA already exist in inventory, modifying the 
build instructions accordingly so that previously built 
constructs are not assembled again. Users can also use this 
availability information to automatically break down target 
constructs into divisions based on available subsections 
instead of manual divisions. Material availability is also 
extended to query external vendors for what they can 
provide. This is done through a series of API integrations 
with vendor utilities that check DNA segments for their 
manufacturability, cost, and delivery times. 

 
Figure 3:  Material availability utilities check to see that DNA 
is actually available, either in inventory or from external 
vendors. 

HDE also provides the user with greater control over the 
sourcing of the DNA parts used in their designs, especially 
with Type IIS restriction enzyme digest/ligation assemblies. 
When performing such an assembly, the interface 
automatically adds validation to the input parts to ensure that 
they are sourced with the appropriate flanking digest sites. 
Additionally, HDE provides support for custom validation 
through the use of Design Rules, with validation logic based 
on either part tags (e.g. all parts in the first column need to 
have the “backbone” tag) or a part’s base pairs (e.g. all parts 
in the cds column need to begin with “ATG”).  

4 DESIGN TEMPLATING 
The templating system allows users to automate building out 
portions of designs for complicated hierarchical workflows. 
Users can capture the commonalities of related designs in a 
template and then apply them across new designs. Any 

aspect of the design editor can be stored in a template for 
reuse, including specifications for DNA parts, overhang 
validation and assembly reactions. This simplifies the design 
process when creating multiple designs that share 
characteristics, providing a streamlined interface that 
minimizes redundant input from the user. 

Figure 4: Design Templates allow for automating the creation 
of complex builds.  

5 CONCLUSIONS 
TeselaGen’s DESIGN module has added support for 
hierarchical design workflows. This enhancement adds value 
for two major use cases. 1) Users who choose to adopt 
inherently hierarchical assembly methods such as MoClo are 
now able to rapidly design complex builds using the editor 
while maximizing part reuse and minimizing re-work and 
cost. 2) Users who would like to build very long pieces of 
scarless DNA will find the streamlined interface a convenient 
and reproducible way to break down very long target designs 
into buildable submodules. 
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ABSTRACT 
TeselaGen's BUILD software provides an interface and 
compute infrastructure for translating computed DNA 
Library design information into actionable instructions for 
automation. In addition, the software provides many of the 
functions of a traditional LIMS system, allowing users to 
chain common laboratory actions into workflows that can be 
tracked and monitored. Other traditional features, such as 
inventory and bio sample management are also provided. 

CCS CONCEPTS 
• ​Information systems ​ → ​Information systems 
applications ​; ​Enterprise information systems​; Enterprise 
applications 
• ​Information systems ​ → ​Information systems 
applications ​; ​Decision support systems​; Expert systems 

KEYWORDS 
Synthetic Biology, DNA Design, Recombinant DNA, 
Biotechnology, Combinatorial Design, Hierarchical Design, 
Golden Gate, Gibson 

1 INTRODUCTION 
The TeselaGen Synthetic Evolution​tm​ enterprise platform for 
synthetic biology consists of four major software modules; 
DESIGN, BUILD, TEST, and EVOLVE. 

 

Figure 1:  TeselaGen’s four part enterprise system for 
guiding synthetic biology workflows. 

The BUILD module plays the crucial role of capturing the 
computed design from the DESIGN module and turning into 

actionable instructions for subsequent automation. BUILD 
supports several  important synbio workflow requirements: 

● Design to build information translation 
● Complex workflow design, execution, and monitoring 
● Biological material management and sourcing 
● Interfacing with suppliers of reagents and services 

2 DESIGN to BUILD 
The fundamental role of the BUILD module is the seamless 
transformation of computed design information and 
automatically generated protocols into actionable 
instructions for automation (and/or laboratory workers). 
When first developed, the DESIGN platform took on the 
task of generating worklists, the essential data needed by 
automation to execute liquid handling tasks. As the DESIGN 
platform developed, and as users continued to add 
functional requirements, it has become clear that a new 
BUILD module should take over the practical tasks of 
associating DNA fragment data with physical locations, 
plates, wells, volumes and concentrations, etc. The BUILD 
module has many of the same functional features as a 
traditional LIMS (Laboratory Information Management 
System) but is unique in its ability to translate computed 
designs to worklists. 

 
Figure 2:  DESIGN and BUILD components 

3 WORKFLOW DESIGN and EXECUTION 
Experience has shown that, although the fundamental 
sciences is common to all workflows, users can be very 
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heterogeneous in their workflow goals and approaches. 
Rather than locking the BUILD platform into a particular 
approach or methodology, we have chosen to make the 
platform modular, following a dataflow execution model. 
Currently, acyclic directed workflow graphs are 
accommodated. A number of pre-programmed macros have 
been built including: 
1. PCR Prep and Execution 
2. Assembly Rxn Prep and Execution 
3. Clonal Transformation 
4. DNA Ordering 
5. Plate Registration, Barcoding, Reformatting, 

Rehydration, Replication, Consolidation, Combination 
6. Colony Plating 
7. Reaction Mapping 

 
Figure 3: The Build module uses a macro style workflow 
execution paradigm. Distinct macro blocks are listed from 
top to bottom at left, their associated data and internal logic 
at right. 

4 BIO MATERIAL MANAGEMENT 
We have extended the idea of strain management to 
accommodate bio materials in general; DNA, Oligos, 
Strains, Proteins, Enzymes and Reagents and other 
configurable domain specific bio material types. In the case 
of a microbial material, the notion of a strain has been 
enhanced to include information about the individual 
plasmids the strain may have been modified to carry, 
information about physical aliquotes such as location, 
volume and concentration. Physical strains resulting from a 
synthetic biology workflow have built in provenance for the 
parent strain and the DNA design used to generate them. 
The system is also accommodates inventory management 
tasks such as recording and displaying locations and 
contents for samples contained in plates/wells, tubes and 
trays as well as laboratory equipment. 

 
Figure 4: Microbial material entries are linked to physical 
aliquotes as well as their canonical strain information. 

5 INTERFACING with SUPPLIERS 
Automatic protocol generation raises the possibility of 
optimizing protocols against just-in-time availability of 
reagents and services. The DESIGN module performs this 
function, but actual fulfillment tasks are handed off to the 
BUILD module. In the BUILD module, actual orders to our 
early partners such as Twist and IDT are possible. 

5 CONCLUSIONS 
Experience with synthetic biology workflows has shown that 
creating seamless handoffs between the design of complex 
combinatorial/hierarchical libraries and their “in-practice” 
construction speeds research and benefits reproducibility. 
With our BUILD module we have started from the premise 
that protocols are generated automatically and are (for the 
most part) handed off from a DESIGN tool. This preserves 
the continuity of the DESIGN/BUILD connection and helps 
preserve provenencance and process tracking, as well as 
enforcing discipline about design of experiments and 
replicates. Together these attributes ensure better success 
at subsequent TEST and EVOLVE stages of a typical R&D 
workflow. 
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ABSTRACT
Metabolic engineering has led to the production of a wealth of
chemicals with engineered microbes. A traditional strategy is to
express foreign enzymes in a cellular host to convert metabolic
intermediates into target products. Thanks to recent progress in
gene circuit engineering, it is now possible to build gene circuits to
dynamically control the activity of synthetic pathways. This strat-
egy o�ers multiple bene�ts, including self-regulation of enzyme
expression and adaptive pathway activity in response to changes in
bioreactor conditions. Here we present a circuit design framework
based on multiobjective optimization of metabolic production. We
show that combinations of positive and negative feedback loops
produce a range of dynamics on a Pareto-optimal front. These
loops de�ne connectivities between pathway intermediates and
gene expression that achieve optimal tradeo�s between production
performance and metabolic burden to the host. Our results lay the
computational groundwork for the systematic, model-based, design
of complex gene circuitry at the interface of synthetic biology and
metabolic engineering.
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1 INTRODUCTION
A central challenge in metabolic engineering is to determine the op-
timal enzyme expression levels for maximal production and reduced
metabolic footprint on the host. In traditional pathway engineering,
enzymes are expressed at constant levels, which leads to “open loop”
pathways that lack robustness and cannot adapt to perturbations in
bioreactor conditions [2, 6]. Moreover, metabolic imbalances often
impair growth and limit the performance of engineered pathways.
These imbalances arise from e.g. the accumulation of toxic interme-
diates, the depletion of key metabolites for survival, or the onset of
native regulatory mechanisms that counteract pathway activity.

As a result of such limitations, the last decade has witnessed
the emergence of dynamic metabolic engineering, a new technology
that aims to embed gene regulatory systems into the design of
engineered pathways. The core principle is to use synthetic gene
circuits that adapt pathway expression in response to the metabolic
state of the host. Such circuits can cause a pathway to self-adapt
its expression levels to match production goals and dynamically
allocate metabolic �ux between production and growth. Recent
implementations have showcased how gene circuits can improve
yield in various pathways [1, 7, 8], yet so far we do not have quan-
titative procedures for the rational design of circuit architectures
or their individual components [3, 5]. In this work we present a cir-
cuit design strategy based on multiobjective optimization of circuit
parameters and architectures.

2 METHODS, RESULTS AND DISCUSSION
We consider a heterologous pathway that branches from a native
pathway that is essential for growth (see inset of Fig. 1A). The dy-
namicmodel is a set of ODEs for themass balance ofmetabolites and
enzymes. The enzymes follow standard Michaelis-Menten kinetics
(not shown), and the enzyme synthesis rates (ui ) are parameterized
by:

ui = �
0
i k

c
i + �

1+
i �+i (x1) + �1+i ��

i (x1) (1)

with �+i (x) = ai
x 2

� 2
i +x 2 and ��

i (x) = ai
� 2
i

� 2
i +x 2 , such that a vector

pb of binary parameters �i 2 {0, 1} de�nes the architecture of the
regulation, and a vector pc of real tunable parameters contains the
strengths ai and activity thresholds �i of the promoters coding for
the enzymes.

1
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Figure 1: A) Pareto front of solutions for the multiobjective optimization problem. B) Dynamics of �uxes V2 (heterologous
pathway) and V0 (native pathway) for each of the Pareto solutions C) metabolite dynamics and D) enzyme dynamics.

We formulate a biobjective optimization problem to �nd (among
all feedback architectures and parameters encoded by the deci-
sion vector [pb pc ]) those leading to optimal dynamic response in
terms of production performance and metabolic burden. The re-
sulting formulation is a Multiobjective Mixed Integer Nonlinear
Programming Problem (MO-MINLP), that we solve combining an
�-constraint strategy with state- of-the-art MINLP solvers [4] to
obtain the Pareto front of optimal solutions. Unlike exhaustive ex-
ploration, our method scales well to large search spaces. As an
illustrative proof of concept we solve the multiobjective problem
with one controlling metabolite (x1), obtaining a set of Pareto op-
timal gene circuits. The solutions are depicted in Fig. 1A in the
objective space, all of them correspond to the architecture indicated
in the �gure. This suggests that the combination of positive and
negative feedback provides an optimal trade-o� between produc-
tion performance and metabolic burden to the host cell. The optimal
time courses of the production �ux (V2) and growth �ux (V0) are
shown in Fig. 1B, and the dynamics of the metabolites and enzymes
are shown in Figs. 1C and D respectively. Note that solution P1
accounts for one objective only, resulting in a slow, 1st-order like
response. In contrast, solutions that account for for the second
objective (P2,P3 and P4) display increasingly faster and nonlinear
responses as we move along the Pareto front.
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1. INTRODUCTION

Droplet-based microfluidic devices in comparison to test
tubes can reduce reaction volumes 109 times and more due
to the encapsulation of reactions in micro-scale droplets [4].
This volume reduction, alongside higher accuracy, higher
sensitivity and faster reaction time made droplet microflu-
idics a superior platform particularly in biology, biomedical,
and chemical engineering. However, a high barrier of en-
try prevents most of life science laboratories to exploit the
advantages of microfluidics. There are two main obstacles
to the widespread adoption of microfluidics, high fabrica-
tion costs, and lack of design automation tools. Recently,
low-cost fabrication methods have reduced the cost of fabri-
cation significantly [7]. Still, even with a low-cost fabrication
method, due to lack of automation tools, life science research
groups are still reliant on a microfluidic expert to develop
any new microfluidic device [3, 5]. In this work, we report a
framework to develop reverse predictive models that can ac-
curately automate the design process of microfluidic droplet
generators. This model takes prescribed performance met-
rics of droplet generators as the input and provides the ge-
ometry of the microfluidic device and the fluid and flow set-
tings that result in the desired performance. We hope this
automation tool makes droplet-based microfluidics more ac-
cessible, by reducing the time, cost, and knowledge needed
for developing a microfluidic droplet generator that meets
certain performance requirement.

2. DROPLET GENERATION

As shown in Fig. 1, by flowing an aqueous and a non-
aqueous phase through a narrow opening, called orifice, mi-
crofluidic droplets are generated. The two major perfor-
mance metrics of a droplet generator are droplet size and
generation rate, which we call ”dependent variables”. These
parameters are dictated by device geometry (i.e., orifice size,
aspect ratio, oil width ratio, water with ratio, orifice length,
and expansion ratio) and flow rates of oil and water (for
a given geometry, these flow rates are determined by Capil-
lary number and flow rate ratio), which we call ”independent
variables”. To have a design automation tool for droplet gen-
eration, for a prescribed droplet size and generation rate, we
need to provide geometry and flow conditions. Therefore,
the goal is to take the dependent variables as input, and
output the independent variables, that would result in the
given dependent variables.

Figure 1: Droplet generation is achieved by flowing oil and
water through a flow-focusing geometry. This process has
eight inputs (six geometry, and two flow variables) and two
outputs (droplet size and generation rate).

3. REVERSE PREDICTIVE MODELS

The first step in building a reverse predictive model is
to construct a dataset of inputs-outputs over the range of
expected values. in lieu of experimental data, we generated
data points based on a formulaic relationship between the
independent and dependent variables roughly derived from
real world observations [6]. We scaled these equations to
remain in reasonable ranges. These formulas are shown in
Eqs. (1) & (2).

Generation rate =
(OW +AR+ ER+OL+WW + FR) ⇤ Ca ⇤ 5000

Or
(1)

Droplet size =
Or ⇤AR ⇤ ER ⇤OL ⇤WW

OW ⇤ Ca ⇤ FR ⇤ 10
(2)

where the parameters and their ranges are given in Table
1. Our models relied on min-max normalization to reduce
biases in input magnitudes. For each column in our dataset
(representing a type of parameter), we scaled each entry to
be in the range of zero to one according to the minimum
and maximum of that parameter’s range.

We explored three methods for our reverse predictive mod-
els: nearest data point, M5P trees, and radial basis function
(RBF) interpolation. Nearest data point is one of the sim-
plest strategies, requiring no model to be fit to the data
[1]. For any input of desired dependent variables, we simply
search our data set for a point with dependent variable val-
ues that are the closest to the input. Then, we return the
independent variables associated with that data point.



Table 1: The range of inputs (independent variables) used
to build the input-output dataset using Eq. (1) and Eq. (2).

Symbol Parameter Range

OW Normalized oil input width
⇤

2 - 4

AR Aspect ratio 1 - 3

OL Normalized orifice length
⇤

1 - 9

WW Normalized water input width
⇤

2 - 4

Or Orifice width 50 - 300 µm

ER Expansion ratio
⇤

2 - 6

Ca Capillary number 0.02 - 0.2

FR Flow rate ratio 2 - 20

⇤
The normalized values are divided by orifice width.

M5P trees are a more advanced version of linear regression
where model trees branch out based on the value of the
independent variables and data points that are close are put
together in a same leaf. Each leaf contains an equation that
represents a linear regression on the grouped data points [8].
We grow two M5P trees (one to optimize on each dependent
variable) from our data set. Next, we search our training
data set for a data point P which is closest to our desired
input, much in the same way as nearest data point. We
input the independent variable values from P into both M5P
trees to obtain two linear equations Eq. (3) and Eq. (4).
We require our solutions to satisfy both of these equations
with no error. Therefore f(x) must equal our desired droplet
generation rate and g(x) must equal our desired droplet size.
There are an infinite number of points which we can accept,
as we have only 2 constraints and 8 degrees of freedom.
Therefore, we attempt to find a solution that deviates the
least amount possible from our original closest data point
P .

f(x) = ↵1x1 + ↵2x2 + · · ·+ ↵nxn (3)

g(x) = �1x1 + �2x2 + · · ·+ �nxn (4)

RBF interpolation is a fast way to form regression models
in high dimensions. In this study, we used a multiquadric
function to build RBF regression models [2]. Much in the
same way as the M5P trees, we fit two models to the data,
one for each dependent variable. In order to generate sug-
gestions using RBF interpolation, a nearest data point P is
found (again, using the same method as nearest data point).
P is used as the starting point for our optimization algo-
rithm. We seek to find a point S that minimizes the error
for all M models against all Y desired dependent variable
values (performance metrics) as shown in Eq. (5). We use
a form of gradient descent called SLSQP (Sequential Least
Squares Programming) as our cost-minimization function.

NX

i=0

|Mi(S)� Yi| (5)

4. RESULTS

We created a dataset of 2500 points for training and an-
other dataset of 2500 for accuracy verification. These data-
points are produced using Eqs. (1) & (2), while parameter
values are taken randomly from the range given in Table 1.
We tested the accuracy for both single and combined op-
timizations. Single optimization attempts to find a perfect
solution on a single performance metric. Combined opti-
mization attempts to find the best compromise, considering

both performance metrics. The error is calculated as given
in Eq. (6). Where x is the desired value, M(x) is the model
suggestion to get that desired value, and f(M(x)) is the
”real” value of that suggestion calculated from Eqs. (1) &
(2). The results are shown in Fig. 2., a) for single and b)
for combined optimization.

Error =
|f(M(x))� x|

x
(6)

Figure 2: Accuracy comparison of di↵erent reverse predic-
tive models. a) Only considering one performance metric.
b) Considering both performance metrics, simultaneously.

5. CONCLUSION AND FUTURE WORK

We proposed a framework for design automation of mi-
crofluidic droplet generators, using a reverse predictive model.
This model, takes the prescribed performance metrics as the
input (droplet size and generation rate). Then, outputs ge-
ometry and flow conditions required to achieve this desired
performance. The dataset of this study can be replaced by
experimental data to accurately capture the real world be-
havior of microfluidic droplet generators.
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ABSTRACT 
TeselaGen's EVOLVE module provides an interface and       
compute infrastructure to create, train and execute Machine        
Learning algorithms using Teselagen’s SDK for fast data        
loading and processing. The module will facilitate ML        
solutions created by Teselagen as well as enabling        
development of custom algorithms in a way that integrates         
seamlessly with other modules on the Teselagen Suite. 

CCS CONCEPTS 
• ​Information systems ​ → ​Machine Learning​; ​Learning 
Settings​; Learning from demonstrations 

KEYWORDS 
Synthetic Biology, DNA Design, Machine Learning, Deep 
Learning 

1 INTRODUCTION 
The TeselaGen Synthetic Evolution​tm enterprise platform for       
synthetic biology consists of four major software modules;        
DESIGN, BUILD, TEST, and EVOLVE. Advancing synthetic       
biology relies on the accurate representation of DNA        
designs and experimental outcomes in order to understand        
and improve designs to better accomplish design goals. We         
have developed a platform for testing methods used to         
improve large scale experiments to optimize biosynthetic       
pathways for enzyme and chemical production. The module        
speaks directly to our Test module, which is based on the           
Experiment Data Depot (EDD) knowledge base [1],       
developed at LBNL as a foundation for additional analytic         
and machine learning. 

Figure 1:  TeselaGen’s four part enterprise system for 
guiding synthetic biology workflows. 

 

2 ARCHITECTURE 
The application of machine learning to genetics and        
synthetic biology raises a number of challenges that need to          
be addressed. Training machine learning models might       
require a large amount of data, which can be difficult to           
acquire. In addition, some machine learning techniques       
require extensive computational resources, without which      
training becomes too time-consuming. The EVOLVE      
module is being built to help biotech companies design,         
deploy, train and test state-of-the art machine learning        
algorithms that run on cloud-based hardware, optimized for        
running compute-intensive ML applications. The EVOLVE      
module contains a frontend interface, developed in       
React/Redux, that allows the scientist to easily deploy a         
custom ML script or chose among a selection of proprietary          
algorithms. The backend includes a ML engine that can run          
algorithms dependent on Tensorflow and Scikit Learn.  

 
Figure 2:  EVOLVE’s front-end and back-end components 
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3 INTEGRATION WITH TEST 
The EVOLVE module communicates directly with our       
DESIGN and TEST modules. The open source TEST        
module is based on the open source Experiment Data         
Depot (EDD) knowledge base [1] and provides the        
necessary data to train supervised machine learning       
algorithms. The output of the EVOLVE module can guide         
the next iteration of libraries to be designed and built. 

 
 
Figure 3: DESIGN, TEST and EVOLVE integration and 
feedback loop. 

4 EVOLVE SDK 
The TeselaGen EVOLVE SDK will provide powerful libraries        
written in Python, for designing and deploying machine and         
deep learning applications. It includes libraries for       
communicating with the DESIGN and TEST APIs, as well         
as our ML task messaging queue and our EVOLVE         
database. 

5 OPTIMIZING DNA ASSEMBLIES 
With TeselaGen's platform, researchers can design      
combinatorial libraries that include thousands of different       
variants. For many applications, it is not enough to design          
and build DNA constructs. Researchers need to be        
confident that their synthesized combinatorial or hierarchical       
libraries meet stringent quality assurance criteria. High       
throughput, high content screens common at many biotech        
and biopharma companies depend crucially on the efficient        
generation of screening candidates with high probability of        
success. TeselaGen’s ​j5 algorithm, which creates detailed       
instructions to assemble DNA, relies on the specification of         
assembly strategies, parameters, and rules that can be        
tuned to achieve optimal results. The tuning of this choices          
can be guided based on the output of bioinformatic tools          
such as j5 itself, as well as experimental DNA sequence          
validation results. As an example, our platform allows our         
users to align DNA sequencing runs with their reference         
designs, in order to validate the quality of their synthesized          
constructs. As we collect these DNA sequence validation        

datasets, the EVOLVE module can train machine learning        
models (like RNNs) that can help the biologist further refine          
their designs and assembly simulations.  

      
                         ​A        T        G               A 
 
Figure 4: A recurrent neural network (RNN) is a network          
with memory, ideal for modeling sequences such as DNA. 

6 CONCLUSIONS 
TeselaGen has developed a powerful, cloud-based,      
computer aided design and build platform for accelerating        
synthetic biology. Our customers are already using our        
flexible informatics backbone to guide the construction of        
synthetic DNA to further the production of immunotherapy        
biologics, virus like particles (VLPs), sustainable chemicals,       
natural products, and plant modifications for enhanced       
agricultural traits. 

TeselaGen Biotechnology has recently set the goal of        
developing a next-generation software platform that will       
harness state-of-the-art machine learning to assist      
customers with the design, build and Synthetic Evolution™        
of their biological constructs. As companies seek to scale         
their synthetic biology efforts, they will benefit from        
TeselaGen’s EVOLVE module to optimize their Synthetic       
Biology processes. The success will depend ultimately on        
how well scientists can collect and store experimental data         
in the TEST module. As our customers work closely with          
our platform, we will empower them with enabling design         
decisions that accelerate product development. 
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1 INTRODUCTION
Regulation of gene expression in eukaryotic cells is mediated in
part by hundreds of sequence speci�c transcription factors (TFs)
that bind to their individual binding motifs at genomic sequences
proximal to a gene (promoters) as well as at distal elements (en-
hancers). Promoters and enhancers can interact by looping together
in three dimensional space. The binding of TFs at promoters and en-
hancers mediates the recruitment of cellular machinery necessary
for transcription. Prior studies have suggested two classes of TFs: 1)
lineage determining TFs (LDTFs) and and 2) signal dependent TFs
(SDTFs). LDTFs play important roles in establishing cell type spe-
ci�c patterns of open chromatin (accessible regions of the genome)
[5] whereas SDTFs bind in response to a cellular stimuli, resulting
in cell-speci�c responses to signals [6] (Figure 1). These studies,
and others, suggest that the context speci�c gene expression in
a cell type is genetically encoded by combinations of TF binding
motifs at millions of enhancers scattered throughout the genome
[3].

Given the evidence that TFs act collaboratively, it naturally fol-
lows that individual TF motifs have been observed to be poor pre-
dictors of activation of an enhancer. The biological activity of an
enhancer may depend on the speci�c composition of TF motifs - ar-
rangement and spacing between TF motifs, as well as the sequence
degeneracy of each motif [4], and evidence that the arrangement of
motifs help to determine transcriptional activity, we endeavored to
teach an arti�cial neural network (ANN) to predict signal dependent
activation of enhancers by reading arrangements of motifs present
at open chromatin regions. We hypothesize that di�erent arrange-
ments of motifs can be used to predict the response to di�erent
cellular stimuli.

2 EXPERIMENTAL DESIGN
Using ATAC-seq, and ChIP-seq targeting H3K27Ac, an enhancer
mark associated with active chromatin, we de�ned active enhancers
in mouse macrophage cells stimulated with an array of cytokines
(IFN-g, IL-1b, IL-4, IL-5, IL-6, IL-13, IL-23, LPS, TNF-a, TGF-b).
This experimental model provides several key advantages: 1) The
macrophage is a well characterized immune cell with robust re-
sponses to signals such as cytokine. 2) By comparing one signal to
another, we can distinguish between SDTFs and general TFs that
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Figure 1: A collaborative hierarchical model for TF binding.
Lineage determining TFs (LDTFs) bind collaboratively to
make cell type regions of chromatin accessible. In response
to a signal, a signal dependent TFs (SDTFs) bind at sites
bound by LDTFs.

Figure 2: Signal response is encoded by combinations of TF
binding sites. Activation of enhancers that respond to
signals A and B are mediated by distinct sets of SDTFs
([SA1, SA2] and [SB1,SB2] respectively). Enhancers that
respond to both signals should contain TF motifs that
mediate both signals.

play a role in many contexts (Figure 2). 3) Enhancers that respond
to multiple signals o�er an opportunity to study how elements
that encode the response to individual signals can be composed
together.

3 MODEL DESIGN
The sequence of each enhancer as well as the enhancers’ response
to each signal, is used as input to train an arti�cial neural network
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(ANN) with an attention mechanism to predict signal dependent
activation of an enhancer. In contrast to traditional ANNs that
combines the input data in a cryptic fashion (via a fully connected
layer) to predict enhancer activity [1, 7], ANNs with an attention
mechanism highlight which regions of the inputs (subsequences
of enhancers that presumably are TF binding motifs) the ANN is
paying attention to as it makes each prediction, thereby divulging
the "reasoning" of the ANN. Here we implement a convolutional
neural network that uses a dot product attention mechanism [2]
to use genomic sequence alone to predict enhancer activity. The
architecture of our neural network is shown in Figure 3.

4 PRELIMINARY RESULTS
To assess the performance of our model architecture, we compared
the performance of our model against the current state of the
art, a convolutional network. We trained our model and an im-
plementation of DeepBind, a previously described convolutional
network,[1], to distinguish accessible enhancers from random ge-
nomic sequences. The performance of our model exceeded that of
the convolutional model, in terms of model accuracy and precision,
at detecting enhancers present in macrophages in 3 separate treat-
ment conditions (Table 1 Att versus Conv). Our model’s increase in
performance versus the convolutional network can be potentially
attributed to the greater number of free parameters used (Table
1). And so, we also trained a large convolutional network (with 54
convolution kernels and 108 dense neurons versus 16 convolution
kernels and 32 neurons in the original model). The improved per-
formance of our model suggests that the attention mechanism is
capable of extracting useful information.

5 FUTUREWORK
While we are encouraged by the performance of our model, we be-
lieve the insights we can extract from the network more important.
We are currently extracting TF binding sites highlighted by our

Model

Att Conv Large-
Conv

# params 10753 2162 10850

Veh Acc. 0.854 0.822 0.846
Prec. 0.838 0.804 0.830

Tx KLA-1h Acc. 0.859 0.807 0.839
Prec. 0.857 0.791 0.826

IL4-24h Acc. 0.862 0.832 0.847
Prec. 0.858 0.809 0.836

Table 1: Model performance. Mean performance metrics
(n=3), accuracy (Acc.) and precision (Prec.), of 3 models: our
attentive model (Att.), a convolutional network (Conv), and
a large convolutional network (Large-Conv) are shown for
macrophages under 3 treatment conditions

Figure 4: An enhancer represented as a network of TF
motifs. Motifs are represented as nodes. Adjacent, motifs
are connected with edges. The position are annotated at
each node.

model and representing each enhancer as a network of TF motifs
(Fig. 4). Next, we will calculate arrangements of motifs that are
enriched at enhancers that respond to a speci�c cytokine. Thus,
we can determine a compositions of TF motifs that encodes the
transcriptional response to each cytokine, yielding insights into
compositional rules for signal speci�c TF circuits.
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MOTIVATION
A critical bo�leneck for large-scale engineering collaboration in
synthetic biology has been the inability to integrate data through
successive stages of the design-build-test-learn (DBTL) engineer-
ing life-cycle. �ese work�ows generate large volumes of data
and physical artifacts (e.g., DNA samples and cell stocks) that are
di�cult to organize, track, and manage without systematized, auto-
mated tool chains.

�e DBTL cycle is a generalized, iterative framework for engi-
neering problem-solving—something like a scienti�c method for
engineers. In the context of synthetic biology, the DBTL cycle may
include processes such as pulling data about biological parts from
online databases, assembling new genetic programs from DNA se-
quences, synthesizing and assembling DNA, performing quality
control, measurement and model-based characterization of a DNA
part’s encoded behavior, submi�ing characterized parts to invento-
ries, and publishing data sheets. Ideally, each cycle generates new
knowledge that feeds back into new cycles in the form of alternative
approaches, reformulated problems, or forward speci�cations for
future designs.

In this abstract, we describe how the Synthetic Biology Open
Language (SBOL) data exchange standard has recently been ex-
tended to enable documentation, automation, and integration of
DBTL pipelines to support large-scale, distributed research and
development in synthetic biology.

REPRESENTINGWORKFLOWS
Distributed collaboration in synthetic biology requires integrating a
diverse network of resources, including so�ware tools, automation,
instrumentation, databases, and repositories. In order for these
resources and, by extension, the collaborative, scienti�c commu-
nities they support to communicate and operate e�ciently, data
standards are needed. �is abstract reports recent developments
in data exchange using the SBOL standard that support large-scale
collaboration among diverse communities of experimental and com-
putational synthetic biologists.

SBOL is a data exchange standard intended to support reuse and
reproducibility of prior scienti�c work by synthetic biologists and
developed through an open, community-wide process. SBOL de-
�nes a high-level data model that represents important conceptual
knowledge for human users, while, at a lower level, data is serial-
ized in a machine-readable RDF/XML format that enables semantic
interoperability between distributed resources. Since the standard

Activity

Implementation

ModuleDefinition

Agent

Plan

Usage

Association
SBOL Core

PROV-O

Legend:

Figure 1: PROV-O and SBOL classes used to represent the
design-build-test-learn (DBTL) engineering life-cycle.

was originally released [3], its scope has expanded [8], most re-
cently with SBOL 2.2, which includes support for integration of
computational work�ows with experimental work�ows [2].

In order to describe multi-stage work�ows, SBOL leverages the
World Wide Web Consortium (W3C) Provenance Ontology (PROV-
O) [7]. Provenancemay be de�ned as a form of structuredmeta-data
that describes the execution of processes in which one artifact is
transformed into another. �is record is essential for understanding
where data comes from, deciding whether it should be trusted, and
integrating it with other information sources. In PROV-O, work-
�ows are represented as a directed, acyclic graph linked by Activi-
ties executed by Agents (e.g., persons, robotics, and/or so�ware
tools) according to a Plan uponUsages of other artifacts (Figure 1).
�e PROV-O data model is deliberately generic. Although it has
heretofore been used primarily for describing computational work-
�ows, it has been adapted for use in SBOL to describe experimental
work�ows as well.

More speci�cally, SBOL classi�es provenance Activities accord-
ing to a simple DBTL ontology. Data objects produced by “design”
Activities represent an engineer’s intended design and are purely
conceptual (these are typically ComponentDe�nition or Mod-
uleDe�nition objects). Data objects produced by “build” Activi-
ties represent physical artifacts such as DNA samples or cell lines
(these are typically Implementation objects). �ese in turn may
be subject to “test” Activities, an experimental measurement that
results in new data objects (these are typically anAttachment or a
Collection of Attachment objects). �ese data are then subject to
reduction and analysis through “learn” Activities (learned objects
can be any other type of object representing what has been learned).
Work�ows in SBOL may consist of any number of specialized steps
and protocols, but by and large they are expected to �t into the



DBTL abstraction, as this is how work�ows are o�en presented in
synthetic biology literature [1, 4].

Figure 2 represents one complete iteration through a hypothet-
ical DBTL cycle. �e cycle starts with a model specifying a gene
circuit’s desired behavior. A parts-based design is created with the
iBioSim tool. Subsequently, a DNA construct is implemented in the
lab by a technician and its behavior is measured using an automated
plate-reader protocol. Finally, the data are �t with a mathematical
model in order to characterize the observed behavior, which may or
may not match the original speci�cation. �is scenario represents
a model-based design approach to synthetic biology.

APPLICATIONS AND TOOL SUPPORT
SBOL 2.2 is currently being used for distributed collaboration in
several large-scale synthetic biology e�orts that are characterizing
genetic parts and designs, including the NSF Living Computing
Project and the EPSRC-funded Synthetic Portabolomics project.
�ese e�orts involve diverse communities of computational and
experimental researchers. To support these e�orts, so�ware tools
have been developed and upgraded to support PROV-O.�ese in-
clude, among others, synthetic biology design tools, such as SBOLD-
esigner [9], modeling tools, such as iBioSim [5], and data reposi-
tories, such as SynBioHub [6]. SynBioHub, in particular, provides
a means to browse provenance histories online using its web in-
terface. �ese tools leverage open source so�ware libraries for
Java (libSBOLj) [10], JavaScript (sboljs), C++ (libSBOL), and Python
(pySBOL), which have been extended to support the creation and
search of provenance histories using PROV-O and networked data
exchange with SynBioHub instances.

CONTRIBUTIONS
SBOL 2.2 is an enabling technology that supports large-scale engi-
neering e�orts in synthetic biology [2]. Teams of synthetic biolo-
gists using experimental and computational methods may collabo-
rate be�er using a growing company of resources and infrastructure
that communicate with SBOL. Genetic designs, laboratory samples,
and experimental data can be linked together by provenance histo-
ries, making it easier for one synthetic biologist to reuse the work
of another. �e pace of synthetic biology innovation will likely
improve as synthetic biologists proceed through many iterations
of DBTL with computer-aided and automated technologies.
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1 INTRODUCTION
The automation of rote laboratory experiments and the trans-
formation of ultrahigh throughput, controlled in-vitro test-
ing environments have burgeoned in the space of micro�u-
idic design automation, attracting researchers from biology,
electronic design automation (EDA) and computer engineer-
ing alike over the last decade. Today a large section of the
micro�uidic devices represented in the literature are not
published with su�cient information for automating the
physical design process. With the advent of component level
design tools like 3DuF1[Lippai et al. 2018], the problem of
micro�uidic physical design automation is no longer just
a computational problem to solved in a sandbox but also a
necessity to proliferate the technology into research labs.
However, the lack of detailed design information accom-

panying published micro�uidic designs has severely limited
researchers’ ability to work with test cases that are repre-
sentative of the latest class of devices that are being used in
research labs. The work done by CIDAR2 at BU and CARES3
at UC Riverside has resulted in the development of method-
ologies and standards that allow researchers to gauge the
e�cacy of developed algorithms.

2 DEPENDENCE ON MANUFACTURING
Evolving manufacturing technologies and protocols and the
emergence of low cost manufacturing tools [Lashkaripour
et al. 2018; Walsh et al. 2017] have lowered the entry barrier
for manufacturing micro�uidic devices. Since micro�uidic
device architectures have to date been primarily dictated by
the capabilities of the manufacturing technologies used, the
emergence of low cost manufacturing techniques has the

1http://3DuF.org
2http://cidarlab.org/
3http://www1.cs.ucr.edu/faculty/philip/

Figure 1: By generating and examining the designs of ar-
chitectures that occupy various regions in the benchmark
space, researchers can optimize/modify their physical de-
sign algorithms.

potential to upend the assumptions and constraints that are
factored into the physical design algorithms.

3 BENCHMARK SPACES
Any abstract architecture of a micro�uidic device has poten-
tially in�nite ways in which it can be realized as a design.
Moreover any solution for a design of a micro�uidic chip

1



Figure 2: An interchange format allows for the capture and exchange of information that is essential for the physical design
automation algorithms to work. In addition to capturing the design information, it is also allows the format to be extensible
to include custom objects required by di�erent tools allowing researchers to share the information across research domains.

could have numerous valid layouts based on the application
space.
Hence to compare di�erent devices and di�erent algo-

rithms we introduce Benchmark Spaces to understand the
performance of algorithms on di�erent devices compared
against useful performance metrics. Each benchmark space
is a 2D/3D visualization of the various micro�uidic devices
where each of the axes is a unique characteristic of the de-
vice. The graph in Figure 1 is an example of benchmark
space characterizing the statistics of micro�uidic compo-
nents that constitute the device design. We believe that this
visualization method allows the researchers to compare the
quantitative and the qualitative results of their layout algo-
rithms against di�erent devices that occupy the same region
in a benchmark space.
Since literature in the micro�uidic physical design typi-

cally only characterize micro�uidic devices by the number
of components, connections. We believe that the work done
towards formalizing and re�ning the parameters used in vi-
sualizing benchmark spaces will prove to be an invaluable
resource to e�ectively monitor the e�cacy of physical design
algorithms against di�erent classes of devices.

4 STANDARDS
While benchmark spaces can help address the problem of
comparing vastly di�erent micro�uidic designs from dif-
ferent application spaces for the purposes of physical de-
sign, it is still necessary to create standards that not only
ensures that the data can be shared e�ciently between re-
search groups that engage in algorithm research but also
encourages device designers and manufacturers to adopt
the standards. This is achieved by allowing the interchange
format to include custom �elds at the top level which can
be used for application/algorithm-speci�c constraints. Fig-
ure 2 shows how the interchange format used for describing
micro�uidic device designs can capture the Specify, Design
and Build work �ow for micro�uidic devices.
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ABSTRACT
Understanding the interplay between metabolism and ge-
netic regulation is considered key to shed light on the mech-
anisms underlying cancer onset and progression. In this
work, we reconstruct a number of tumor-speci�c genome-
scale metabolic models and inspect estimated �ux pro�les
via statistical analysis, characterizing the detailed metabolic
response associated to altered regulation in various tissues.
We thus demonstrate that combining complementary com-
putational techniques it is possible to identify poly-omic
di�erences and commonalities across cancer types.

KEYWORDS
Genome-scalemodeling, �ux balance analysis, statistical data
analysis, cancer metabolism.
ACM Reference Format:
Guido Zampieri and Claudio Angione. 2018. Integrated computa-
tional extraction of cross-cancer poly-omic signatures: Extended
Abstract. In Proceedings of 10th InternationalWorkshop on Bio-Design
Automation (10th IWBDA). ACM, New York, NY, USA, 2 pages.

1 INTRODUCTION
Several recent studies have shown how cancer cells present
distinct metabolic hallmarks, such as deregulated uptake of
glucose and amino acids. Even the gene theory of cancer
has been recently object of revision in light of old and new
observations [1]. It is therefore clear that alterations on a
genomic and a metabolic level do not work in isolation, but
rather co-participate in malignant transformation. However,
the precise rewiring in the metabolism of transformed cells
∗Oral presentation
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the owner/author(s).
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© 2018 Copyright held by the owner/author(s).

requires more extensive elucidation. Here, we address this
problem through the investigation of the entire metabolic
states associated to altered genetic regulation in the NCI60
cancer cell line panel, which covers nine di�erent tissues
[2]. By combining genome-scale metabolic models (GSMMs)
and statistical analysis we characterize the corresponding
cross-cancer poly-omic landscape.

2 METHODS
Experimental data sets here employed are transcriptomic
pro�les, nutrient uptake rates and proliferation rates for 56
NCI60 cell lines, obtained from previous studies [3, 4]. We
used this data to build and evaluate an array of cell line-
speci�c GSMMs, starting from the human cell model Recon
2.2 [5]. In this process, a novel version of METRADE [6] was
adopted to (i) transform normalized gene expression pro�les
by gene set rules (ii) obtain tumor-speci�c �ux bounds taking
into account both genetic and metabolic uptake constraints.
The estimation of associated �ux con�gurations is conducted
by a regularized �ux balance analysis (FBA) optimization
task, as follows:

max
v

w>v � �

2
v>v

subject to S v = 0 ,
vlb �(Θ)  v  vub �(Θ) .

(1)

Here w is a real vector expressing the contribution of each
reaction to the objective and � = 10�6 is a regularization
parameter. Vectors vlb and vub represent native �ux bounds
in Recon, while vector �(Θ) models the reaction-level gene
regulation state in any cell line based on the following map:

�(Θ) = � (1 + � |lo�(Θ)|)s�n(Θ�1) . (2)

In this equation,Θ is obtained from transcript abundances by
converting logical gene-protein-reaction rules into max/min
operations, as originally implemented in METRADE [6].
Moreover, � is a parameter representing the magnitude with
which gene expression a�ects reaction rates, while � is a
scaling factor introduced to adjust native �ux bounds to
experimental uptake rates.

1
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Figure 1: (a) Comparison between biomass yield predicted
by each cell line-speci�c GSMM and the corresponding ex-
perimentally measured proliferation rates at the optimal �
and � values. (b) Overview of metabolic reactions whose pre-
dicted �uxes signi�cantly correlate with measured cellular
proliferation (1% threshold). For each pathway, number and
fraction of signi�cantly correlated reactions are visualized
in blue and red, respectively.

We performed a sensitivity analysis on parameters� and �
in Eq. (2) to evaluate the obtained �ux pro�les in terms of the
Pearson correlation coe�cient (PCC) r between predicted cel-
lular growth and experimentally measured proliferation rate.
The predicted growth was computed through Eq. (1) assum-
ing biomass accumulation as a proxy for cell proliferation
and thus as a meaningful FBA objective to model cancerous
metabolism. Repeated PCC estimation allowed identifying
optimal � and � values across several orders of magnitude.
We carried out regularized FBA using the COBRA toolbox
in Matlab and the quadratic solver Gurobi [7]. Finally, using
the FactoMineR package in R [8] we performed principal
component analysis (PCA) to characterize the cross-tumor
variation at a genome-scale metabolic �ux level.

3 RESULTS
As a result of the sensitivity analysis on parameters � and
� in Eq. (2), we obtained a PCC peak where r ' 0.66, p-
�alue ' 1.5 · 10�8 (Fig. 1a). We thus inspected the whole �ux
pro�les of tumor cells by studying their PCC with respect to
cellular proliferation rates. We observed a signi�cant PCC
(threshold 1%) for reactions in a number of cancer-associated
pathways, supporting the reliability of our GSMMs, as well
as in less obvious pathways (Fig. 1b). These may suggest or
corroborate unknown mechanisms for tumor development.
In particular, the majority of cholesterol synthesis pathway
emerges as correlated to proliferation, supporting its debated
involvement in cancer. As another example, the exchange
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Figure 2: (a) Variability across �ux pro�les relative to di�er-
ent tumor types in the space of the �rst two principal com-
ponents. (b) Contribution to the �rst two principal compo-
nents of the most highly contributing pathways, obtained
by summing the contributions of their associated reactions.

of dietary compounds such as maltodextrins also results
associated to proliferation.

Next, PCA of the �ux pro�les allowed detecting poly-omic
heterogeneities across the cell lines. As Fig. 2a shows, the
ovarian and renal cell tumors present a markedly distinct
metabolic behavior, almost orthogonal to all other tissues. A
closer look at the composition of �rst principal components
allowed identifying key pathways underlying such variation,
like fatty acid oxidation or eicosanoid metabolism (Fig. 2b).
This analysis thus highlights potential links in the metabolic
reprogramming of the two cancer types, suggesting also
precise reactions to focus experimental veri�cation on.

4 CONCLUSIONS
In this work, we analyzed the poly-omic con�gurations of
multiple cancer types through an integrated computational
pipeline and within a comprehensive cross-tumor frame-
work. Our analysis led to the identi�cation of both variation
and common patterns across the tumors, providing novel
insights in the general cancer molecular landscape. We thus
showed that the joint application of GSMMs and statisti-
cal analysis techniques can help elucidate the mechanisms
underlying cancer development and progression.
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1. MOTIVATION

Developmental biology concerns the growth and di↵eren-
tiation of a body of cells from a single-cell progenitor with
complete genetic information. From this single cell, a com-
plete multi-cellular organisms is developed autonomously -
in order for scientists to be able to consistently grow func-
tional tissues or tissue-like substructures, it would be ideal
to develop strategies for genetic-level control of development
of 3-D shapes.

Current approaches to forming specific cellular structures
typically require sca↵olding or 3-D printing [4], both of which
require considerable experimenter intervention. Moreover,
protocols now exist to generate disparate organoids (e.g.
human cerebral organoids) from a range of progenitor cell
types (e.g. pluripotent stem cells), yet in these approaches,
researchers are still a long way from being able to use these
processes to create ex vivo organs. Furthermore, the capac-
ity to program cells to form novel, specified synthetic struc-
tures via these endogenous developmental programs has not
been demonstrated [5]. In this work, we present a compu-
tational method to facilitate the genetic encoding of biolog-
ical materials into customizable shapes without any experi-
menter intervention, by defining developmental biology sub-
problems and providing some preliminary solutions. Our
framework takes as input a computer-aided design (CAD) of
a 3D cellular shape and outputs a set of DNA instructions
informing a progenitor cell how to develop autonomously
into the specified shape.

2. FRAMEWORK OVERVIEW

First, a set of algorithms transform the computer-aided
design of the shape into a set of building blocks – alike lego
blocks – with a defined connectivity pattern. Orthogonal
protein binding pairs will ensure the right pattern. Second,
the structural specifications defined in the first step are en-
coded into synthetic genetic circuits (Fig 2 & 3) that will
inform the cells on a developmental plan (Fig 4) to direct
the cells to grow into the designed 3D cellular structure. Fi-
nally, a verification step assess the biological experiment in
order to quantify its success against the CAD specifications.

3. STRUCTURAL SPECIFICATIONS

Our framework inputs a 3D computer-aided design of a
cellular shape and transforms it into a list of blocks. Those
blocks, either made of eight cells (rhombuses) or four cells
(tetrahedron), have been designed taking inspiration from
the early developmental stages of the human embryo. To

Figure 1: Synthetic developmental biology CAD workflow.
From the desired shape, a CAD design is created and an algo-
rithm outputs a genetic circuit necessary for a cell to grow into
the desired shape.

segment our desired shape into blocks, we rely on meshing
algorithms – widely used in the field of finite element analysis
to divide a physical object into multiple parts in order to
simulate the behavior of the object resulting from applied
loads and constraints [7].

To connect the blocks together, orthogonal protein bind-
ing pairs (connectors) are used. Given that their number is
limited, optimization algorithms are used in order to mini-
mize the number of connectors needed in order to create a
given shape. This step allow us, given a set of N available
connectors, to increase the space of possible shapes that
can be designed. To this end, we build on top of graph
theory concepts and algorithms in order to create multi-
ple connectivity schemes having di↵erent shape properties.
Notably, the lower-bound connectivity is define by the mini-
mum spanning tree (MST) algorithm while the upper-bound
connectivity is define by a full connection pattern between
all cells of neighboring blocks [6].

4. DEVELOPMENTAL PLAN

From the list of blocks and their connectors, the devel-
opmental plan algorithm is used to encode the necessary
information into a genetic program. Those information will
allow the progenitor cell to autonomously divide into the
designed shape. To inform the cell of the program, a mech-
anism composed of two specific synthetic genetic circuits has
been designed, called a counter and a register. The counter
circuit uses promoters specific to a part of the cell cycle to
count cell divisions. This counter will provide a biological
mechanism to activate expression of specific genes in the reg-
ister circuit at specific cell divisions (e.g. to express a specific
surface binding protein). Both circuit rely on recombinases
and reversal cofactors (XIS/RDF) to change their states by



Figure 2: A ‘binary’ counter to count 4 states using 2 recombi-
nases. Recombinase sites are depicted with triangles. Genes with
R represent a recombinase, and XIS, a reversal cofactor. Bolded
elements are expressed at the given state and arrows indicate se-
quences inversed to increment the count.

Figure 3: A ‘binary’ register to express specific genes according
to the program given by the counter. Cut triangles represent
orthogonal binding sites.

inverting sub-sequence of the circuit lying between recombi-
nase sites [2].

Finally, an algorithm using a binary tree structure is used
to compute the needed information on the register circuit.
Starting with the leafs of the tree, where each cell is de-
fined by the connectors it needs to express, information is
propagated back to all parent nodes until the root node is
reached. At each level of the tree, information is translated
into genetic instructions on the register to be expressed at
given count by specific cells. To ensure that cells can ex-
pressed di↵erent connectors despite coming from the same
progenitor cell, a mechanism to do asymmetrical division is
used. Namely, the Numb protein, which has been shown to
segregate in only one of two daughter cells during division
in Drosophila melanogaster Neuroblasts, can be fused to a
recombinase to modify the register asymmetrically [3].

5. VERIFICATION AND SIMULATION

To verify a synthetic gene circuit design can reliably pro-
duce a specified 3D geometry, we developed a biophysical
model to simulate the directed self-assembly of a single cell
into autonomous cell blocks and 3D cell shapes. Our compu-
tational model integrates the propulsion of cells in a rotating
fluid, selective cell adhesion using single or paired surface
binding proteins, and gene circuit-driven logic to direct the
self-assembly of individual cells into geometric cell shapes.

After experiments (or simulations in silico), the cell mass

Figure 4: Example of a developmental plan to create a shape
made of two building blocks from a single progenitor cell. Cell
colors are used to display a type of connector (genotype on cell
nucleus, phenotype for the whole cell).

is imaged with confocal microscope. A graph is reconstructed
from the resulting z-stack of 2D images with segmentation
algorithms, allowing to place cell in 3D space [1]. The re-
construction is then compared with the original design to
quantitatively assess the result of the experiment.

6. RESULTS

We can use our computational framework to compute
developmental plans to create custom simple 3D cellular
shapes designed on an open source CAD software. More-
over, we have developed a comprehensive strategy for shape
formation from a single-cell progenitor using only genetic
circuits and have developed a recombination circuit verifica-
tion software to verify that the counter design is extensible
and can count to 2n with (n-1) reversible recombinases and
express specific proteins at each individual count with a reg-
ister.

7. CONCLUSION

Our approach allows to encode a custom 3-D shape into a
set of genetic instructions such that a progenitor cell can de-
velop into the desired shape, without extensive experimenter
intervention.
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ABSTRACT
We present an automated design method to �nd gene circuits com-
patible with a target bifurcation diagram optimizing through pa-
rameter and topology spaces. We apply the method to the design of
gene circuits exhibiting the so called mushroom bifurcation, �nd-
ing the set of minimal topologies that lead to an improved sensor
functionality.

CCS CONCEPTS
• Applied computing→ Computational biology;

KEYWORDS
Synthetic Biology; Bifurcation; Multiobjective Global Optimization;

ACM Reference Format:
Rubén Pérez-Carrasco, Irene Otero-Muras, Julio R. Banga, and Chris P.
Barnes. 2017. Automated design of gene circuits with optimal mushroom-
bifurcation behaviour: Extended Abstract. In Proceedings of ACM conference
(IWBDA’18).ACM, New York, NY, USA, 2 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
One of the main challenges of synthetic biology is to design and
implement circuits capable of speci�c tasks optimally while keeping
a minimal design [3, 4]. The limited resources of the cell restrict
the combination of multiple working circuits in the same organism.
This gives leading relevance to the design of multifunctionality:
how can di�erent behaviours be integrated in the same circuit?
Powerful tools to answer this question are provided by bifurcation
theory of dynamical systems, linking the topology of the network
(given by a set of ODEs) with the di�erent dynamics available under
a controllable input. This is the case of the mushroom bifurcation:

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IWBDA’18, July 31–August 3, 2017, Berkeley, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

combining the behaviour of two toggle switches, the mushroom
presents an ON state that is only available for intermediate values of
a signal (Fig. 1B) [5, 6], allowing us to build a precise signal detector.
In addition, it contains two di�erent bistable zones where the state
of the cell will be determined by the signal history, endowing the
cell with memory capabilities. Finally, the critical slow-down close
to the neck of the mushroom can result in an e�cient mechanism
to control time, only responding after the signal has been present
for a required amount of time.

The e�ciency of the possible di�erent behaviours of the mush-
room bifurcationwill depend on the shape of its bifurcation diagram.
Here we develop an automated design method to �nd (searching
trough parameter and topology spaces simultaneously in an e�-
cient manner) gene circuits that not only allow certain behaviours
(compatible with a target bifurcation diagram), but are also opti-
mized for speci�c sets of functions.
2 METHODS, RESULTS AND DISCUSSION
We encode the dynamics of gene regulation for the 2-gene system
in Fig. 1A via a mixed-integer framework. Using the Shea-Ackers
formalism, the gene circuit is characterized by a vector� of 4 integer
variables (�uu , �u� , ��u , ��� ) and a vector x of 10 real variables
coding for tunable parameters (including promoter strengths, leak-
iness, degradation rate constants, repression and activation terms).
Activation functions by the quorum signal AHL (denoted by S) are
of the Hill type. Generalizing the condition for fold bifurcation
in [2], the target behaviour can be encoded as a function of [x ,�]
such that the mushroom bifurcation is achieved when the function
reaches its minimum. Then, we formulate the search as a global op-
timization problem aiming to �nd those circuits [x ,�] minimizing
the objective. The resulting mixed-integer nonlinear programming
problem (MINLP) is solved with e�cient hybrid solvers [1]. In order
to guarantee e�cient performance and a successful implementation
in the lab, we seek the structure and parameter ranges leading to
an optimal performance in terms of the distances between the limit
bifurcation points (see Fig. 1B). We set the mushroom condition as
a constraint and solve a multiobjective optimization problem with
two objectives: maximize distance 1 and minimize distance 2 as
de�ned in Fig. 1B. The MO-MINLP problem is solved following [1].
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Figure 1: A) Super-structure of the two gene design. B) Bifurcation diagram of a mushroom toggle switch, points 1, 2, 3 and 4
indicate saddle-node bifurcations. C) All the 2-gene structures leading tomushroom bifurcations found by the single objective
optimization algorithm. D) Pareto front of optimal solutions, for each solution (P1 to P5) the structure and bifurcation diagram
are depicted. Distances 1 and 2 are de�ned in Fig 1B. E) Implementation of the design (with A1 topology).

Results. By solving the single objective optimization problem (in a
multistart strategy) we �nd 10 di�erent topologies leading to mush-
room bifurcation behaviour. These structures are represented in Fig.
1C and classi�ed attending to the number of active connections.
There are two core topologies (for which no connection can be re-
moved without losing the mushroom functionality), corresponding
to structures A1 and B5. Unlike exhaustive exploration strategies,
our optimization-based method can �nd structures ful�lling the
target behaviour very e�ciently (in the order of seconds).

Applying the multiobjective optimization approach, we obtained
the Pareto front of optimal solutions in Fig. 1D (P1, . . ., P5). Cir-
cuits corresponding to point P2 and P3 provide a good compro-
mise between optimization objectives and therefore both are good
candidates for implementation. In Fig. 1E we depict one possible
implementation of the design. Importantly, the same optimization
strategy can be used to �nd circuits compatible with other target
bifurcation behaviours and also starting from a library of standard
components.

Acknowledgements. RPC acknowledges �nancial support by the UCL
Mathematics Cli�ord Fellowship. CPB acknowledges �nancial support by
Wellcome Trust Research Career Development Fellowship (097319/Z/11/Z).
IOM, JRB acknowledge funding from MINECO projects SYNBIOFACTORY
(DPI2014-55276-C5-2-R) and SYNBIOCONTROL (DPI2017-82896-C2-2-R)

REFERENCES
[1] I. Otero-Muras and J. R. Banga. 2017. Automated Design Framework for Synthetic

Biology Exploiting Pareto Optimality. ACS Synt. Biol. 1180–1193 (2017), 6(7).
[2] I. Otero-Muras, P. Yordanov, and J. Stelling. 2017. Chemical Reaction Network

Theory elucidates sources of multistability in interferon signaling. PLoS Comp.
Biol. 13(4) (2017), e1005454.

[3] Ruben Perez-Carrasco, Chris P. Barnes, Yolanda Schaerli et al, et al. 2018. Com-
bining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates
Distinct Dynamical Behaviors. Cell Syst. (mar 2018), 1–10.

[4] Yolanda Schaerli, Andreea Munteanu, Magüi Gili, et al. 2014. A uni�ed design
space of synthetic stripe-forming networks. Nat. Commun. 5, May (2014), 4905.

[5] Dola Sengupta and Sandip Kar. 2018. Deciphering the Dynamical Origin of Mixed
Population during Neural Stem Cell Development. Biophys. J. 114, 4 (2018), 992.

[6] Hao Song, Paul Smolen, Evyatar Av-Ron, et al. 2006. Bifurcation and singularity
analysis of a molecular network for the induction of long-term memory. Biophys.
J. 90, 7 (2006), 2309–2325.

2



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Mechanistic e�ects of influenza in bronchial cells
through poly-omic genome-scale modelling

Elisabeth Yaneske
Department of Computer Science and Information

Systems, Teesside University
Middlesbrough, United Kingdom

e.yaneske@tees.ac.uk

Claudio Angione
Department of Computer Science and Information

Systems, Teesside University
Middlesbrough, United Kingdom

c.angione@tees.ac.uk

ABSTRACT
In this work we propose regularised bi-level constraint-based
modelling to determine the �uxomic pro�les for four di�er-
ent in�uenza viruses, H7N9, H7M7, H3N2 and H5N1. We
report here the �rst step of the analysis of the �ux data using
AutoSOME clustering, where we identify novel biomarkers
of infection. This is a work in progress that can directly lead
to novel therapeutic targets.
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1 INTRODUCTION
Previous work [6] analysed transcriptomic data to identify
FDA-approved antiviral drugs that would be e�ective against
the H7N9 Anhui01 in�uenza virus. This was done by infect-
ing human bronchial epithelial cells cells with H7N9 and
comparing the transcriptomic pro�le of these with cells in-
fected with H3N2, H5N1 and H7N7. Four replicate samples
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were taken at 3, 7, 12, and 24 hours. A control batch of un-
infected cells was also sampled at the same time. Here we
extend on this work by applying genome-scale modelling to
the transcriptomic pro�les of the four strains of in�uenza
virus H3N2, H5N1, H7N7, H7N9 in order to determine their
metabolic phenotypes.
Standard metabolic models created using FBA (Flux Bal-

anceAnalysis) and constraint-basedmodelling have no unique
solution for the optimal �ux vector. The Cobra 3.0 toolbox [4]
introduced a regularisation function so that the optimisation
problem has a single unique solution. We here adapt the reg-
ularisation function to create a novel bi-level linear program
with FBA and regularisation. To our knowledge, this is the
�rst time this has been reported in the literature. This mod-
elling procedure enables us to predict how the distribution
of �ux rates within the cell responds to infection with dif-
ferent in�uenza viruses. The transcriptomic data from each
individual virus is used to constrain the model to generate a
virus-speci�c metabolic model for each of the four in�uenza
strains at each of the four time points sampled.

2 METHODS
Data processing and metabolic modelling
After retrieving the transcripomic datawas fromGEO (GSE49840),
the probe data was matched to HGNC IDs. Where multiple
probes were associated with a single HGNC ID, the gene ex-
pression values were averaged. The replicate samples were
averaged to give a single transcriptomic pro�le for each time
point. The transcriptomic data was normalised by taking
the ratio of the in�uenza data to the control data to obtain
the fold change. The normalised transcriptomic pro�les of
the in�uenza viruses were then used to create virus spe-
ci�c bronchial epithilel cell metabolic models. The metabolic
models were created using constraint based modelling and
�ux balance analysis (FBA) of the human epithelial cell aug-
mented with transcriptomics [6] through GEMsplice [1].

Constraint-based modelling with regularisation
In FBA the cell is assumed to be in steady state, S� = 0,
where S is a stoichiometric matrix of all known metabolic
reactions (metabolites by reactions) and � is the vector of

1

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

IWBDA, July 31 - August 3 2018, Berkley, CA USA E. Yaneske et al.

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

reaction by �ux rates. Additionally, every reaction �ux is con-
strained by lower- and upper- bounds (�min and �max). Here
we constrain the strain-speci�c metabolic models generated
from the transcriptomics data with upper- and lower-bounds
on reactions set as a function of the expression level of the
genes involved in the reactions using GEMsplice [1]. We
set the primary objective as maximisation of hexokinase
[7] and the secondary objective as maximisation of UDP-
N-acetylglucosamine diphosphorylase [10]. We additionally
apply regularisation to the secondary objective function such
that it is maximised subject to the primary objective being
maximised with a penalty term de�ned as a multiple of �T� .
This is achieved by adding a function that drives minimisa-
tion of the squared �ux rates. This state re�ects the most
e�cient metabolic network. We use the following bi-level
program with regularisation:

max �|� � �

2
�T�

such that max f |�, S� = 0,

�min�(�)  �  �max�(�).
(1)

The Boolean vectors f and � are weights to select the �rst
and second objectives respectively to be maximised from
the vector � i.e. hexokinase and UDP-N-acetylglucosamine
diphosphorylase. The vectors �min and �max represent the
lower- and upper-bounds for �ux rates. The regularisation
function (�2�

T�) requires that the sum of the square of the
�uxes is minimised for the maximisation of the second ob-
jective to be obtained. To maintain the optimal value of the
original linear objective whilst minimising the square of the
�uxes, the coe�cient, � , is set to 10�6.
The vector � represents the set of gene expression val-

ues for the enzymes catalysing the biochemical reactions
associated with the vector of �uxes � . The upper- and lower-
bounds are constrained depending on the expression levels
of the enzymes and a rule based on the type of enzyme (single
enzyme, isozyme, or enzymatic complex) using the function
� [2]. Simulations were performed in Matlab R2016b.

Clustering
To cross-compare the �uxomics of the four viruses, �ux
distributions were clustered using AutoSOME [8], an un-
supervised SOM-based method for high-dimensional data
that uses a combination of density equalisation, minimum
spanning tree clustering and ensemble averaging strategies.
AutoSOME has the advantage that it does not require prior
knowledge of the number of clusters and is not skewed by
outliers in the data.

3 RESULTS AND CONCLUSIONS
Clustering the in�uenza sample subsystems according to
their �ux pro�le using AutoSOME resulted in four clusters.
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Figure 1: Heatmap of AutoSOME clustering. A subset of the
subsystems is shown illustrating the variability between the
four clusters.

In agreement with [6], H7N9 shows its own uniquemetabolic
pro�le. Among the avian viruses at 24 hours of in�uenza
infection, the metabolic pro�le of H7N9 is closest to H5N1
though it shares similarities with the H3N2 virus at both 12
and 24 hours [6]. Of the pathways showing strongest pertur-
bations, the pentose phosphate pathway [9], oxidative phos-
phorylation [3] and r-group (de novo viral protein) synthesis
[11] have previously been identi�ed as important in viral
replication. The importance of amino sugar metabolism may
be due to its links with glycolysis [9] and glycoprotein pro-
duction [10]. D-alanine metabolism has not previously been
reported but may be important in the production of pyru-
vate [9] for viral replication. Butanoate metabolism shows a
di�erent pro�le across the four clusters. Butanoate metabo-
lism has also not previously been reported but may highlight
di�erences in viral cAMP signalling [5]. These results iden-
tify novel biomarkers of infection, suggesting that further
analysis of the data using machine learning techniques fo-
cussed on these metabolic features could contribute to the
identi�cation of novel therapeutic targets.

REFERENCES
[1] C Angione. 2018. Integrating splice-isoform expression into genome-

scale models characterizes breast cancer metabolism. Bioinformatics
34, 3 (2018), 494–501.

2



213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

Mechanistic e�ects of influenza in bronchial cells through poly-omic genome-scale modellingIWBDA, July 31 - August 3 2018, Berkley, CA USA

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

[2] C Angione and P Lió. 2015. Predictive analytics of environmental
adaptability in multi-omic network models. Scienti�c reports 5 (2015),
15147.

[3] Adi Bercovich-Kinori, Julie Tai, Idit Anna Gelbart, Alina Shitrit, Shani
Ben-Moshe, Yaron Drori, Shalev Itzkovitz, Michal Mandelboim, and
Noam Stern-Ginossar. 2016. A systematic view on in�uenza induced
host shuto�. Elife 5 (2016), e18311.

[4] L Heirendt, S Arreckx, T Pfau, S N Mendoza, A Richelle, A Heinken,
H S Haraldsdottir, S M Keating, V Vlasov, J Wachowiak, et al. 2017.
Creation and analysis of biochemical constraint-based models: the
COBRA Toolbox v3. 0. arXiv preprint arXiv:1710.04038 (2017).

[5] Noriyuki Hirata, Futoshi Suizu, Mami Matsuda-Lennikov, Tatsuma
Edamura, Jyoti Bala, and Masayuki Noguchi. 2014. Inhibition of Akt
kinase activity suppresses entry and replication of in�uenza virus.
Biochemical and biophysical research communications 450, 1 (2014),
891–898.

[6] L Josset, H Zeng, S M Kelly, T M Tumpey, and M G Katze. 2014.
Transcriptomic characterization of the novel avian-origin in�uenza
A (H7N9) virus: speci�c host response and responses intermediate
between avian (H5N1 and H7N7) and human (H3N2) viruses and im-
plications for treatment options. MBio 5, 1 (2014), e01102–13.

[7] Hinissan P Kohio and Amy L Adamson. 2013. Glycolytic control of
vacuolar-type ATPase activity: a mechanism to regulate in�uenza viral
infection. Virology 444, 1-2 (2013), 301–309.

[8] A M Newman and J B Cooper. 2010. AutoSOME: a clustering method
for identifying gene expression modules without prior knowledge of
cluster number. BMC bioinformatics 11, 1 (2010), 117.

[9] Joachim B Ritter, Aljoscha S Wahl, Susann Freund, Yvonne Genzel,
and Udo Reichl. 2010. Metabolic e�ects of in�uenza virus infection
in cultured animal cells: Intra-and extracellular metabolite pro�ling.
BMC systems biology 4, 1 (2010), 61.

[10] David J Vigerust and Virginia L Shepherd. 2007. Virus glycosylation:
role in virulence and immune interactions. Trends in microbiology 15,
5 (2007), 211–218.

[11] Tokiko Watanabe, Shinji Watanabe, and Yoshihiro Kawaoka. 2010.
Cellular networks involved in the in�uenza virus life cycle. Cell host
& microbe 7, 6 (2010), 427–439.

3



Temporal Verification of Genetic Circuits
Curtis Madsen1, Prashant Vaidyanathan1, Nicholas A. DeLateur2, Evan Appleton3, Greg Frasco1,

Calin Belta1, Ron Weiss2, Douglas Densmore1
1Boston University, 2Massachuse�s Institute of Technology, 3Harvard Medical School

{ckmadsen,prash,frascog,cbelta,dougd}@bu.edu,{delateur,rweiss}@mit.edu,evan appleton@hms.harvard.edu

1 INTRODUCTION
Recent advances in synthetic biology have led to the development
of so�ware tools capable of computationally designing functional
genetic circuits using Boolean logic [7]. However, biologists are
o�en concerned with how their systems behave over time instead
of how they behave in the steady-state. �is concern has led re-
searchers to turn towards the use of temporal logics such as Signal
Temporal Logic (STL) [5] for their speci�cations. To further address
this interest in temporal behavior, we have developed Phoenix, a
bio-design automation (BDA) work�ow that utilizes STL to specify
functionally rich desired behaviors of signals in synthetic genetic
circuits. �e work�ow can then design genetic circuits from a well
characterized library of DNA parts and verify the simulations of
the models of these circuits against the desired speci�cation. With
this approach, biologists can create formal, performance-bound
speci�cations for complex genetic circuits and run �nite-time sim-
ulations for modular designs to identify genetic circuits with high
likelihoods of satisfying the desired speci�cation. Figure 2 illus-
trates the Phoenix work�ow being applied to the design of a simple
inverter circuit, and the rest of this abstract describes the steps of
the work�ow in more detail.
2 SPECIFICATION
�e �rst step in Phoenix is the speci�cation step. �e following
subsections describe each of the inputs to this step.
2.1 Performance
�e temporal behavior of a desired circuit is speci�ed as an STL
formula. �is formal language allows for the creation of speci�-
cations that include parameters intrinsic to genetic components,
interactions with complex environments and other components,
and timing of interactions and events. �e STL formula is used
in the veri�cation step to determine which circuit design has the
highest likelihood of realizing the desired behavior.
2.2 Structure
Functioning biological constructs adhere to speci�c structural con-
straints and biological rules [8]. A structural speci�cation which
includes constraints like counting (number of occurrences of a part),
position (juxtaposition or index of parts in a design), orientation
(forward or reverse), and functional interaction (interaction be-
tween a coding sequence (CDS) and promoter) helps narrow the
design space of all possible circuits that can be built using the avail-
able parts in the library. To specify biological rules and constraints,
Phoenix takes as input a structural constraint �le of the desired
genetic circuit wri�en in the expressive speci�cation language,
Eugene [8].
2.3 Module Library
Our work�ow connects to the SynBioHub [6] to download Syn-
thetic Biology Open Language (SBOL) [1] descriptions of biological
parts for composition into genetic circuit designs. �ese SBOL

�is work has been funded by the O�ce of Naval Research under Grant No. N00014-
11-1-0725 and the National Science Foundation under grant CPS Frontier 1446607.

(a) Stochastic Simulations (b) Constitutive Expression

Figure 1: (a) shows 100 stochastic simulations of the con-
stitutive expression of GFP circuit shown in (b). �e area
shaded in blue represents the region of satisfaction of
the desired performance speci�cation written in STL as
G[1000,1500](GFP >= 500 && GFP < 700), which speci�es that
GFPmust be between 500 and 700MEFL (Molecules of Equiv-
alent Fluorescein) from time 1000mins to 1500mins. In this
example, this circuit satis�es the speci�cation with a satis-
faction rate of 1.

descriptions can be annotated with structural information as well
as characterization data gathered while performing experiments
using the parts. �e SynBioHub also allows for the inclusion of
mathematical models speci�ed in languages such as the Systems
Biology Markup Language (SBML) [3] that describe the functional
behavior of the parts in the repository.

3 ASSIGNMENT AND SIMULATION
Using the structural speci�cation, Eugene generates a design space
of all rule-compliant circuit designs. �ese circuit designs are then
decomposed into each transcriptional unit present (both forward
and reverse orientations). A transcriptional unit (of a speci�c ori-
entation) starts with a promoter, followed by a ribosome binding
site (RBS), followed by a CDS, and ends with a terminator. A tran-
scriptional unit could have multiple CDSs as long as each CDS is
immediately preceded by an RBS of the same orientation. Each
transcriptional unit is broken down into the ‘promoter unit’ (where
expression is characterized) and the CDS (where protein degrada-
tion and dilution is characterized).

Models for circuit designs are composed using the models for
expression and loss of proteins, which are a�ached to the com-
ponents in the library. For CDSs, a single loss term representing
degradation and dilution is included in the model. For promoters,
the models include reactions with rates utilizing standard Hill-
function equations. �e part models utilized by our approach are
carefully constructed so that when a promoter model is combined
with a CDS model, the resulting model represents the behavior of a
classic genetic module. In this current framework, we only consider
the biological functions of a promoter and CDS. It should also be
noted that these mathematical models are derived using parameter
estimation techniques to �t the Hill-functions and loss equations



Figure 2: An example of using Phoenix to create a simple inverter circuit. (1) In the Specify step, the work�ow connects
to a SynBioHub repository of biological parts including several promoters, RBSs, CDSs, and terminators. (2) A structural
speci�cation, written in the Eugene language, is provided that speci�es that one CDS is driven by a constitutive reporter and
another is driven by a promoter that is repressed by the output protein of the �rst transcriptional unit. (3) A performance
speci�cation written in STL is also supplied that requires the output of the circuit to stay below 5 MEFL for 100 time units.
(4) In the Design step, the biological parts are queried from the repository and composed together to create candidate circuits
based on the design space constraints from the structural speci�cation. (5)Models for each of these designs are simultaneously
constructed by composing themodels for each part from the repository. (6) In the Verify step, the composedmodels associated
with the candidate circuits are simulated and checked against the performance speci�cation using statistical model checking.
�e circuit that best satis�es the speci�cation is returned as the result.

to data produced from wet-lab experiments for each part and that
the parameter estimation step is a preprocessing step to Phoenix.

Once models of the genetic circuits are constructed, they are
simulated to produce traces representing their behavior. Due to the
stochastic nature of genetic circuits, ourwork�owutilizes stochastic
analysis methods in order to be�er capture the possible behaviors
of the circuit models. Simulations are performed using iBioSim [4]
and the resulting traces are statistically veri�ed.

4 STATISTICAL MODEL CHECKING
Utilizing well-known model checking techniques such as those
applied to applications in electronic circuit design and robotics [2],
our approach can determine which circuit designs best realize the
desired performance speci�cation. Statistical model checking is ap-
plied to each circuit design’s simulation traces to determine the
likelihood that each circuit will satisfy the speci�cation. �e circuit
designs are then ordered based on the satisfying probability for each
circuit. If a threshold value has been speci�ed for the lowest possi-
ble acceptable satisfaction probability, this list will be truncated to
only those circuits that are guaranteed to have at least the threshold
satisfaction rate before being returned. Figure 1 shows an example
of performing stochastic simulation and statistical model checking
on a circuit for constitutive expression of GFP. Once Phoenix pro-
duces the circuit model that best satis�es a desired STL speci�cation,
the circuit is synthesized in the wet-lab and the resulting empirical
data is checked against this same STL formula to determine how
well Phoenix predicted the circuit’s behavior. �is information can
then be fed back into the work�ow to improve future predictions.

5 EXPERIMENTAL RESULTS
Kinetic parameters for expression and degradation/dilution in ex-
ponential phase E. coli have been obtained and are being utilized
by the Phoenix work�ow. We are currently building a library of
empirically characterized genetic circuit modules for inducible and
repressible expression. �e models for these modules take tran-
scription factor and small molecule concentrations as inputs to the
interaction with their cognate promoter part.
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ABSTRACT 
Constructing a complex working gene circuit composed of 
different modular standardized biological parts to achieve the 
desired performance could be challenging without a proper 
understanding of how the individual modules behave. 
Mathematical models play an important role towards better 
quantifying and optimizing the performance of the overall gene 
circuit, providing insights and guiding the design of experiments. 
As different gene circuits might require exclusively different 
mathematical representations, one of the key challenges in model 
development is the selection of the appropriate model. To address 
this, we developed an automated biomodel selection system, 
based on a framework which includes a library of pre-established 
models. As a proof of concept, we showed the system worked 
successfully using commonly used chemical inducible systems. 
Future work includes extending the BMSS to handle more 
complex gene circuits and to be compatible with SBOL/SBML for 
ease of use. Our intent is to assist the users to derive the best 
candidate mathematical model in a fast, efficient and automated 
way using characterization data.  

KEYWORDS 
Automation; biological part; model fitting; model selection; 
characterization data  

1 INTRODUCTION 
The use of mathematical models in synthetic biology allows a 

representation of the essential aspects of the constructed system, 
capturing the system behaviors in a quantitative manner useful for 
analysis and rational design optimization (e.g. design of 
experiments). The model development process involves structure 
identifications, formulation derivations, parameter inferences, 
model verifications and validations. Abstracting the experimental 
data in this way is a tedious yet complicated process that requires 
extensive experience and knowledge of the respective system of 
interests. This often requires many iterative trial-and-error 
learning and testing cycles which can essentially take months. 
Automating this process could drastically reduce the time 
consumed with minimal manual interventions from users.  

To date, a plethora of computer-aided software or modeling 
tools is available to facilitate the synthetic biology design and 

modeling processes [2,3]. However, while the tools provide useful 
functions and interactive GUIs, there is still a lack of automated 
features that could expedite the process of selecting the most 
appropriate candidate model. Most of them demand moderate to 
intensive manual efforts from users. Hence, we aim to develop a 
system to automate the biomodel development and selection 
processes, providing a means to efficiently derive the best 
candidate model using characterization data.  

2 METHODOLOGY 

 
Figure 1: Workflow of system algorithm 

Fig. 1 illustrates the schema of the system algorithm. The 
system was written in Python 3 as the scripting language which is 
open source and freely accessible. Numerical integration, 
optimization, and plotting packages were used to solve the 
ordinary differential equations (ODEs), iteratively fit models to 
experimental data through minimizing the sum squared residuals 
and plotting graphical results for data visualization. The model 
selection algorithm was based on the Akaike Information 
Criterion [1].       

3 SYSTEM DEVELOPMENT  
As a proof of concept, three widely used promoter-inducer 

circuits (i.e. pBAD/Arabinose, pTet/aTc, pLac/IPTG), which 
exhibit distinct gene expression behaviors, were chosen to create 
three different model representations. These promoter systems 
with the red fluorescent protein (RFP) as a reporter were 
characterized in E. coli and the expression output was measured 
using a microplate reader (BioTek Synergy H1). The 
characterization data of the pBAD promoter induced by arabinose 
exhibited an expression profile which could be recapitulated with 
model assuming a constant inducer concentration/inducer 
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activation (Fig. 2a, 3a-b). The pTet promoter characterization 
induced by aTc displayed expressions that slowly reduce over 
time which could be attributed to the fast inducer degradation or 
deactivation of the transcription process caused by the inducer 
binding/unbinding mechanism. A simpler model with fewer 
introduced parameters was adopted to describe this trend (Fig. 2b, 
3c-d). Lastly, the IPTG-induced pLac promoter system that 
manifests a large initial delay in gene expressions was well 
described by an active transport mechanism which agrees with the 
nature characteristics of the system (Fig. 2c, 3e-f).  

 
Figure 2: Schematic diagrams of mass action kinetics for three 
distinct model representations (a) The constant inducer activation 
model (b) The inducer degradation or deactivation model (c) The 
delayed inducer activation model. 

 

 

Figure 3: Temporal expressions and their corresponding dose-
response profiles for experimental characterization data (filled 
symbols) and the best fitted models (solid lines) (a-b) 
pBAD/Arabinose (c-d) pTet/aTc (e-f) pLac/IPTG 

4 SYSTEM VALIDATION 
Two independent sets of characterization data from different 

promoter systems were used to verify the effectiveness of the 

BMSS (Fig. 4). The first data is from a LasR promoter system 
controlled by the AHL inducer, whereas the second data is from 
an arabinose inducible promoter under rbs34, which has a weaker 
strength compared to the default RBS used in the training sets. 
The model representation with constant inducer (Fig. 2a) was 
ranked the highest by the system for both the data (Fig. 4). The 
identified model corroborates the fast diffusion mechanism of the 
small molecules, AHLs, and the fast activation of arabinose 
inducers.        

 
Figure 4: Temporal expressions and dose-response profiles 

from models (solid lines) and experiments (filled symbols) based 
on two independent characterization data (a-b) pLasI/AHL (c-d) 
pBAD/Arabinose (rbs34). 

5 DISCUSSIONS 
The preliminary results showed that the system was able to 

rank different model representations based on characterization 
data and estimate the best-fitted parameters in an automated 
manner. The selection algorithm ranks the models based on the 
trade-off between their goodness-of-fits and the model 
complexities to prevent overfitting. Future work includes 
expanding the library of model representations to capture the 
different and more complex gene circuits so as to extend its 
usefulness and implementing the BMSS to be compatible with 
SBOL/SBML. Nonetheless, this system could eventually serve as 
a pre-screening platform to be coupled with human interpretations 
to expedite the model development process.  
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MOTIVATION
A critical bottleneck for the engineering of (more) robust and reli-
able synthetic gene circuits has been the disregard for the intracel-
lular spatial organization of bacterial cells. In recent years, it has
become increasingly clear that bacteria are highly ordered organ-
isms, localizing and coordinating their vital functions in both time
and space. Our recent experimental results [1] highlight the role of
distance between circuit components on �nal performance. This
suggests that each gene of a given genetic network may need a
speci�c location within the cell-volume for optimal performance.

This abstract describes the computational framework developed
to design genetic circuits considering spatial constraints e.g. the
di�usion of molecules and the localization of DNA components.
Spatiotemporal e�ects are showcased by a circuit composed of two
connected genetic inverters (NOT logic gates). While the invert-
ers were incompatible when localized in proximity, they became
compatible when the distance between them was enlarged. This
suggests that in order to �ne-tune circuit performance, it is not only
the nature of the components that matters, but also their location.
A comprehensive analysis of how circuit dynamics can be in�u-
enced by intracellular space will impact both the understanding of
biological processes and the ability to program living cells.

SPATIOTEMPORAL GENE REGULATION
Genetic circuits are bio-molecular devices able to perform functions
that mimic those observed in electronic circuits. In these, speci�c
combinations of genetic logic gates determine the way genes are
regulated across the circuit. It is through these regulation events
that genetic information is processed from input signals to output
responses. Unlike electronic circuits, in which signals are unequivo-
cally carried from one gate to another through dedicated wires (i.e.
one wire per signal), genetic circuits share the same intracellular
space for all inter-gate communications – molecular signals share
the same "wire" . The physical distance between genetic compo-
nents (Figure 1 top), for instance between the source of transcription
factors and their target promoter, is a critical feature that can dras-
tically change the performance of such communication [1] and,
consequently, the function of the whole circuit. Despite the small
volume of a cell, molecules are not always where they are needed;
they must travel the distance from where they are expressed to the
component they regulate.

Transcription factors (TFs) are not homogeneously distributed
[2] and are thus more likely to meet their target promoter if both

0µm
1µm

2µm

3D di�usion

1D di�usion

Non-speci�c
(un)binding

Figure 1: Spatial constrains of gene regulation. Top: sketch
of the physical distance between the DNA components of a
genetic circuit inserted into the chromosome. This distance
is then correlated against phenotypic measurements to elu-
cidate spatiotemporal regulation. Bottom: dynamics consid-
ered when modelling transcription factor-promoter inter-
play – 3D di�usion in cytoplasm, non-speci�c (un)binding
to DNA regions other than the target promoter, and 1D dif-
fusion along the chromosome.

components are located nearby [3]. An indication of this is that
natural regulatory networks have been observed to be to some
extent clustered in the chromosome - related genes are more likely
to be found in proximity [4]. Moreover, it has also been observed
that gene expression noise patterns and strength change accord-
ing to this spatial e�ect [1, 5]. An intriguing question is whether
inter-genetic distance has been exploited as a tool by evolution to
�ne tune systems to deploy bene�cial phenotypes. The correspond-
ing challenge is then to embed spatial constraints as engineering
principles to improve the design-build-test-learn lifecycle.

MATHEMATICAL FRAMEWORK
In order to include spatial constraints in mathematical modelling,
we decomposed the TF binding rate (whichwould de�ne the promoter-
TF reaction rate in a homogeneous cell) into two components.
Firstly, the promoter-TF molecular a�nity [6] (the ability of the



two molecular parts to interact physically). Secondly, the ability of
a TF to reach the location of the promoter. While the de�nition of
the former is relatively straightforward, the latter involves several
dynamics (Figure 1 bottom): [i] the three-dimensional di�usion of
a TF through the cytoplasm once it has been transcribed and trans-
lated, [ii] the (un)binding to non-speci�c DNA regions and [iii] the
one-dimensional di�usion along the chromosome (i.e. sliding). TFs
have been reported to spend up to 90% of their lifetime bound to
the DNA (both target and non-speci�c regions) [7]. Although that
is most of the TF’s lifetime, 3D di�usion through the cytoplasm is
much faster than 1D di�usion along the DNA [8].

We formalized all of these dynamics in a model for facilitated
di�usion [9] and use it to analyse and improve the compatibility
and modularity of genetic inverters (NOT logic gates).

SPATIOTEMPORAL CIRCUIT DESIGN
Spatiotemporal constraints have the potential to play an important
role within the set of principles for genetic circuit design [10]. The
software Cello [11] was developed to exploit such principles by
exploring the combination of genetic logic gates to �nd compatible
solutions that assembled larger circuits. Using a library of well
characterized gates, Cello searches for the best ones to achieve a
prede�ned Boolean function. If a gate does not have the appropriate
dynamic range, for instance, it is discarded and another one takes
its place. Our results suggest that there is another possibility: do not
discard the gate, but just change its location. This way the number
of combinations among a �nite list of gates increases and more
optimal solutions could be found.

Figure 2 shows how the compatibility of two genetic inverters is
space-dependent. In fact, the characterization of response functions
(concentration of input vs. output) does not only depend on the
DNA part itself – it is also relative to its positioning. The �rst plot
shows the incompatibility of the two inverters when placed at short
distance. For the two inverters to be connected in a row, output
levels of the �rst inverter need to map to valid input levels in the
next inverter. When placed in short distance this condition is not
met - it would be virtually impossible to get two di�erent Boolean
states (0/1) out of the circuit. However, in the second plot, bymoving
the second inverter further apart, the interaction weakens and the
repression becomes less e�cient. In this new scenario, both parts
do have aligned response functions and are now compatible.

This example was modelled in silico using the Synthetic Biology
Open Language (SBOL) [12]. In SBOL, the two components of the
system can be represented as sub-modules of a larger module rep-
resenting the host context. However, this representation is limited
to describing high-level topology. The authors therefore plan to
extend the SBOL data model with the ability to capture spatial
properties of genetic circuits. The SBOL Visual speci�cation has
also been updated with a set of best practices and new glyphs for
representing the genomic context of a genetic construct.
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Figure 2: Simulated results of response function matching
for di�erent inter-genetic distances between two genetic
NOT gates. At short distance (left plot) the output levels of
the �rst gate (green) do not map to valid input levels of the
next gate (purple). As a result, this combination will not per-
form properly. At long distance (right plot), however, the
input levels of the second gate (purple) become valid. This
combination performs as expected. There was no need to
change circuit components, but only their location.
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1 INTRODUCTION 
Concerns have been raised that individuals with malicious 

intent could exploit DNA synthesis technologies to acquire 
genetic elements from organisms and toxins that would 
otherwise be difficult to obtain [1–4]. In response to these 
concerns, in 2010 the U.S. Department of Health and Human 
Services (HHS) issued the Screening Framework Guidance for 
Providers of Synthetic Double-Stranded DNA [5], which outlines 
recommendations for screening double-stranded DNA to ensure 
that existing regulations1 and best practices are followed in 
addressing biosecurity concerns. 

In 2015, the J. Craig Venter Institute (JCVI) released a report 
titled DNA Synthesis and Biosecurity: Lessons Learned and Options 
for the Future [6] describing the current status of biosecurity 
screening in the U.S. In this report, the authors identify the 
administrative costs of sequence screening, specifically the time 
taken by staff to review sequences that may be of concern, to be 
the costliest aspect of the process, and may be a barrier to 
adoption for smaller companies. 

In accordance with the HHS guidance, the U.S. Department of 
Energy (DOE) Joint Genome Institute’s (JGI) DNA Synthesis 
Science program has developed a DNA screening pipeline (BLiSS 
– Black List Sequence Screening) to screen all sequences that it 
synthesizes.  As specified in the guidance, BLiSS detects 
“sequences of concern”2 of at least 200 nucleotides in length on 
either DNA strand, and the resultant polypeptides from 
translations using the three alternative reading frames on each 
DNA strand (or six-frame translation).  The construct sequences 
are aligned to the sequences in GenBank’s non-redundant 
nucleotide and protein databases rather than a curated database, 
to ensure that it automatically adapts as new sequences are 
added to GenBank.  A “Best Match” approach is used to 
determine whether a query sequence is unique to Select Agents 
or Toxins, or CCL-listed agents, toxins or genetic elements, and 
to minimize false positives from closely related organisms or 
highly conserved “house-keeping genes” which do not pose a 
biosecurity threat. 

In order to save staff time and to facilitate the analysis of the 
screening results, we have added post-processing steps to detect 
false positives and a screen for viral sequences that may not be 
on any of the blacklists. 

                                                             
1  Select Agent Regulations (SAR) and, for international orders, the Export 
Administration Regulations (EAR) 
2 A “sequence of concern” is defined in the guidance as sequences “derived from or 
encoding” entities on the HHS/CDC’s Select Agents or Toxins list, or agents on the 
Bureau of Industry and Security’s Commerce Control List (CCL). 

2 COMPUTATIONAL DETAILS 
BLiSS consists of two components: 1) the analysis pipeline, 

written in Python with a MySQL database backend, and 
optimized to run on clusters managed by the DOE’s National 
Energy Research Scientific Computing Center (NERSC) and 2) a 
web-based User Interface (UI). 

In the first step, the analysis pipeline aligns all the given 
constructs to be synthesized to the GenBank nt and nr databases 
using blastn and blastx respectively. The meta-data describing 
the alignments is compared to a database of terms associated 
with the entities on the Select Agents and Toxins list and the 
CCL. If “hits” are found, the span of the construct that aligns to 
those “hits” is considered a putative sequence of concern. 

If putative sequences of concern are detected, they are further 
analyzed using sliding 200bp windows.  The best matches for 
each window are determined by individually aligning the 
window sequence and each of the sequences of the alignments 
that overlap the window. Best matches are assigned to the local 
alignments to the window with the highest product of the 
percent identity and length. For any given window there may be 
more than one “best match”. The windows are then scored with a 
Status (Table 1). 

Table 1: Status 

Status Definition 
Passed Not a best match to a sequence of concern 

Failed A best match to a sequence of concern on the 
list of Select Agents and Toxins 

Controlled A best match to a sequence of concern on the 
Commerce Control List (CCL) 

 
When sequences are not “passed”, they undergo post-

processing steps to identify possible false positives. These are 
presented in the UI as “suggestions” and require user input to 
accept the suggestion.  Currently, we have two criteria for 
suggesting that a “hit” may be a false positive:   

1) The best matches of a sequence of concern are all in 
protein space and have <70% identity3, and therefore is unlikely 
to be functionally the same protein.  

3 The JCVI report [6] reported that International Gene Synthesis Consortium (IGSC) 
companies only consider those with >80% homology to be a “hit”. 



 Simirenko et al. 
 

2 

 

2) The best matches of a sequence of concern are found to be 
orthologs of those in the Benchmarking Universal Single-Copy 
Orthologs (BUSCO) [7] set, a collection of orthologous groups 
with near-universally distributed single copy genes in all species, 
and therefore unlikely to be involved in the pathogenicity of a 
particular organism. 

If failed or controlled sequences are found, we ask the end 
user to verify the legitimacy of the end-use and consult with our 
local FBI weapons of mass destruction agents or LBNL’s export 
control office. 

The visualization of the screening results consists of a list of 
all the sequences in a given project. For each sequence there is a 
color-coded cartoon of the window spans and alignments that 
allows the user to drill down to see the best matches for each 
window, including the sequences, % identity, top hit rankings 
and other information (Figure 1). 

 
 

 

Figure 1: Visualization of screening results 

 

3 RESULTS AND DISCUSSION 
To date the JGI has screened 16,259 sequences (24.7 Million 

bp).  Prior to post-processing, 0.8% Failed, 1.5% were Controlled, 
and 97.7% Passed (Figure 2).  Of the 377 sequences that were not 
passed, 252 were found to be false positives by our post-
processing. Of these, 17 were cleared using the BUSCO orthologs 
(Figure 3). 

In the future, we plan to implement more screens for both 
false positives and false negatives, in an effort to give the user as 
much information as possible to save time and administrative 
costs. In this context, false negatives are hard to quantify. They 
would include genes that are from an organism on one of the 
blacklists, but not related to pathogenicity, or they could be 
miss-annotated sequences. For the later, we plan to flag 
sequences that have a high similarity to sequences of concern, 
even if they are not the "best match”.  The software will be made 
available to other credentialed researchers and synthetic DNA 
providers. 

 

Figure 2: Results of JGI sequence screening to date 

 

Figure 3: False positive detection 
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MOTIVATION
�e development of standards is a priority to the synthetic biology
community. Standards facilitate the design-build-test-learn engi-
neering lifecycle, since they enable the integration of inherently
di�erent tools and methods into coherent work�ows. While exist-
ing standards target speci�c stages of the lifecycle, the coordination
of inter-stage standardization e�orts has received relatively li�le
a�ention. �is abstract describes how to use the Synthetic Biology
Open Language (SBOL), a data standard for the design of genetic
circuits , to represent the Standard European Vector Architecture
(SEVA), a plasmid vector standard for de-/re-construction of bacte-
rial function. �e resulting data is stored in SEVAhub (sevahub.es),
an instance of the SynBioHub repository. SEVAhub allows data
speci�c to the build stage (i.e. SEVA) to be stored and related back
to the appropriate designs. Information about both genetic circuits
and their carrier vectors can therefore be fully standardized. We
advocate the coordination of standards as a way to integrate and
automate the design-build-test-learn lifecycle.

STANDARDIZATION OF PLASMIDS
To date, standardization e�orts have focused on the genetic circuit
itself and its parts and interactions. Important structural infor-
mation, such as the plasmid vector carrying the circuit, is o�en
sparse. �e choice of the plasmid vector can have a major impact,
not only in the building strategy, but also in circuit performance.
�e standardization of plasmid vectors and their components has
a number of advantages. Firstly, the community bene�ts from
sharing information using data formats that are well de�ned. �is
standardization fosters reusability and reproducibility. Secondly,
sharing characterization data informs potential users about the
performance of the plasmid, which will ultimately impact circuit
behavior. Features like the copy number of a vector, for instance,
are most relevant if the circuit at stake can be easily unbalanced
against other components in di�erent plasmids (or in the chromo-
some). It is therefore important to be able to select and optimize
the most appropriate vector for a given synthetic genetic system.

�e Standard European Vector Architecture (SEVA1 [1]) estab-
lishes an unambiguous format for the structure of plasmid vectors
in a modular fashion. �e main functional (sub)components of each
plasmid, namely antibiotic resistance, origin of replication, and

1h�p://seva.cnb.csic.es

Figure 1: SBOL description of the SEVA standard. All SEVA
plasmids share a backbone, which is hard-coded in SBOL as
a template. �ree main functional modules are located in
unequivocal positions: antibiotic resistance, origin of repli-
cation and cargo. �ere is a suite of parts available for such
modules, which allow users to choose speci�c plasmid vec-
tors. �ese modules are organized as SBOL collections and
are used to complete the backbone template and to generate
SEVA plasmids in SBOL format.

cargo (where the circuit of interest is cloned into), are unequivo-
cally located between speci�c rare restriction sites (Figure 1). �ese
modules can be selected from a suite of DNA parts that have been
minimized and edited following the SEVA standard. A �xed back-
bone, common to all SEVA vectors, enables the modules to easily
be exchanged for speci�c vector functionality. To date, around 1500
SEVA vectors have been shipped to laboratories of >30 countries.

SEVA-TO-SBOL CONVERSION
�e goal of this work is to use the Synthetic Biology Open Language
(SBOL [2]) to digitally formalize the molecular architecture de�ned
by the SEVA format. �is is accomplished using amodular approach

http://seva.cnb.csic.es


following a combinatorial design strategy, so that all possible SEVA
combinations are generated automatically.

Figure 1 summarizes this conversion. �ree separate SBOL collec-
tions were generated, one for each of the main functional modules
of the SEVA standard. A Python script was wri�en that de�nes a
SEVAVector class that extends an SBOL ComponentDe�nition.
�e SEVAVector constructs a plasmid backbone using components
from the SEVA collections and the custom cargo ComponentDef-
inition provided by the user to return a unique SEVA vector. For
instance, we can �ll in the template with the origin of replication
R6K, ampicillin as the antibiotic marker and the multiple cloning
site (MCS) as the selected cargo.

Figure 2: Usage of digitalized SEVA vectors. A) Detail of em-
bedding a genetic circuit into the SEVA default cargo section.
Restriction sites that �ank the circuit denote position; af-
ter merging components, the �nal SEVA sequence is recal-
culated. B) Example work�ow: a user fetches genetic parts
fromSynBioHub and builds a�nal construct using SEVAhub
for plasmid description.

�e major challenge from the SBOL standpoint was not handling
the collections which represent modular plasmid parts, but repre-
senting the modi�cation of the part of a plasmid that receives the
cloned cargo, the multiple cloning site (MCS, termed the default
cargo). �e MCS is represented as a list of fourteen restriction sites
that enables the user to select whatever combination is necessary
to clone the genetic circuit of interest in between. �e input to this
method is two SBOL designs: one for the genetic circuit of inter-
est and one for the MCS (Figure 2A). �e output is a customized
cargo. A�er replacing the DNA sequence between the two selected
restriction sites by the genetic circuit, the positions within the MCS
must be recalculated. Furthermore, it is possible that a restriction
site stops being usable (as S�I in the �gure). �is outcome requires
the SBOL design to be re-de�ned in terms of its (sub)components.

SEVAHUB: A DESIGN REPOSITORY
In order to store the SBOL data generated from the SEVA-to-SBOL
conversion, an instance of SynBioHub [3] (synbiohub.org) was

installed under the domain sevahub.es – the SEVAhub repository.
SynBioHub was recently developed as an open-source so�ware
project to facilitate the sharing of information about genetic designs,
delivered in a standardized format using SBOL.

SEVAhub provides a graphical user interface that enables users to
interact with SEVA data. Currently, there are four major collections
in SEVAhub: a collection of all origins of replication, a collection
of all antibiotic resistance genes, a collection of possible cargoes
and a collection with all possible SEVA combinations. Users can
download the SBOL data for single components (e.g. a kanamycin
marker) or full plasmid descriptions. �e plasmid of choice can be
then assigned to a physical SEVA storage location (seva.cnb.csic.es).

A more advanced used of SEVAhub is shown in Figure 1, where
a user can fetch genetic parts from another repository (in this case,
from synbiohub.org), then build a genetic circuit with CAD tools
and upload it to SEVAhub. �e user is then able to generate a
bespoke cargo (that was not in the collection before) and select this
along with other functional modules to complete a SEVA vector,
which can then be returned to the user. �e information about the
�nal genetic circuit embeds a detailed, hierarchical speci�cation of
the vector, not only the circuit itself. Currently, the construction
of the SEVA vector requires the use of a programmatic so�ware
library 2. In the future, this functionality will be integrated with
the SEVAhub website to enable use by non-programmers.

Recently there have been a number of reports detailing the devel-
opment of standards-enabled work�ows [4] for synthetic biology.
�e coordination of the SEVA and SBOL standards will make an
impact in next-generation pipelines, facilitating the automatic con-
struction of vectors for a range of tasks. Furthermore, the adoption
of SynBioHub and its instances, including SEVAhub, has the poten-
tial to address pressing issues in synthetic biology, such as the lack
of sharing of design information – which plays a major part in the
reproducibility crisis in the �eld [5].
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ABSTRACT
�e mission of the DAMP Lab North1 is to execute small to
medium scale projects, constructing novel biological systems
using formal representations of protocols and experiments
for the specify-design-build-test cycle. �e DAMP Lab North
uses a hybrid execution model where jobs are completed
using both low-cost automation systems and technicians
following highly-standardized manual protocols speci�ed
through code. We demonstrate this approach by develop-
ing and testing a system of such protocols for molecular
cloning. �ese protocols are implemented in Aquarium2, an
open source LIMS system. �e molecular cloning work�ow
is currently available as a service to internal and external
researchers, with additional services planned for implemen-
tation soon. Data on various aspects of laboratory operations
are collected and organized automatically to improve pro-
cesses.

KEYWORDS
Synthetic Biology, Automation, LIMS, Reproducibility

INTRODUCTION
Advances in so�ware and roboticswill help to free researchers
from repetitive manual tasks, make their data easier to store
and query, and ultimately lead to cheaper, more e�cient,
and more reproducible science [1]. However, the parameters
a�ecting the success or failure of even extremely common
laboratory protocols3 are still poorly characterized, and the
protocols themselves are o�en insu�ciently-speci�ed or
vary drastically between researchers. �erefore, successfully
dra�ing and carrying out an optimal experimental plan still
relies heavily on experimental expertise and intuition. �is
ultimately leads to increased costs and a lack of reproducibil-
ity, a problem that has gained increasing recognition in life
1h�ps://www.damplab.org/laboratories
2h�ps://github.com/klavinslab/aquarium
3We de�ne a protocol as a description of a laboratory process (e.g. PCR) with
de�ned inputs and outputs that contains all necessary execution logic and
actionable commands (at any level of abstraction). For example, protocols in
the DLN North capture execution logic using Ruby and contain commands
in Krill (Aquarium’s language for human-readable commands) and a Ruby
library of OT-2 robotic commands.

sciences [2]. �e DAMP Lab North (DLN) uses formal rep-
resentations of protocols to complete experimental plans
in a prototypical so�ware-driven laboratory using a fully
open-source so�ware stack and o�-the-shelf hardware. �e
ultimate goal of the DLN is to collect and organize data gen-
erated during experimental execution and use this data to
improve protocols and laboratory processes, closing the loop
to enable continuous improvements in the cost, e�cacy, and
reproducibility of biological research.

DAMP LAB NORTH PROCESS
�e primary focus of the DLN is on process development
and the integration of existing tools rather than the inven-
tion of speci�c novel hardware or so�ware. �erefore, the
DLN makes use of o�-the-shelf hardware and open-source
so�ware wherever possible, allowing a wide audience to use
or adapt the processes we characterize.

�e DLN uses Aquarium, an open-source LIMS system, as
a general framework for organizing protocols, plans4, and in-
ventory. Plans can be submi�ed via the DLN web GUI or API.
Both interfaces are standardized across all laboratories using
Aquarium LIMS, which will allow for the development of
generalized upstream planning so�ware, such as Puppeteer5,
that can submit experimental plans to either the DLN or
other laboratories. Because Aquarium plans reference exist-
ing protocols, end-users are abstracted away from low-level
actions such as liquid transfers; this is in contrast to other
approaches that require the user to specify all atomic ac-
tions67. A�er plans are received by the DLN, the operations8
within each plan are batched into jobs9 by the lab manager,
subject to scheduling rules speci�ed for each protocol and
precedence constraints of the plan.

4A plan is a user-submi�ed collection of connected ”operations” that refer-
ence existing protocols. Precedence constraints are inferred by input-output
connections between operations.
5h�p://cidarlab.org/puppeteer/
6h�ps://www.transcriptic.com/
7h�ps://docs.antha.com/
8Each operation in a plan contains user-speci�ed inputs/outputs and refer-
ence an existing protocol.
9A job is a group of operations of the same type, though not necessarily
from the same plan, which are executed together by a robot or technician.



Figure 1: Biologists submit plans (protocol graph) via design and planning so�ware or directly via the Aquarium web GUI.
Operations within plans are batched into jobs and executed. Data is used to improve protocols and to inform researchers and
planning so�ware.

Jobs are executed manually, as in existing labs10 that use
Aquarium, or robotically, using the OpenTrons OT1 and
OT2 liquid handling platforms. Both approaches have novel
aspects in their implementation: 1.) manual protocols de-
veloped in the DLN capture all calculations and protocol
execution decisions at the so�ware level, displaying only un-
ambiguous atomic commands to technicians, 2.) protocols for
the OpenTrons robots are generated dynamically to account
for di�erences in job size and other parameters, 3.) man-
ual instructions for loading, unloading, and con�guring the
OpenTrons robots are generated automatically and displayed
to technicians, 4.) both manual and automated execution
methods are characterized for many protocols, allowing the
lab manager to decide on-the-�y between these approaches.
�e coexistence of both executionmethods makes the system
robust to hardware failures and allows di�cult-to-automate
protocols to be rapidly integrated while still allowing for
automation of the most heavily used protocols.
Data collected through Aquarium is automatically ana-

lyzed via tools currently under development at the DLN,
allowing for the identi�cation of key areas for process im-
provement. Both the data and the analysis tools will be made
available for the bene�t of the research community.

10h�p://www.uwbiofab.org

CONCLUSION AND FUTURE DIRECTIONS
�e DLN uses formalized protocols and a combination of
automated and manual execution to characterize key ex-
perimental processes for synthetic biology. Currently, 30
protocols related to molecular cloning are available to re-
searchers, with additional services planned for implemen-
tation in the near future. �rough this e�ort, we will: 1)
gain insights into parameters a�ecting the performance of
various experimental processes, which will be useful in scal-
ing up synthetic biology, 2) develop best practices for the
establishment and operation of a highly-standardized, data-
driven research lab, which will serve as a useful template
across scienti�c disciplines, 3) provide valuable experimental
services to collaborating synthetic biology laboratories and
institutions.
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ABSTRACT 
Microfluidics continue to gain traction as an inexpensive 
alternative to standard multi-well plate-based, and flow cytometry-
based, assay platforms. These devices are especially useful for the 
types of ultra-high throughput screens needed for enzyme 
discovery applications where large numbers (>106) of unique 
samples must be screened rapidly1. Coupled with cell-free protein 
synthesis2, microfluidics are being used to identify novel enzymes 
useful for a variety of applications with unprecedented speed. 
However, these devices are typically produced using PDMS, and 
require considerable infrastructure and artisanal skill to fabricate, 
limiting their accessibility. Likewise, enzyme hits obtained from a 
screen are often validated manually and would benefit from 
automation of downstream validation processes. To address these 
limitations, we propose a workflow which leverages software tools 
to automate the rapid design and fabrication of low-cost 
polycarbonate microfluidic devices for use as high-throughput 
screening platforms for enzyme discovery, as well as an automated 
DNA assembly tool to streamline validation of screening 
candidates. Using this workflow, we aim to identify novel 
oxidoreductase enzymes from environmental metagenomic DNA 
libraries, for use in electrochemical biosensors.  

Keywords 
Synthetic biology; cell-free; screening; microfluidics; CAD 

1. INTRODUCTION 
Environmental microbes possess an incredibly diverse set of 
enzymes and small molecules that they produce to thrive and 
interact with their environment. This resource can be tapped, using 
high-throughput functional screens, to discover novel biomolecules 
with numerous applications, from biosensing to biomanufacturing. 
These types of screens have relied heavily on lower throughput 
microtiter plate-based assays, as well as higher throughput flow 
cytometry, but microfluidics are emerging as a cheaper, faster, 
ultra-high throughput alternative3. These devices are often designed 
ad-hoc using graphic design software such as Adobe Illustrator, 
which does not allow easy parameterization of device components 
or iteration of designs. These devices are also typically fabricated 
using polydimethylsiloxane (PDMS), which requires specialized 
equipment and personnel training, limiting its accessibility in many 
academic labs. However, emerging software tools which automate 
the design of microfluidic devices from a high-level functional 
specification, as well as fabrication of devices using CNC-milled 
geometries in polycarbonate, are beginning to address this issue. 

A second bottleneck in these enzyme screens lies in the 
downstream validation of positive hits. Putative enzymes identified 
in a screen are usually cloned into expression vectors, transformed 

into expression hosts such as E. coli or yeast, and used to produce 
and purify the protein for downstream analysis. Depending on the 
number of positive hits identified in a screen, this can lead to a non-
trivial number of protein expression vectors that need to be cloned, 
especially when trying to assess the optimal position of the affinity 
tag itself (N- or C-term). Modular DNA assembly strategies like 
MoClo4,5, together with software tools like mocloassembly.com6 
offer a scalable and automatable DNA assembly workflow that can 
address the need to generate combinatorial protein expression 
vectors via liquid handling robots. Coupled with cell-free protein 
synthesis, a larger number of expression vector variants can be 
assembled and tested with unprecedented speed. 

2. MICROFLUIDIC DESIGN & 
FABRICATION 
Microfluidic device design has largely been artisanal, with 
researchers often resorting to graphical design software tools to 
manually draw out microfluidic device geometries. This process 
makes it difficult to iterate on new designs since individual 
components of the device design must be changed manually and 
non-parametrically. Our software tools, however, allow us to 
specify high level microfluidic functionality parametrically, and 
fabricate devices via CNC milling in thermoplastics on the order of 
hours7. This is in stark contrast to more traditional PDMS-based 
device fabrication which can take days. This workflow has enabled 
us to design, fabricate, and test many iterations of devices to rapidly 
identify key geometry parameters important for functional 
screening of enzyme libraries. These parameters dictate processes 
like droplet generation rate & size, droplet merging & splitting, on-
chip PCR, cell-free protein expression, and 
fluorescence/colorimetric-based droplet sorting. 

3. CELL-FREE PROTEIN SYNTHESIS 
Cell-free (CF) protein synthesis is experiencing a new renaissance 
as a versatile, fast, and inexpensive biological prototyping 
platform2. These CF mixes typically use cellular extracts from 
various organisms which provide the machinery necessary for in-
vitro transcription and translation from a DNA template. This 
allows researchers to simply add DNA circuits which encode for 
proteins of interest, to achieve high amounts of expressed protein. 
This circumvents several steps in more traditional protein 
expression workflows where DNA for expression vectors must first 
be assembled, then transformed into the expression organism of 
choice. With CF mixes, even linear DNA fragments generated via 
PCR can be used as protein expression templates, further 
shortening prototyping time8. 

For enzyme screening we are using E. coli cell extracts to express 
protein within water-in-oil droplets generated in our microfluidic 



device. At the initial point of droplet generation these droplets 
encapsulate single members of a microbial metagenomic DNA 
library which enables screening of individual members in high 
throughput. Screening reagents and enzyme substrates are later 
added to each droplet via droplet merging, and droplets which 
exhibit a fluorescent/colorimetric signal above a predefined 
threshold value are isolated for downstream sequencing. We are 
particularly interested in identifying novel oxidoreductase enzymes 
since they couple well with electrochemical sensors, similar to the 
ubiquitous blood glucose meter. This class of enzymes catalyzes 
the transfer of electrons from one molecule to another, oftentimes 
generating hydrogen peroxide as a byproduct of catalysis of an 
analyte of interest. To monitor enzyme activity in droplets we will 
use the fluorometric chemical probe Amplex UltraRed which is 
oxidized to a fluorescent product in the presence of hydrogen 
peroxide. Droplets exhibiting a fluorescence signal intensity above 
a predetermined threshold, presumably as a consequence of analyte 
degradation, will be sorted for downstream sequencing and 
validation.  

 
Figure 1. Automated microfluidic design & DNA assembly for 
rapid enzyme screening and downstream validation. [Discover] 
Using our software tools we can rapidly iterate across the 
microfluidic design space to generate variants of devices via CNC-
milling. These devices take complex DNA libraries as an input, and 
selects droplets which respond to a molecule of interest. 
[Characterize] Positive hits from the screen are then sequenced, 
cloned into a MoClo destination vector, and expression libraries are 
automatically generated by liquid-handling robots using the 
software tool mocloassembly.com.  

 

4. AUTOMATED DNA ASSEMBLY FOR 
ENZYME CHARACTERIZATION 
In high-throughput screens, enzyme hits must be validated to test 
substrate specificity, and identify optimal parameters such as 
temperature, pH, and catalytic rate. This typically requires the 
generation of new DNA circuits for expression and purification of 
candidate enzymes, often via affinity chromatography. This can 
quickly become laborious as the number of hits from a screen 
increase, and the optimal position (N- or C-term) for a genetically 
encoded affinity tag is unknown. To address this scaling need, we 
are using Modular Cloning (MoClo) and the software tool 
mocloassembly.com to automatically build various instances of 
protein expression circuits from these screens via liquid handling 
robots. These circuits are then used in new CF reactions to rapidly 
generate protein for validation tests in an effort to quickly 
characterize new enzymes obtained from the functional screen. 

5. ACKNOWLEDGMENTS 
We would like to thank the NSF Living Computing Project Award 
#1522074 and NSF CAREER Award #1253856 for funding. 

6. REFERENCES 
[1] Agresti, J. J. et al. Ultrahigh-throughput screening in drop-based 

microfluidics for directed evolution. Proc Natl Acad Sci U S A. 107 
(9), 4004-4009, doi:10.1073/pnas.0910781107, (2010). 

[2] Garamella, J., Marshall, R., Rustad, M. & Noireaux, V. The All E. 
coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic 
Biology. ACS Synth Biol. 5 (4), 344-355, 
doi:10.1021/acssynbio.5b00296, (2016). 

[3] Bunzel, H. A., Garrabou, X., Pott, M. & Hilvert, D. Speeding up 
enzyme discovery and engineering with ultrahigh-throughput 
methods. Curr Opin Struct Biol. 48 149-156, 
doi:10.1016/j.sbi.2017.12.010, (2018). 

[4] Iverson, S. V., Haddock, T. L., Beal, J. & Densmore, D. M. CIDAR 
MoClo: Improved MoClo Assembly Standard and New E. coli Part 
Library Enable Rapid Combinatorial Design for Synthetic and 
Traditional Biology. ACS Synth Biol. 5 (1), 99-103, 
doi:10.1021/acssynbio.5b00124, (2016). 

[5] Werner, S., Engler, C., Weber, E., Gruetzner, R. & Marillonnet, S. 
Fast track assembly of multigene constructs using Golden Gate 
cloning and the MoClo system. Bioeng Bugs. 3 (1), 38-43, 
doi:10.1371/journal.pone.001676510.4161/bbug.3.1.18223, (2012). 

[6] Ortiz, L., Pavan, M., McCarthy, L., Timmons, J. & Densmore, D. M. 
Automated Robotic Liquid Handling Assembly of Modular DNA 
Devices. JoVE. (130), e54703, doi:doi:10.3791/54703, (2017). 

[7] A. Lashkaripour, R. S., and D. Densmore. Desktop micromilled 
microfluidics. Microfluidics and Nanofluidics. Vol. 22 (Iss. 3), p. 31, 
doi:10.1007/s10404-018-2048-2, (2018). 

[8] Schinn, S. M., Broadbent, A., Bradley, W. T. & Bundy, B. C. Protein 
synthesis directly from PCR: progress and applications of cell-free 
protein synthesis with linear DNA. N Biotechnol. 33 (4), 480-487, 
doi:10.1016/j.nbt.2016.04.002, (2016). 

 
 

 



Specifying Combinatorial Designs with the Synthetic Biology
Open Language (SBOL)

Nicholas Roehner1, Bryan Bartley1, Jacob Beal1, James McLaughlin 2, Matthew Pocock3, Michael
Zhang4, Zach Zundel4, Chris Myers4, Anil Wipat2

1Raytheon BBN Technologies, 2Newcastle University, 3Turing Ate My Hamster, Ltd., 4University of Utah
nicholas.roehner@raytheon.com

1 INTRODUCTION
During the last decade, new technologies have been developed
for the combinatorial assembly of genetic parts [8, 9], enabling
synthetic biologists to more readily generate libraries of genetic
construct variants. These types of combinatorial libraries can play
an important role in genetic design by allowing designers to explore
the impact of part choice, order, and orientation on construct behav-
ior. In order to support the design of such libraries, new tools and
formalisms have been developed to enable the speci�cation, permu-
tation, and sampling of combinatorial genetic design spaces [1, 2].
In turn, these formalisms have given rise to the need for a stan-
dard representation of combinatorial genetic designs in order to
enable sharing of such designs between tools and laboratories and
to simplify human and machine reasoning over them.

As a basis for this representation, we have chosen the Synthetic
Biology Open Language (SBOL), an existing community standard
for representing both structural and functional aspects of genetic
designs [4, 7]. SBOL has support for hierarchical design, modu-
lar composition, and partial speci�cation, making it a natural �t
for representing combinatorial design templates and variables. Ac-
cordingly, we have developed an extension of SBOL to represent
combinatorial designs, and we have incorporated this extension
into the SBOL 2.2 speci�cation [3] and SBOL software libraries
(www.sbolstandard.org/libsbol). Here we brie�y summarize the
data model for this extension and discuss its application in two ex-
ample use cases: a library of pathway variants to optimize enzyme
expression [5], and a library of genetic circuit variants to optimize
logic gate function [6, 9].

2 REPRESENTING COMBINATORIAL DESIGN
Building on the core data model of SBOL, the representation of
combinatorial design is a relatively lightweight extension. Namely,
its representational semantics involve the speci�cation of a design
template and any constraints on its structure, the variable portions
of the template and their cardinality, and the variants or values that
these variables can assume. SBOL does not require any particular
algorithm or data structure to be used in enumerating designs from
a combinatorial speci�cation, but provides rules and best practices
to validate whether these designs are a correct realization of their
speci�cation.

There are two classes in the new SBOL 2.2 combinatorial data
model: the CombinatorialDerivation class and the VariableCompo-
nent class (Figure 1). The CombinatorialDerivation class is used to
specify a template for a library of combinatorial designs and to link
that template to a collection of variables and values that will �ll in
the template to form speci�c combinations. The template is de�ned

Figure 1: Combinatorial designs can be speci�ed in SBOL 2.2
using two new classes: CombinatorialDerivation and Vari-
ableComponent.

using a ComponentDe�nition: ComponentDe�nition is a base class
of SBOL used to specify the structure of a biopolymer in a modular,
hierarchical manner, along with constraints on this structure. For
instance, the ComponentDe�nition for an abstract transcriptional
unit (TU) would likely contain sub-Component objects for a pro-
moter, coding sequence (CDS), and terminator without sequences
and a set of SequenceConstraint objects to assert their relative or-
dering and orientations. The CombinatorialDerivation class can
also be used to broadly recommend howmany individual designs to
derive from the template by setting its strategy property. At present,
two strategy values are de�ned: either exhaustive enumeration of
every possible design or sampling an unspeci�ed subset.

The other class, VariableComponent, is used to specify the way
in which a CombinatorialDerivation template is �lled in to create
fully instantiated designs. Each instance of the VariableComponent
class speci�es a set of available ComponentDe�nition variants that
can de�ne a Component from the template. These variants can be
aggregated individually or as part of an SBOL Collection, or can
be derived in accordance with another CombinatorialDerivation,
enabling the speci�cation of a hierarchical combinatorial design.
The operator property then speci�es howmany Component objects
are expected to be derived from the template Component (one, zero-
or-one, zero-or-more, or one-or-more). A more detailed description
of the CombinatorialDerivation and VariableComponent classes
can be found in the SBOL 2.2 technical speci�cation [3].

3 EXAMPLE USE CASES
Use Case: Pathway Design. Figure 2 demonstrates how SBOL

can be used to encode the combinatorial design of a library of
3,125 violacein pathway variants originally designed by the Dueber
lab [5]. The SBOL representation consists of a two-level hierarchy
of ComponentDe�nition and CombinatorialDerivation objects. The
root ComponentDe�nition is a template that speci�es the complete



Figure 2: Representation of violacein pathway combinato-
rial design using SBOL.

ordering of �ve generic TUs, each de�ned by the same Compo-
nentDe�nition containing a promoter followed by a CDS and a
terminator, all with the same orientation. The root Combinatori-
alDerivation then speci�es that each of the �ve TUs in the template
should be �lled in with one of �ve possible TUs with di�erent
promoters as speci�ed by a leaf CombinatorialDerivation. Each
leaf CombinatorialDerivation refers to the same set of �ve pro-
moter variants but refers to a di�erent enzyme CDS in the violacein
pathway.

Use Case: Genetic Circuit Design. Figure 3 demonstrates how
SBOL can be used to encode the combinatorial design of all 1030
genetic circuit variants that can be constructed from the Cello gate
NOR/NOT gate library. The key di�erences between this combi-
natorial design and that of the violacein pathway are that its root
CombinatorialDerivation does not specify the relative order or ori-
entation of any of its ten generic TUs, nor does it require that each
of these TUs be �lled in (because each VariableComponent has a
zero-or-one operator). Consequently, the circuit derived from this
combinatorial design can contain any number of TUs up to ten,
and these TUs can have any ordering or orientation. In addition,
each leaf CombinatorialDerivation has a single zero-or-one Vari-
ableComponent corresponding to the �rst promoter in the template
TU ComponentDe�nition, thus capturing the fact that each derived
TU can have NOT or NOR logic (one promoter or two promoters).

4 DISCUSSION AND CONTRIBUTIONS
Currently, SBOL’s representation of combinatorial design is equiva-
lent in expressive power to a regular language. Though not demon-
strated by these use cases, SBOL can be used to represent design
patterns in which a particular component or motif is repeated an
inde�nite number of times. For example, this could be used to rep-
resent the design of a promoter with a variable number of operator
sites. Should the need arise to represent palindromic design pat-
terns, such as with a context-free language, SBOL can be extended
with additional types of constraints to assert that the same number
of components must be derived from di�erent parts of the template.

Figure 3: Representation of Cello circuit combinatorial de-
sign using SBOL.

Many key cases of combinatorial library design can be repre-
sented using SBOL with the new combinatorial design extension,
ranging from existing industrial applications in optimizing biosyn-
thetic pathways to current research in controlling biological sys-
tems. This improves over prior representations by integrating com-
binatorial design with hierarchical, ontology-supported represen-
tation, allowing unambiguous reasoning about complete designs,
as well as their relationship to information sources, experimental
products, and other designs. We thus anticipate that SBOL repre-
sentation of combinatorial design will support improved tooling
and work�ows, facilitating better reuse and attribution of designs,
faster engineering of circuits and components, and novel applica-
tions across many domains of synthetic biology.

ACKNOWLEDGMENTS
This work was supported by the DARPA Living Foundries award
HR0011-15-C-0084. This document does not contain technology or
technical data controlled under either U.S. International Tra�c in
Arms Regulation or U.S. Export Administration Regulations.

REFERENCES
[1] S. P. Bhatia, M. J. Smanski, C. A. Voigt, and D. M. Densmore. Genetic design via

combinatorial constraint speci�cation. ACS Synth. Biol., 6(11):2130–2135, 2017.
[2] L. Bilitchenko et al. Eugene–a domain speci�c language for specifying and con-

straining synthetic biological parts, devices, and systems. PLoS One, 6(4):e18882,
2011.

[3] R. Cox et al. Synthetic Biology Open Language (SBOL) version 2.2.0. Journal of
Integrative Bioinformatics, 15(1), 2018.

[4] M. Galdzicki et al. The Synthetic Biology Open Language (SBOL) provides a com-
munity standard for communicating designs in synthetic biology. Nat. Biotechnol.,
32(6):545–550, 2014.

[5] M. E. Lee, A. Aswani, A. S. Han, C. J. Tomlin, and J. E. Dueber. Expression-level
optimization of a multi-enzyme pathway in the absence of a high-throughput
assay. Nucleic Acids Res., 41(22):10668–10678, 2013.

[6] A. A. K. Nielsen. Genetic circuit design automation. Science, 352(6281):aac7341,
2016.

[7] N. Roehner et al. Sharing structure and function in biological design with SBOL
2.0. ACS Synth. Biol., 5(6):498–506, 2016.

[8] E. Weber, C. Engler, R. Gruetzner, S. Werner, and S. Marillonnet. A modular
cloning system for standardized assembly of multigene constructs. PLoS One,
6(2):e16765, 2011.

[9] L. B. A. Woodru� et al. Registry in a tube: multiplexed pools of retrievable parts
for genetic design space exploration. Nucleic Acids Res., 45(3):1553–1565, 2017.

2



The Desktop Biofoundry: Biodesign Manufacturing 
Automation in a Cloud-driven Digital Microfluidics 

Platform with Integrated Temperature Control, Optical 
Sensing and Purification 

 
Sabrina Zaini    Frido Emans    Federico Muffatto 
Digi.Bio     Digi.Bio     Digi.Bio 
Overhoeksplein 2   Overhoeksplein 2   Overhoeksplein 2 
+31653803135    +31641156058    +31642871563 
sabrina@digi.bio   frido@digi.bio   federico@digi.bio   
 
1. INTRODUCTION 
Substantial efforts are underway in the development of Biodesign 
Automation to miniaturize and automate experimental pipelines 
and scale up research throughput, and new interest is rising for 
microfluidic technologies to fill this gap. An added challenge is to 
make biology programmable and hands-free, while 
simultaneously reducing its socioecological footprint. Digital 
Microfluidics is a technology that has the potential to satisfy these 
requirements. However, despite extensive and promising research, 
the field still lacks off-the-shelf solutions that integrates with 
other general software, hardware and wetware tools in the lab. 
workflow. This has been attributed to, among others, a lack of 
standardization. Researchers have sought to tackle this issue by 
developing, amongst others, a standard exchange format [1], 
composable and modular computer-aided design (CAD) tools [2, 
3], and computer-aided manufacturing (CAM) tools which 
integrate various process functions [4]. This work introduces the 
Desktop BioFoundry, a CAM tool based on cloud-driven digital 
microfluidics aimed at streamlining research at different 
hierarchies in one seamless and user-friendly process. 
 
2. DIGITAL MICROFLUIDICS 
Digital Microfluidics (DMF) refers to a fluid handling technology 
which allows for the discrete manipulation of fluids using 
electrical signals applied over a planar electrode array. See Choi 
et. al. [5] for technical details. Apart from noted benefits of 
microfluidics technologies [6], DMF additionally offers 
scalability and dynamic reconfigurability [7]. Although DMF has 
found several applications [4, 5], several improvements are 
necessary to drive the technology towards commercialization. 
These include system integration and interfacing with other 
laboratory formats and devices, maintaining temperature control, 
lack of compatible detector technology and lack of molecular 
separation. Additionally, the development of DMF technologies 
have been hampered by the absence of standard commercial 
components, leading to devices with highly specific applications 
[4]. 

 
3. THE DESKTOP BIOFOUNDRY 
The Desktop Biofoundry (DB) is a low-to-medium throughput 
device which consists of the following components: 

 

3.1 Hardware 
The core of the platform is the microfluidics cartridge. The 
cartridges are printed circuit boards encapsulated by two plates, 
which protect droplets within from contamination and 
evaporation. Multiple samples can run in parallel in one cartridge, 
allowing many different batches to be run at the same time. A 
desktop device, which hosts the cartridge, also hosts actuators for 
microfluidics electrode signals, temperature control, purification 
and optical sensing. An integrated camera in the device allows for 
real time droplet tracking, volume quantification and real time 
monitoring of the experiment. 

 
Figure 1 A. The Desktop Biofoundry B. Biochip with moving droplets 

3.2 Software 
The DB is supported by a cloud-based software which handles 
device operation and data collection and management. The cloud 
software connects to the user through a web browser, where the 
researcher can design, modify, run and share her own protocols in 
an intuitive graphical interface, or select one from community 
shared protocols. Once the protocol has been started, it will be run 
autonomously by the cloud software. This process can be 
monitored in real-time or afterwards. The software will send push 
messages to notify the user of any anomalies or errors along the 
way or when the protocol is finished.  
Experimental data is accessed through the same interface, where it 
can be shared and referenced using a unique URL. The 
experimental protocol and data can be published and easily 
replicated by peers using the same setup for verification of results. 
The software allows for easy integration using an open API and 
webhooks with other lab software tools such as analytical 
software or an online lab journal. 
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Figure 3 Conceptual diagram of a CAD-CAM integrated workflow 

 
Figure 2 Drag-and-drop platform control and protocol design interface 

4. ACCELERATING SYNBIO WITH THE 
DESKTOP BIOFOUNDRY 

As a CAM tool, the DB combines several process units within one 
device, thereby enabling a greater degree of configurability, 
automation and parallelization of experiments. This allows for the 
establishment of more complex workflows required for, e.g., mass 
scale combinatorial DNA assembly [8]. The incorporation of 
optics features allows for the usage of machine vision, for 
example in the tracking of fluorescent probes [9]. 
Cloud storage of generated data and associated protocols offer a 
repository from which researchers can collaboratively derive and 
design new microfluidics protocols. Further empowering the 
platform is the possibility for integration with available CAD 
tools, e.g. SBOLDesigner [10], DNAplotlib [11], Cello [12] and 
RavenCAD. Furthermore, affordability of the DB cartridge and 
device makes this technology widely accessible to many synbio 
researchers and laboratories. These elements combined make for a 
rapid end-to-end platform for mass scale synthetic biology 
research. 

5. MOVING FORWARD 
The integration of workflows at different hierarchies is imperative 
for rapid, large-scale automation of synthetic biology pipelines. 
The features of the DB strongly support a streamlined pipeline 
and can be further developed in order to more accurately address 
the needs of synthetic biology research. For example, 
identification and integration of other important workflows in the 
synbio hierarchy, in-line sample preparation and the development 
of biocompatible cartridges.  
 
6. CONCLUSION 
By combining synthetic biology workflows from different 
hierarchies in one affordable platform, the Desktop Biofoundry 
cuts short experimental validation of assembly strategies. The 
integration of temperature control, optical sensing and magnetic 
purification in the device, together with plug-and-play modularity 
with CAD tools supports automated, efficient and data driven 
implementation of complex workflows. 
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Abstract—This paper describes new microfluidic methods 
for synthetic biology applications.  We describe two works that 
are related to synthetic biology, namely, DNA assembly and 
transformation and strain optimization.  Both are necessary 
processes for engineering new organisms.  In addition, we have 
shown the power of integration and automation that can 
potentially expedite these processes, specifically, the design-
build-test-learn cycle.  

Keywords—microfluidics, automation, synthetic biology 

I. INTRODUCTION  

Lab-on-chip or microfluidic technologies are 
characterized by a miniaturization of experiments and 
integration of laboratory instruments onto tiny hand-
held devices. A burgeoning platform called digital 
microfluidics (DMF) is the manipulation of fluids as 
discrete droplets on an open array of electrodes.[2-4]  

The greatest advantage of digital microfluidics is 
perhabs its amenability to integrating automation 
systems and coupling the platform to external detectors 
(or internal in-line detectors) for real-time or 
downstream biological analysis. [5, 6] The core of DMF 
automation systems interfaces with a DMF device 
which enables droplet movement with a standard set of 
basic instructions written by the user. The user will 
interact with the graphical user interface (GUI) to 
program a set of instructions to dispense, move and split 
droplets, merge droplets together and to mix resulting 
samples and sort droplets for analysis (Fig. 1). Such 
automation gives DMF the capacity to operate droplets  
in parallel on a single device, without the need for any 
valves or pumps.  

Typically, DMF automation systems rely on an 
array of relay switches, each of which is responsible for 
one individual electrode on the device and relays AC or 
DC voltages to it when instructed. The state of the 
switches is controlled through a computer and 
microcontroller. Specifically, our automation system 
(Fig. 2) consists of a in-house program that is used to 
control an Arduino Uno microcontroller.[7] Driving 
input potentials of 100-200 VRMS are generated by 

amplification of a sine wave output from a function 
generator operating at ~kHz by an amplifier and 
delivered to the PCB control board. The Arduino 
controls the state of high-voltage relays that are 
soldered onto the PCB control board.  The logic state of 
an individual solid-state switch is controlled through an 
I2C communication protocol by an I/O expander. This 
control board is mated to a pogo pin interface (104 
pins), where each switch delivers a high-voltage 
potential (or ground) signal to a contact pad on the DMF 
device. See our GitHub registry 
(https://github.com/shihmicrolab/Automation) to 
assemble the hardware and to install the open-source 
software program to execute the automation system. 

In synthetic biology, there has been a push to find 
the next technological innovation that can automate 
therocess of design, build, test, and learn.  This cycle 
follows an iterative process that often requires extensive  
manual intervention.  This process is used to engineer 
new microbes that contain the necessary genetic circuit 
and metabolic pathways to produce the required outputs 
for a wide range of applications such as bio-based 
chemicals and biofuels. While current available tools 
are useful in improving the synthetic biology process, 
further improvements in physical automation would 
help lower the barrier of entry into this field.  Here in 

Fig.1 – Operations performed on a DMF device. (Image obtained from Choi 
et al.[1]) 
 



this abstract, we show results related to some of the 
innovations related to synthetic biology and 
microfluidics. 

II. BUILDING MICROBES AND OPTIMIZATION 
The build phase in synthetic biology workflow 

consists of two main processes: DNA synthesis and 
DNA assembly.  In our first project, we describe how 
we can expedite DNA assembly processes with 
transformation using microfluidics.  DNA assembly and 
transformation have been demonstrated on digital 
microfluidics platforms[8, 9] but the extensive 
cleanroom fabrication process remains restrictive to 
biologist. Alternatively, it has been shown that DMF 
devices can be fabricated out of printed circuit boards 
(PCBs) using limited resources.[10] This process, 
called rapid-prototyping, allows for same-day design, 
fabrication and use of DMF devices. We present a finely 
tuned and tractable rapid prototype DMF platform to 
automate assembly and transformation of plasmid DNA 
in E.coli. The design integrates PID controlled thermal 
electric cooling modules which assign spatial-temporal 
temperatures required for on-chip assembly and heat 
shock transformation. This platform is demonstrated by 
constructing expression cassette libraries spanning a 
range of transcriptional and translational control with 
further application to antibiotic production (Fig. 3a). 

In addition, we present a system that describes 
expression of a recombinant gene in a host organism 
through induction can be an extensively manual and 
labor-intensive procedure.  Several methods have been 
developed to simplify the protocol, but none has fully 
replaced the traditional IPTG-based induction.  To 
simplify this process, we describe the development of 
an auto-induction platform based on digital 
microfluidics (Fig. 3b).  This system consists of a 600 
nm LED and a light sensor to enable the real-time 
monitoring of samples optical density (OD) coordinated 
with the semi-continuous mixing of a bacterial culture.  
A hand-held device was designed as a micro-bioreactor 

to culture cells and to 
measure the OD of the 
bacterial culture.  In 
addition, it serves as a 
platform for the 
analysis of regulated 
protein expression in 
E.coli without the 
requirement of 
standardized well-
plates or pipetting-
based platforms. We 
used our system to 
identify active 
thermophilic b-
glucosidase enzymes 

which may be suitable candidates for biomass 
hydrolysis.  
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Fig.2 – Automation system for digital microfluidics.  Hardware and 
software tools available on our GitHub website. 

 
Fig.3 – DMF for (a) building 
plasmids and (b) strain optimization  

 



Toward Programming 3D Shape Formation in Mammalian Cells
Jesse Tordo�

Massachusetts Institute of Technology
tordo�@mit.edu

Jacob Beal
Raytheon BBN Technologies

jakebeal@ieee.org

Ron Weiss
Massachusetts Institute of Technology

rweiss@mit.edu

1 MOTIVATION
Biological cells are remarkably e�ective at predictable and resilient
formation of complex three-dimensional shapes, as aptly demon-
strated by most multicellular life on this planet. Not only can in-
tricate shapes be formed with high reliability, but organisms also
maintain functional integration of the entire system throughout de-
velopment, as well as adapting form in response to environmental
conditions, damage, and other disruptions. Moreover, these feats of
manufacturing are accomplished entirely with reprocessed locally
harvested materials.

Our goal is to make these sorts of capabilities available for hu-
man engineering as well, through the reprogramming of living cells.
We have selected mammalian cells as an initial platform for investi-
gation, as these cell lines are well-studied, tractable for engineering,
physically large and robust, and natively host many tools useful for
shape formation. Furthermore, study of natural morphogenesis and
relationships between evolution and development [2] suggests a
set of natural “building blocks”—such as cells self-sorting by di�er-
ential adhesion or targeted migration, gradient-based coordinates,
and di�erential growth—that might be combined modularly to pro-
gram shape formation. We are thus pursuing a research program
of shape formation through isolation of biological shape formation
“building blocks” and development of a system of genetic circuits
for combining such building blocks into programs for the formation
of complex three-dimensional shapes.

Toward this end, we have developed prototype motif-based com-
pilation software for mapping from high-level three-dimensional
shape speci�cations to genetic construct and sample designs. This
compiler is supported by characterization experiments and an ana-
lytical work�ow for converting experimental results into formulae
for setting design parameters. Preliminary results from this work
are promising, and we are now working to extend these into a full
proof of concept for three-dimensional shape formation in mam-
malian cells.

2 APPROACH: MOTIF-BASED COMPILATION
The core idea behind our approach is motif-based compilation,
building on our previous work with the Proto BioCompiler [1].
Under this approach, each operation in a high-level programming
language is associated with a biological motif—a “template” design
comprising a partial system speci�cation, with variables for inputs
and outputs. Thesemotifs are then stitched together by instantiating
a motif for each operation and connecting each motif instance
input to its corresponding motif instance output (as speci�ed by
high-level program structure) to form a complete biological system
speci�cation. This speci�cation may then be further re�ned by
optimization, mapping of abstract parts to speci�c instances, etc.

Protelis
Compiler

Morphogen
Interpreter

Motif
Library

Shape code

SBOL ModuleDefinition

Experiment
Planner

Simulation
Generator

SBOL/GenBank
for DNA seq.

Experimental
conditions

Figure 1: Programmed shape-formation architecture: a high-
level shape speci�cation is compiled by Protelis and inter-
preted by Morphogen (using a motif library) to produce an
SBOL speci�cation of the complete system. This may then
be sent to a simulator for validation and/or exported for ex-
periment as DNA sequence and sample speci�cations.

For our current implementation (Figure 1), we have updated
our motif-based compiler to be based on the Protelis program-
ming language [3], a Java-hosted aggregate programming language
with a more accessible syntax and better suited for adaptation and
integration. We then swap the standard Protelis interpreter for a bi-
ological interpreter implementation that we call Morphogen, which
transforms the program into a biological systems speci�cation. In
particular, Morphogen uses a Java-based library of motifs, each of
which maps a Protelis operation to an SBOL ModuleDe�nition [4]
specifying a set of biological parts and interactions. A complete
system speci�cation is also a ModuleDe�nition, constructed by the
Morphogen interpreter: each time an Protelis operation is invoked,
its associated ModuleDe�nition is instantiated as a Module in the
overall system ModuleDe�nition, and its ports are linked to other
Modules based on the Protelis program.

Our system thus takes in a high-level shape speci�cation in Pro-
telis and transforms it into an SBOLModuleDe�nition that speci�es
a biological system that is expected to produce the speci�ed shape.
From there, the speci�cation may either be sent to a simulator for
veri�cation or else may be exported for realization in the laboratory
as a set of DNA sequences and speci�cations of how sequences,
strains, and other reagents should be combined to form experi-
mental samples. We have implemented a preliminary version of
this architecture, and are in the process of developing a number



Phenotypic Summary

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction CHO

102

103

104

105

M
ea

n 
siz

e 
of

 H
EK

 c
om

po
ne

nt
s

100

101

102

M
ea

n 
nu

m
be

r o
f H

EK
 c

om
po

ne
nt

s

Ball vs. Polkadot phase in HEK/CHO mixes

area: 1000 cells
area: 10000 cells
components: 1000 cells
components: 10000 cells

HEKCHOSortedBall

CHOAdhesionHEKAdhesion

HEK Cell CHO Cell

Experimental Data Image Processing

Soft-Body ModelsExtended Phase SpaceModule Parameterization

Ball Speckles

0.0	 0.1	

0.2	 0.3	 0.4	

0.6	 0.7	

0.8	 0.9	 1.0	

0.5	

Mixture	of	1000		
combined		

CHO	+	HEK	cells	

FracEon	of	HEK	=	

HEKCHOSortedBall(0.0002, 0.8);

Figure 2: Motif development work�ow: microscopy images are processed to produce an initial phenotypic analysis of shape
formation behavior. This analysis is used to parameterizemodels to re�ne characterization of the space of realizable behaviors,
from which functions are extracted to constrain and parameterize applications of motifs in Protelis programs.

of composable motifs, including cell-sorting, cell-to-cell commu-
nication, symmetry breaking, cell type di�erentiation, and phase
synchronization.

3 DEVELOPMENT OF MOTIFS
Motif development is key to realizing our approach. For each shape
formation “building block,” we need to not only demonstrate the
capability of interest, such as cell-sorting, but also need to evaluate
the e�ective range over which that capability can be realized and
need to establish the numerical relationship between the values of
inputs and experimental parameters and the properties of realized
shapes. To this end, we have also developed a work�ow for analysis
of experimental data and its re�nement into functions for validity
testing and parameterization of motif applications in Morphogen
interpretation of Protelis programs.

Figure 2 illustrates this work�ow, along with examples of prelim-
inary results taken from our use of this work�ow in development
of cell-sorting motifs. Shape formation experiments with a prospec-
tive motif produce microscopy data, which is processed through an
image analysis pipeline to produce detailed statistics of the patterns
formed by cells—in this example, cell-sorting producing a “polka
dot” pattern. From these statistics, we produce an initial pheno-
typic analysis (in this example, the transition between “sorted ball”
and “polka dot” behaviors), which is then re�ned with the aid of
soft-body models to produce a predicted phase space of behaviors
interpolated and extrapolated beyond experimental results. From
this, we then extract functions that both constrain and parameterize
applications of the motifs in Protelis programs.

We have applied this work�ow to develop motifs based on cell-
sorting: a “sorted ball” with di�erentiated interior and exterior, and
“polka-dot” patterns. Furthermore, we have demonstrated that with
such motifs we can reconstruct the plans that produced experimen-
tal results from appropriate Protelis speci�cations and that we can
produce compiler errors for shapes that cannot be reliably realized

4 CONTRIBUTIONS & FUTURE DIRECTIONS
Thus far, we have developed an architecture for programming three-
dimensional shape formation in mammalian cells, comprising a
motif-based compiler and a supporting experimental and analytical
work�ow for parameterization of designs being produced by the
compiler. Preliminary results from this architecture are promising,
showing that the compiler can reconstruct experimental designs
and reject speci�cations that cannot be achieved. The next steps
in development will be to extend and enhance the collection of
experiments and models to expand the set of motifs available to
the compiler, then deploy these to predict and demonstrate pro-
grammed formation of more complex three-dimensional shapes.
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1 INTRODUCTION
We present some software projects of the Edinburgh Genome
Foundry (EGF), a research facility specialized in the auto-
mated assembly of DNA constructs. The EGF operates an
integrated robotic setup automating all operations of DNA
assembly: liquid dispensing, thermo-cycling, plating and
colony picking, plasmid extraction, fragment analysis, etc.

The EGF software enables assembly batches to be swiftly
and reliably carried out on the platform, by automating inter-
actions between EGF customers, operators, databases, and
machines (Figure 1). Many features are not speci�c to the
EGF work�ow and could support the routine cloning of other
facilities and individual researchers, notably for assembly
planning, quality-control, and troubleshooting.

In this perspective, EGF software projects are organized as
a modular collection of open-source Python libraries 1 and
public web applications2 (Figure 2) to encourage their use by
other groups. We will highlight some of these projects and
showcase their use at the EGF.

2 CAD SOFTWARE
The EGF’s computer-aided design (CAD) software aims at
assisting customers, in particular non-specialists, in the de-
sign of custom sequences to be assembled on the robotic
platform.

DNAChisel is a sequence optimizer that builds on previous
work [3, 6, 8] and lets users de�ne sequence design speci-
�cations via Genbank annotations. Easily extensible using
Python scripts, it has been used to design projects involving
large sequences - up to 50kb - and hundreds of speci�cations.
It is also used in the routine domestication of parts at the
EGF.

∗valentin.zulkower@ed.ac.uk
1Hosted on Github at https://github.com/Edinburgh-Genome-Foundry.
Software home page at https:// edinburgh-genome-foundry.github.io
2Hosted at http:// cuba.genomefoundry.org/
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The Golden Hinges framework can be used to generate
collections of compatible overhangs to create new type-IIs
assembly standards, to extend existing standards, or to de-
compose arbitrary sequences into assembly-compatible frag-
ments.

3 CAM SOFTWARE
The EGF’s computer-aided manufacturing (CAM) software
aims at automating all processes between the reception of
an order and its delivery, at once freeing up operator time
and avoiding human error.
DNA Cauldron is a cloning simulation framework with a

focus on restriction-based assembly (Golden Gate, BASIC).
It extends a previous approach [7] in order to predict the
�nal sequences of single and combinatorial assemblies, auto-
complete assembly designs with linker parts, and provide
visual troubleshooting aid for invalid assembly designs.

Plateo is a Python laboratory automation framework for
parsing machine �les into human-readable formats, and gen-
erating liquid dispensing picklists for di�erent robots. It can
also simulate picklists to predict �nal microplate layouts and
prevent pipetting a well over capacity or under dead volume.
Two additional libraries automate quality control. Band-

witch continues previous e�orts [2] for restriction digest
planning and validation of large assembly batches, and helps
troubleshooting failed assemblies by identifying partially-
cutting enzymes or de�cient parts. Primavera automates the
selection of primers (available or newly designed) for Sanger
sequencing of large assembly batches.

4 FUTURE DIRECTIONS
Software e�orts at the EGF are driven by customer projects
and operator needs. On-going projects include EMMA-DB,
a website to guide users without prior knowledge of com-
mon assembly standards (e.g. MoClo or EMMA [5]) towards
the right construct structure for their needs, Smart Ass, an
assembly assistant for foundry operators, and DNA Weaver,
a framework to �nd optimal assembly strategies for large
sequences. The foundry is collaborating with Genemill on on-
boarding LEAF LIMS [1] for assembly project management,
and with ThermoFisher to ensure tighter, real-time commu-
nication between the foundry’s software and the robotic
setup.

https://github.com/Edinburgh-Genome-Foundry
https://edinburgh-genome-foundry.github.io
http://cuba.genomefoundry.org/
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Figure 1: The EGF software interfaces the foundry’s customers, operators, and databases, with the di�erent terminals of the
robotic platform. Third-party softwareThermoFisherMomentum and JBEI-ICE [4] ensure direct robot control and genetic parts
management, respectively. The inset photo shows the robotic setup from the operator’s viewpoint. The time-line represents
the di�erent software projects discussed here, in the order in which they may be used in a typical assembly project.

Figure 2: Screen captures of the EGF’s public Collection of
Useful Biological Apps (EGF CUBA), currently featuring a
dozen applications.
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ABSTRACT
Accelerating the engineering cycle of synthetic biology re-
quires rapid transfer of results from the set of circuit proto-
types characterized in the initial pilot tests into the design of
the circuitry employed at the industrial phase. By focusing
on speci�c areas of the design space, machine learning can
be used to boost data-driven engineering and provide com-
patibility with the scale-up stage. Here, we present a toolbox
of predictive tools for selecting genetic parts under di�er-
ent growth conditions such as chassis, media, copy number,
induction point or resistance cassette. Such predictive mod-
els provide an engineering biology toolbox for designing
reusable and portable genetic circuits.

1 INTRODUCTION
Accelerating the engineering cycle of synthetic biology re-
quires of data-driven learning algorithms able to generate
rules-based models to augment circuit diversity [1]. To that
end, powerful automated modeling tools are being increas-
ingly integrated into the Design–Build–Test–Learn cycle
[2]. Challenges however still remain when developing en-
gineered organisms for the production of high-value com-
pounds in order to identify the most suitable combinations
of enzymes, regulatory components, chassis organism and
growing conditions for the desired biosynthetic pathway [3].

Combinatorial libraries of constructs spanning the design
space can be initially characterized and explored in proto-
types and then ported into libraries to be embedded into the
chassis for process development and scaling-up. However,
enzyme e�ciency and transcription and translation rates can
greatly vary from one host to another and depend on other
factors such as growth media, resistance cassette or induc-
tion point. For instance, transcription rates observed from
promoters can largely vary from one host to another and
depend on other factors such as growth media, resistance
cassette or induction point. Several groups have worked
on characterizing libraries of promoters [6] and compared
promoter behavior across model organisms [9], developing
characterization methods based on mathematical models [7]
as well as control of their dynamic range [5, 8].
With the aim of expanding the catalog of characterized

parts that can be modularly reused in multiple engineering

biology projects, we present here tools allowing portability of
genetic constructs through context-aware machine-learning
predictive modeling.

2 ENZYME SELECTION TOOL
Once a producing pathway has been identi�ed, a �rst require-
ment is to screen for enzymes for desired target reactions in
the pathway and select best candidates sequences depending
on host context. To that end, Selenzyme is an online tool
that allows querying for target reactions, including novel
or hypothetical generic reactions [4]. The query reaction,
which is input using SMIRKS representation for generic re-
action rules or an external database id, is screened against
the SYNBIOCHEM graph database of biochemical knowl-
edge (http://biochem4j.synbiochem.co.uk/). The algorithm
proceeds through the list of reactions ranked by decreasing
similarity and expression context based on phylogenetic dis-
tance to the host chassis as well as other useful predicted
physicochemical and conservation properties, including a
multiple sequence alignment of the identi�ed hits.

On top of this core tool, there is a web server and a KNIME
node for automated work�ows. Once the reaction query is
submitted, the ranked list of sequence candidates is presented
as an interactive table, which can be sorted on user-de�ned
summary scores based on a weighted average of selected
columns or properties. Moreover, a RESTful service has been
implemented, so that Selenzyme can accept multiple queries
from any other web-based application.

3 PROMOTER SELECTION TOOL
Similarly, context-aware selection for promoters regulating
transcriptional activity of the pathway constructs is required
for portable scale-up. For that purpose, experimental param-
eters from a promoters library of inducible or constitutive
promoters measured at di�erent conditions, such as growth
media, chassis, resistance cassette or copy number were used
to generate a training set for a predictive model of promoter
relative strengths. For constitutive promoters, models for
each promoter were trained in the same way as for inducible
promoters.

http://biochem4j.synbiochem.co.uk/


Figure 1: Context-aware predictive tools. A) A design blueprint of genetic parts and their associated pathway activity. B) The
enzyme selection tool provides a list of candidates B1 ranked based on their reaction similarity (B2, B3). C) A pool of promoters
is selected based on desired growth conditions (C1), a predictive model C2 is used to estimate promoter activity (C3).

A web-based interface provides a selection dashboard
where the user selects the experimental set-up of the pro-
moter construct from the training parameters. Promoter
strengths for the selected conditions are shown on a bar
chart, either from the model prediction or from experimental
data with associated errors when available. For each pro-
moter, a link is provided to a data sheet that informs of the
measured and predicted strengths, experimental responses at
the di�erent growth conditions, and to the deposited parts in
a JBEI-ICE repository. A RESTful service will be provided in
order to allow the integration of the tool into computational
work�ows and automated pipelines.

4 CONCLUSIONS
Precise selection tools for DNA parts of genetic circuits are
required when transferring initial prototype constructs into
industrial scaling-up. Building context-aware biodesign tools
such as those presented here for enzyme and promoter se-
lection will accelerate the engineering biology process and
ultimately contribute to streamlining the automated bioman-
ufacturing pipeline.

ACKNOWLEDGMENTS
This work has been funded by the BBSRC under Grants
BB/M017702/1 and Flexible Talent Mobility BB/R506497/1.

REFERENCES
[1] C. J. Bashor and J. J. Collins. 2018. Understanding Biological Regulation

Through Synthetic Biology. Annu Rev Biophys 47, (2018).
[2] P Carbonell, A Currin, A Jervis, et al. Bioinformatics for the synthetic

biology of natural products: integrating across the Design–Build–Test
cycle. Nat Prod Rep 33, (2016), 925–932.

[3] P Carbonell, A Jervis, C Robinson, et al. An automated Design–Build–
Test–Learn pipeline for enhancedmicrobial production of �ne chemicals.
Comm Biol 1, (2018), 66.

[4] P Carbonell, J Wong, N Swainston, et al. Selenzyme: enzyme selection
tool for pathway design. Bioinformatics 34, (2018) 2153–2154.

[5] Y Chen, J Ho, D Shis, et al. Tuning the dynamic range of bacterial
promoters regulated by ligand-inducible transcription factors. Nat
Comm 9, (2018), 64.

[6] J R Kelly, A J Rubin, J H Davis, et al. Measuring the activity of BioBrick
promoters using an in vivo reference standard. J Biol Eng 3, 1 (2009), 4.

[7] T Rudge, J Brown, F Federici, et al. Characterization of Intrinsic Proper-
ties of Promoters. ACS Synth Biol (2015).

[8] T Segall, E Sontag, and C Voigt. Engineered promoters enable constant
gene expression at any copy number in bacteria. Nat Biotech (2018).

[9] S Yang, Q Liu, Y Zhang, et al. Construction and characterization of
broad-spectrum promoters for synth biol. ACS Synth Biol 7, (2018), 287.

2



Asynchronous Genetic Circuit Design Automation
with Cloud-based Component Libraries

Timothy S. Jones
Boston University

8 Saint Mary’s Street, O�ce #324
Boston, Massachusse�s 02215

jonests@bu.edu

Tramy Nguyen
University of Utah

50 S. Central Campus Dr., Rm. 2110
Salt Lake City, Utah 84112
tramy.nguy@gmail.com

Zach Zundel
University of Utah

50 S. Central Campus Dr., Rm. 2110
Salt Lake City, Utah 84112

me@zachzundel.com

Chris J. Myers
University of Utah

50 S. Central Campus Dr., Rm. 4112
Salt Lake City, Utah 84112

myers@ece.utah.edu

Douglas Densmore
Boston University

8 Saint Mary’s Street, O�ce #324
Boston, Massachusse�s 02215

dougd@bu.edu

ABSTRACT
Most electrical circuits utilize a timing reference to synchro-
nize the progression of signals and enable sequential memory
elements. �ese designs may not be realizable in biological
substrates due to the lack of a reliable clock signal. Asynchro-
nous designs eliminate the need for a clock with dual-rail
input encoding and signal receipt acknowledgement hand-
shake protocol. We propose a work�ow to automate the
synthesis of asynchronous genetic circuit designs.
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1 INTRODUCTION
Cello [9] is a computer-aided design (CAD) tool aimed at
the design of genetic, combinational circuits where the input
signals map directly to the output signals produced. Sequen-
tial circuits, on the other hand, have input signals that are
combined with internal states to produce the desired output
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signal. While several genetic memory circuits have been cre-
ated [1], general methodologies for genetic sequential circuit
design have not been developed. Sequential genetic circuits
could be utilized in applications such as tumor detection
circuits as described in Ref. [8]. While most electronic se-
quential circuits utilize a periodic timing reference, or clock,
to order operations, creating such a synchronous clock in bio-
logical systems is not practical. �erefore, sequential genetic
circuits likely must follow an asynchronous paradigm, in
which operations are ordered using handshakes. �e goal of
this abstract is to describe a work�ow that could enable CAD
tools, such as Cello, to be extended to support asynchronous
genetic circuits.

2 METHODOLOGY
�e proposed work�ow for asynchronous genetic circuit
design is shown in Figure 1. �e work�ow begins with a
high-level speci�cation encoded using the Verilog language.
�is high-level speci�cation is then compiled to a labeled
Petri net (LPN) [3] following a fairly direct syntax-directed
translation. �is LPN can then be simulated to check be-
havior using the iBioSim so�ware [4]. At this point, the
asynchronous synthesis tool ATACS is used to produce logic
equations [7], which can then be converted to a regulatory
network expressed in the Synthetic Biology Open Language
(SBOL) [10]. At this point, the design can be decomposed
into two combinational logic networks, one that feeds the
set input of a genetic toggle switch and another to feed the
reset input. Each of these resulting networks can then be
mapped to genetic gates constructed from genetic parts from
a library stored in a SynBioHub repository [5]. �is �nal
technology mapping approach will leverage graph based
covering approach described in Ref. [11] that is guided by
Cello’s simulated annealing algorithm that maximizes the
on-to-o� ratio at the circuit’s output for all possible input
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Figure 1: A proposed work�ow to perform technology map-
ping of asynchronous genetic circuit designs.

Figure 2: An example of a genetic toggle switch stepping
through the proposed work�ow.

states [9]. �e resulting design can then be converted to
a computational model expressed in the Systems Biology
Markup Language (SBML) [2] for simulation [6]. �e re-
sulting simulation of the design is then be compared to the
simulation of the speci�cation to verify that the circuit be-
havior is as desired.

Figure 2 illustrates this methodology using the example of
a genetic toggle switch design [1]. First, the genetic toggle
switch is described in Verilog using asynchronous protocols
(i.e. wait and assign statements). �e Verilog speci�cation
is then compiled to an LPN model. �e LPN model can be
analyzed with a testbench also wri�en in Verilog. A�er veri-
fying the designmeets the speci�cation, the LPN is converted
into logic equations. �e logic equations are then mapped
to a DNA level design using technology mapping. Finally,
a model is created for the DNA level design, and it is ver-
i�ed using simulation against the behavior of the original
speci�cation.

3 CONCLUSION
�is abstract proposes a methodology to extend Cello to
support asynchronous genetic circuit designs using parts

stored in SynBioHub design repositories. �is proposed
work�ow allows sequential circuits to be described and the
resulting designs can be veri�ed through simulation.
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INTRODUCTION
�e U.S. Department of Energy (DOE) Joint Genome Institute
(JGI) is a user-facility, providingDNA sequencing and synthe-
sis services to the scienti�c community. �e DNA Synthesis
program1 enables users to design, build, and characterize bio-
logical systems that are relevant to the DOE mission. �e JGI
DNA synthesis group needs to establish and communicate to
the user the work�ow for the design, build, and characteriza-
tion tasks speci�c to each user project. An example work�ow
includes (i) phenotypic sequence repository mining, (ii) het-
erologous expression construct design, (iii) synthetic DNA
requisition, (iv) synthetic construct Type-IIs/Golden-Gate,
Chewback, or Yeast-based assembly, (v) assembled construct
transformation into the target host organism, and (vi) mass-
spectrometry secondary metabolite detection.
In this abstract, we describe our initial development to

evaluate an approach to provenance tracking for synthetic
DNA requisition and synthetic construct assembly. Prove-
nance tracking is paramount for purposes of managing sci-
enti�c intellectual property, allowing the data process to be
reproduced systematically, and identifying defective designs
that can be replaced with non-defective alternatives.

RESULTS
Two JGI tools (the Build-OptimizatiOn So�ware Tools
(BOOST) [3] and SynTrack) could communicate with each
other via an instance of SynBioHub [2], locally deployed
at JGI, using the standardized Synthetic Biology Open
Language (SBOL) data exchange format with its recently
adopted W3C Provenance (PROV) extension [1].

BOOST provides several design functionalities for DNA se-
quence synthesis and assembly. At DOE JGI, BOOST is used
to modify protein-coding DNA sequences to satisfy com-
mercial DNA synthesis vendor criteria (e.g., %GC, repeats)
and remove certain sequence pa�erns (e.g., restriction sites).
BOOST is also used to partition large sequences into synthe-
sizable building blocks with, if desired, overlap sequences
for assembly. BOOST outputs a high-level speci�cation of
the build process, including tasks regarding (i) which DNA

1h�ps://jgi.doe.gov/our-science/science-programs/synthetic-biology/

sequences need to be synthesized, (ii) which primers must be
used to PCR amplify the synthetic DNA constructs or to lin-
earize the destination vectors, (iii) which enzymes (e.g., for
restriction, ligation, or ampli�cation) are required, (iv) which
vectors should be used and how they should be linearized
— by PCR or restriction digest, and (v) how synthetic DNA
constructs are to be joined together (e.g., either homologous
recombination or ligation).
To specify build processes, BOOST supports the follow-

ing �ve types of activities: purchase, archive, amplify, cut,
and join. BOOST compiles a build process speci�cation
into SBOL, using ComponentDefinition to represent build-
ing elements, PROV-O Activity to encode build activities,
and connecting elements and activities together using the
prov:wasGeneratedBy and prov:qualifiedUsage proper-
ties. BOOST could then push the resulting SBOL document
into an instance of SynBioHub, locally deployed at JGI.
To start the physical build process, SynTrack pulls the

BOOST-speci�ed build process from SynBioHub, and trans-
lates the speci�cation to step-by-step instructions for JGI
sta� (leveraging robotics) to operate. SynTrack is a work�ow-
driven system for carrying out and tracking the complex
multi-step processes of DNA assembly in a production set-
ting by integrating laboratory automation equipment, such
as liquid handling robots, plate readers, colony pickers, and
sequencers. At DOE JGI, SynTrack manages (i) the distri-
butions of DNA constructs, (ii) the tracking of plates and
their well contents for each batch of DNA assemblies, (iii)
the QA/QC outcomes that determine the status of each con-
struct, and (iv) the data that is being accumulated during
the assembly processes. SynTrack divides the build process
into pre-assembly and assembly stages. Pre-assembly sup-
ports (i) collecting synthetic DNA fragments and the primers,
(ii) preparing the DNA constructs for assembly a�er PCR
ampli�cation. �e assembly process involves (i) joining the
linearized vectors with the assembled building blocks of DNA
a�er the PCR gene fusion or chawback, (ii) validating the
status of each �nal construct. SynTrack tracks each step of
the build process and augments the BOOST-speci�ed build
process with information according to the SBOL and PROV-
O data model, such as the start/end times of the activities,

https://jgi.doe.gov/our-science/science-programs/synthetic-biology/


Figure 1: Visualization of multi-level build instructions based on the building elements (synthetic DNA, primer/oligo, vec-
tor/plasmid, enzyme) and build activities (purchase, archive, amplify, cut, join).

the agent (human or robotics) who performed the activity,
the lineage of DNA fragment data and QA/QC results.
Figure 1 shows a build process speci�cation for a multi-

level hierarchical DNA assembly of a two-gene pathway.
Level-0 entails the synthesis of the two genes, their PCR
and insertion into (digested) intermediate cloning vectors,
and subsequent freezer storage. �e �nal Level-0 plasmids
(light blue circle with green insert and light-blue circle with
orange inserts) are stored in the JGI archive. Level-1 uses
the Level-0 constructs, by retrieving the Level-0 plasmids
from the archive, using restriction enzymes to cut the inserts
out of their cloning vectors, fusing the inserts together, and
then inserting the fusion into the destination vector. �e
�nal plasmid (magenta circle with green and orange insert)
is then again stored in the JGI archive and can be reused for
further assembly hierarchies.

DISCUSSION
In this abstract, we describe our initial vision and e�orts
towards synthetic DNA construction provenance tracking.
A high-level speci�cation of the intended build-process (in
addition to tracking the build process, its utilized protocols
and integrated QA/QC measurements) enables the compar-
ison of the designed build-process with the actual process
outcomes. �is enables the further analysis of failures and
deviations, making it possible to draw conclusions about why
certain build steps fail, such as speci�c sequence features,

assembly protocols, or reagent kits. We envision the further
develop the DNA Design, Implementation, and Veri�cation
Automation (DIVA) platform, which is currently being used
to provide real-time status updates about the synthetic con-
structs. For the user and the JGI, tracking provenance in a
standardized fashion enables provenance visualization using
o�-the-shelf tools, such as PROV-O-Viz2.
At DOE JGI, we utilize DNA assembly strategies that are

generally representative of, but do not exhaustively cover
all building elements and DNA assembly techniques used
in the scienti�c community at-large. Our goal is to form
collaborations to de�ne an ontology of common terms that
describe the required activities in the synthetic biology �eld
that span across the entire design, build, test, and learn cycle
and to further develop the infrastructure for automated and
standardized provenance tracking.
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ABSTRACT 
TeselaGen's Open Vector Editor​tm​ software provides an 
interface and compute infrastructure for translating 
Genbank files to well-rendered graphical views; allows 
users to add and edit DNA annotation; and provides an API 
for incorporation into other browser-based applications. 
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KEYWORDS 
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1 INTRODUCTION 
The TeselaGen Synthetic Evolution​tm​ enterprise platform for 
synthetic biology consists of four major software modules; 
DESIGN, BUILD, TEST, and EVOLVE. All modules rely on 
the accurate representation of DNA and DNA annotation  in 
user-friendly graphical views and interfaces. Open Vector 
Editor is the third generation of a vector editing tool 
originally developed at LBNL [1]. OVE provides the 
necessary viewing and data manipulation components, 
supporting several major requirements: 

● DNA viewing and editing 
● Annotation viewing and editing 
● Sequence alignment views 
● An Open Source distribution 
 

Figure 1:  TeselaGen’s Open Vector Editor used in the 
context of the TeselaGen DESIGN module. 

2 DNA VIEWING and EDITING 
The fundamental role of the OVE module is the seamless 
translation of Genbank data into a clear, easy to interpret 
visualization of that data. Additionally, OVE provides a 
straightforward editor for changing the DNA sequence using 
familiar text editing tools. While incorporating all of the 
attributes of a text editor, OVE speaks the language of 
DNA, introducing a number of additional requirements. 
Examples of features integrated into OVE to meet scientific 
requirements include translation from DNA to amino acid 
sequence in different reading frames; a controlled 
vocabulary of possible nucleotides; the ability to set the map 
view to circular versus linear; and modification of the origin 
(the first base pair) of a sequence. The tool has numerous 
visibility options as well as a properties view that allows 
users to visualize: 

1. General Properties - Name, Circular/Linear, Length, Is 
Editable 

2. Features - Color, Name, Type, Size, Strand 
3. Parts - Name, Type, Size, Strand 
4. Primers - Name, Type, Size, Strand 
5. Translations - Size (aa), Size (bp), Strand 
6. Cutsites - Name, Number of Cuts 
7. Orfs - Color, Size (aa), Size (bp), Frame, Strand 
8. Genbank - Preview 
 

Figure 2:  Properties Interface of Open Vector Editor. 
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3 ANNOTATION VIEWING and EDITING 
Genbank annotation editing is available through a 
straightforward modal window that allows the user to create 
or edit annotations for any stretch of DNA. The controlled 
vocabulary of possible annotations is configurable and 
includes over 100 standard annotations.

 
Figure 3: Annotation Interface. 

4 SEQUENCE ALIGNMENT VIEWER 
The platform also includes a tool for visualizing alignments 
of DNA sequences. Currently, OVE offers three types of 
sequence alignment: 1) multiple sequence alignment 
(MSA), 2) pairwise alignment, and 3) alignment of short 
sequences to a long template. The alignment algorithms 
MAFFT, MUSCLE, and Bowtie2 are employed. 

MSA and pairwise alignments are relevant to the 
comparison of sequences that are approximately the same 
length and span the same gene, as regions of homology are 
aligned. MSA allows for alignment of three or more 
sequences, whereas a pairwise alignment individually aligns 
each uploaded file against the template. Pairwise alignment 
is particularly useful when checking a constructed or 
synthesized DNA sequence against the expected sequence 
specified during the design process. Alignment of short 
sequences to a long template is appropriate for aligning 
short sequencing reads to a long reference sequence. 

To align sequences in OVE, users are able to input 
sequences as text or upload sequences in various file 
formats, such as .ab1 files containing chromatogram data 
from Sanger sequencing. Users select the type of alignment 
and tag a sequence in the list as a template when 
appropriate. OVE displays the resulting sequence alignment 
as scrollable alignment tracks. If a reference sequence is 
chosen, the reference is fixed at the top of the display for 
ease of comparison to other sequences. Annotations 
appear above each sequence and may be toggled on or off 

in a visibility menu. Users may also adjust the zoom for an 
overview of the sequences or for a closer view of the 
nucleotides. The sequences are shown as a gapped 
alignment, and mismatches are delineated by red 
highlighting. Below the alignment tracks, a minimap 
provides a general view of the sequence alignment. The 
minimap provides a snapshot of both the base pair position 
of alignment as well as sequence homology, with identical 
regions depicted in gray and mismatches indicated in red.  

 
Figure 4: Sequence alignment view of Open Vector Editor. 

5 Open Source Access via NPM 
Users are able to access the library elements through an 
open source library with a well documented API accessible 
as an npm package on Github: 

https://www.npmjs.com/package/open-vector-editor 

6 CONCLUSIONS 
TeselaGen's Open Vector Editor​tm​ software library is 
intended to offer flexibility and functionality to users 
preparing designs incorporating DNA parts as an 
organizational paradigm. In addition, tools are provided to 
assist in the analysis and quality assurance of synthetically 
built DNA sequences. Scientists are able to visualize, 
annotate, and edit DNA sequences for various use cases, 
from viewing constructs during experimental design to 
analyzing alignments after sequencing in the lab. OVE 
offers clear graphical representations of DNA sequences as 
well as part and functional annotation.  
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1. INTRODUCTION  
Genetic circuit synthesis is an important emerging field 

aiming to perform logical computations inside living cells. 
These circuits consist of a genetic component encoded in DNA 
and operate inside living cells to execute desired logical 
operations activated by the presence or absence of certain 
proteins or other species. 

There are several existing tools for the synthesis and 
technology mapping of genetic circuits [1]. One of such tools is 
GeneTech [2] which generates all feasible genetic circuits from 
a given Boolean expression, thus allowing the user to 
synthesize genetic circuits only by specifying the desired 
logical function to be performed in s living cell. GeneTech 
implements a top-down approach to synthesize logic circuits by 
converting a high-level (Boolean) description of a genetic 
circuit (Figure 1(a)) into its low-level representation similar to 
that of the SBOL visual notation [3] (Figure 1(b)). The software 
performs this operation by first minimizing the logic expression 
to obtain a function with minimum possible literals, and then 
transforming this optimized expression into NOR-NOT form. 
Finally, the software generates the circuits using the actual 
NOR/NOT gates available in the genetic gates library [4], thus 
achieving all genetic circuits for the desired logical behavior.  

However, the GeneTech software has some limitations that 
affect the user experience and restrict the range of its practical 
implementations. Apart from the software layout being more 
task oriented, rather than user friendly; the following four major 
areas need improvements; first, the software accepts the input 
Boolean expression in the “Sum of Products” (SOP) form [5] 
only. Second, it doesn’t fully address the problem of unintended 
negative feedback loops [6]. A negative feedback loop is said to 
exist in a genetic logic circuit when an output signal of any stage 
of the circuit is also the input of any previous stage of the 
circuit. Due to the nature of the stochastic environment of a 
living cell, such an unintended feedback loop essentially 
deteriorates the working of the entire circuit, rendering it void. 
Third, in some cases, the optimized expressions generated by 
the tool contain multiple nested NOR-NOT expressions, which 
indicate that the circuits would have multiple outputs (for 
example, see the circuits in [4] which have multiple outputs 
added with OR gate, e.g., x1C, 60, 87 etc.). The tool is currently 
not able to generate multiple output circuits. Fourth, the current 
version of the software does not provide the users with an 
option to decide the design constraints for the output logic 
circuits (for e.g. time taken, energy required, area cost [7] etc.), 
instead simply generates all possible circuits. For a larger set of 
circuits, this is impractical and a time-consuming approach, as 
it requires the user to manually scrutinize all the output circuits. 

Similar to electronic circuits, it has been demonstrated that 
the timing is a crucial design characteristic of genetic circuits 
[8], in order to make sure that the correct output signal is 
generated within a certain time duration. If the synthesis tools 
do not allow user to define their design constraints, they may 

end up having circuits, which may not only affect the circuits’ 
functionality in terms of timings, but also in terms of signal 
strength to trigger the circuit’s output. The need for constraints 
is also crucial because implementing a large circuit in a living 
cell can increase the metabolic burden, since it would require 
more cellular energy to simply maintain its presence in a host 
cell and this in turn would increase the probability of resource 
and energy redistribution among different species, decreasing 
the efficiency of the circuit as a whole, while simultaneously 
increasing the time taken to process it [7][8].  

In this work, we address these limitations of the GeneTech 
tool by implementing some additional functionalities to make it 
more user friendly, and more understandable to a broader 
audience including engineers. 

2. METHODOLOGY 
GeneTech 2.0 is an improvement upon its predecessor in 

several aspects. In the very first stage, we intend to allow the 
user the flexibility of inputting either the SOP form of the 
Boolean expression or the Product of Sum (POS) form. Since 
the GeneTech software in place operates by taking a standard 
SOP form and simplifying it for further stages; we have 
employed the ‘Quine-McCluskey’ method [9] to detect and 
convert the standard POS form to SOP form; thereafter the tool 
carries out its usual operations. 

Furthermore, the algorithm maintains a record of all the 
proteins/promoters generated throughout any given circuit that 
it is processing; checking all the time whether an unintended 
feedback loop is occurring within that circuit. This is an 
improvement from the original GeneTech software which 
merely attempts to ensure at each stage, that an unintended loop 
is not being formed with the preceding stage. This mechanism 
will greatly increase the benefit of the software to the users 
since they will no longer have to manually go through the 
circuit outputs, verifying that no unintended feedback loop is 
present, before implementation. 

Whereas the above points are only alterations to the original 
software, one major addition to the new version is that it allows 
the users the flexibility to generate logic circuit combinations 
considering a variety of possible constraints, including the 
maximum number of gates in a circuit and the number of 
possible circuits required (see Figure 1(d)). These constraints 
are basically intended to ensure that a minimum cost 
expectation is met by the circuits, generated by the tool, 
allowing the users to select the most cost-effective output. We 
accomplished this by annotating the gates library, assigning 
arbitrary semi-realistic values to costs for each logic gate. These 
costs can be anything ranging from the ‘time taken to process 
the logic in real life’ to the ‘energy required for the logic to 
process in the human cells [7]. The algorithm in turn accepts  
the input constraint(s) by the user (if any) and generates an 
output in increasing order of cost within those constraints. If 
more than one constraint has been specified, the software 
displays different sets of circuits, each in increasing order of the
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Figure 1. Sample input and outputs of GeneTech. (a) Input function to GeneTech [10]. One possible logic circuit output generated in (b) the 
previous version [2] [10]. (c) Additional output diagram for the same input generated in the latest version. (d) A glimpse of the layout of the 

updated version of GeneTech 2.0, allowing users to define the constraints.

cost with respect to a particular constraint, while also displaying 
the cost for each circuit with respect to other constraints. This 
allows the user to prioritize between different costs and cherry 
pick the best output. 

Moreover, the users can specify the number of logic circuits 
possibilities they require. This functionality can have two 
effects; first, if the user has specified no cost constraints, the 
program terminates only after producing the required number 
of circuits, improving its efficiency in time; Second, if the user 
has specified cost constraints, the program runs through all 
possible logic circuits and returns only the most cost-effective 
circuits within the number of logic outputs specified. 
Additionally, the improved version allows the user to specify 
the maximum number of logic gates the user wishes to employ, 
and only produces the circuits if they meet the requirements.  

The tool is further upgraded to generate multiple-output 
circuits as compared to its previous version in which the tool 
was only able to generate the single-output circuits (as 
discussed in Introduction). Lastly, GeneTech 2.0 generates an 
additional output in the form of logic representation similar to 
electronic circuits’ diagrams, as shown in Figure 1(c). 

3. EXPERIMENTATION AND RESULTS 
In this work, we tested the same set of circuits which are 

used in [6]. We verified that GeneTech 2.0 eliminates all those 
circuits (not shown due to space limitations) which contain an 
unintended feedback loop with any of the previous stages, thus 
giving a more filtered range of outputs as compared to previous 
version of GeneTech [2]. The percentage of circuits eliminated 
varies from 0-40% for different input expressions, depending 
on the number of unintended loops they contain. 

In [8], it has been demonstrated, using D-VASim [11], that 
the timings of individual circuit components depend upon 
several design parameters (e.g., degradation rate). Similarly, the 
components in genetic gates library can be modeled and 
characterized based on their timing values. These values can 
then be used by the tool to generate circuits to meet the desired 
constraints. Since, we do not have the real data, therefore we 
assigned arbitrary values of time for each logic stage and ran 
GeneTech to generate the list of output circuits. The timings of 
the generated circuits can be verified using D-VASim, which 
requires the input in the Systems Biology Markup Language 
(SBML) format. Therefore, it is necessary that GeneTech 
should generate the circuits in the SBOL format [3] first, which 

can then be converted to SBML using SBOL-SBML converter 
[12]. 

4. SUMMARY 
The genetic circuit synthesis process of GeneTech software 

has been significantly improved by making it more user friendly 
and allowing the users to generate circuits with specific design 
constraints. The capability of generating the additional output 
in the form of logic circuit schematic would ensure that a wider 
audience (including design engineers) would be able to benefit 
from the software. 

The functionality of generating a SBOL file, and a SBOL 
visual representation from GeneTech is currently under 
development. Furthermore, in future, we plan to incorporate the 
SBOL import for gate libraries as well integration with online 
repositories. We aim to integrate this functionality in the current 
release which would allow user to integrate GeneTech with 
SBML-based tools like iBioSim or D-VASim to gain a more 
enhanced idea about the applicability of the logic circuits that 
GeneTech generates. 
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ABSTRACT
CoRegCAD aims at providing a framework for network in-
ference, interrogation and implementation for the rational
design of pathway and the metabolic engineering of yeast for
the production of compounds of interest in a context-speci�c
manners.
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1 INTRODUCTION
Bio-design automation (BDA) and biological computer-aided
design (BioCAD) tools are crucial for the development of
synthetic biology and industrial biotechnology which aim
at designing and engineering large, self-adaptive, coupled
regulatory and metabolic systems at whole-genome scale
for useful purposes in a cost-e�ective manner. Although the
landscape of BDA and CAD tools has signi�cantly grown
for the last few years [1], in particular regarding the design
of complex genetic circuit based on characterized part and
speci�cation, tools for context-speci�c and adaptive rational
pathway design are yet to be generalized.
This work aims at providing a framework for the design

and optimization of pathways and phenotypes of interest in
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industrial strains. Tomeet that goal, our team has developped
several building blocks integrated together in CoRegCAD in
an iterative process from network inference and interroga-
tion [5] of the strain regulatory process to the integration of
genome architecture when re-factoring chromosomes [3]. In
this study, we propose to combine regulatory and metabolic
network to:

• Identify the best constructions to improve the produc-
tion yield in context-speci�c conditions

• Highlight new regulatory elements of interest for fur-
ther characterization and integration in parts libraries.

This work will be demonstrated on Yarrowia lipolytica, a
chassis of industrial interest for which standardized Golden
Gate modular cloning strategy has been developed [4].

2 MATERIALS AND METHODS
CoRegCAD framework includes several tools working to-
gether as represented in Figure 1. From a large dataset, a
background gene regulatory network (GRN) is build using
the network inference package CoRegNet [5]. This GRN al-
lows to calculate the regulators in�uence, a sample-speci�c
statistical value corresponding to an estimation of the tran-
scription factors (TF) activities. By integrating the reverse en-
gineered gene regulatory network into the metabolic model
(CoRegFlux [2]) and learning from the regulators in�uence,
our model can predict the metabolic genes expression levels
in context-speci�c conditions. These predicted expressions
are then converted into constraint for �ux balance analy-
sis leading to phenotype prediction and possible calculation
of biomass-product coupled yield. Using data from S. cere-
visiae, we applied our method to a high-dimensional gene
expression dataset to infer a background gene regulatory
network and compared the resulting phenotype simulations
with those obtained by other relevant methods. Our method
was shown to have a better performance and robustness to
noise and was successfully used to study complex context-
speci�c phenotype such as diauxic shift [2]. More speci�cally,
CoRegCAD aims at providing a set of functions to simulate
the engineering of the regulatory network as well as relevant
gene knock-out or over-expression. These simulations will
then be used to optimize the best constructions to improve
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Figure 1: CoRegCAD aims to provide a framework for rational design of pathways and strains metabolic engineering through
an iterative process consisting of 1) Inference of a co-regulatory network in context-speci�c conditions 2) Interrogation of the
network and mapping to the metabolic model to predict genes expression and phenotypes 3) Simulations and optimization
to identify the best strategies to improve the product yield and to guide wet-lab experiments for the Implementation of the
construction. The cycle then start over by improving and re�ning the network based on experimental observations.

production and to select the most appropriate regulatory ele-
ment to be included in the expression cassette in the chassis
organism. The determination of its optimal insertion point
within the genome tomaximize the clustering of co-regulated
genes will also be considered (GREAT [3]).

3 CASE-STUDY ON AN INDUSTRIAL CHASSIS: Y.
LIPOLYTICA

To demonstrate the relevance of our strategy for less common
organism of industrial interest, these methods will be devel-
oped and tested in Y. lipolytica, an oleaginous yeast whose
metabolism is prone to lipid accumulation under conditions
of nitrogen limitation. Following the CoRegCAD framework,
a regulatory network consisting of 111 TF, 4451 target genes
and 17048 regulatory interactions (YL-GRN-1) was inferred.
Interrogation of this network highlighted the relevance of
our method to identify several regulatory state correspond-
ing to the yeast adaptation to nitrogen depletion. Using in�u-
ence, we were also able to identify potential regulators and
drivers of lipid accumulation, some of which were tested in
the lab with 6 out of 9 being validated for their impact on lipid
accumulation [6]. This work will provide proof-of-concept
for the context-speci�c design of metabolic pathways of in-
terest, by improving the yield under speci�c constraints.

4 CONCLUSIONS
While further development still need to be carry out, CoReg-
CAD purpose is to provide a framework relying on net-
work inference and interrogation to guide the metabolic
engineering of industrial chassis and achieve higher produc-
tion of metabolite of interest in context-speci�c conditions.

Using CoRegCAD, researchers will be able to reduce time-
consuming and costly laboratory e�ort, to carry out function-
alities studies and to identify regulatory element of interest
for context-speci�c expression through the interrogation
step and iterative learning process.
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