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Foreword 
Welcome to IWBDA 2016! 
 
The IWBDA 2016 Executive Committee welcomes you to Newcastle upon Tyne, United 
Kingdom for the Eighth International Workshop on Bio-Design Automation (IWBDA). IWBDA 
brings together researchers from the synthetic biology, systems biology, and design automation 
communities. The focus is on concepts, methodologies and software tools for the computational 
analysis and synthesis of biological systems.  

The field of synthetic biology, still in its early stages, has largely been driven by experimental 
expertise, and much of its success can be attributed to the skill of the researchers in specific 
domains of biology. There has been a concerted effort to assemble repositories of standardized 
components; however, creating and integrating synthetic components remains an ad hoc 
process. Inspired by these challenges, the field has seen a proliferation of efforts to create 
computer-aided design tools addressing synthetic biology's specific design needs, many 
drawing on prior expertise from the electronic design automation (EDA) community. IWBDA 
offers a forum for cross-disciplinary discussion, with the aim of seeding and fostering 
collaboration between the biological and the design automation research communities. 

IWBDA is proudly organized by the non-profit Bio-Design Automation Consortium (BDAC). 
BDAC is an officially recognized 501(c)(3) tax-exempt organization. 

This year, the program consists of 22 contributed talks and 15 poster presentations. Talks are 
organized into seven sessions: Logic, Tools I, Pathways, Tools II, Standards, Automation and 
Circuits. In addition, we are very pleased to have two distinguished invited speakers: Dr. 
Amoolya Singh from Amyris and Prof. Natalio Krasnogor from Newcastle University.  

We thank all the participants for contributing to IWBDA; we thank the Program Committee for 
reviewing abstracts; and we thank everyone on the Executive Committee for their time and 
dedication. Finally, we thank SynbiCITE, Autodesk, Gen9, Twist Bioscience, ACS Synthetic 
Biology, DSM, Agilent Technologies, Raytheon BBN Technologies, Cytoscape, Lattice, and 
Minres Technologies for their support.  We also thank Newcastle University and the 
Interdisciplinary Computing and Complex BioSystems (ICOS) research group for hosting and 
supporting IWBDA. 
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9,600 wells 
1 well = 121 oligos

DNA synthesis is at the core of synthetic biology, and Twist Bioscience’s innovative silicon-based  
DNA writing technology is transforming gene synthesis. Our 9,600 nano-well semiconductor platform 
allows highly uniform synthesis of over a million oligonucleotides with extremely low error rates,  
enabling amplification-free production of sequence-perfect genes with quick turn-around times, at 
industry-leading prices.

10,000, or more. Think on a new scale, reimagine your gene designs, and accelerate your discoveries.

Genes Oligo Pools Libraries

Why clone? Let Twist Bioscience build for you

Reimagine  Gene Synthesis

What can Twist do for you?
sales@twistbioscience.com   
www.twistbioscience.com



Sometimes the big issues inspire bright ideas, sometimes the big 
idea already exists and we can adapt it for an entirely new purpose. 
Whatever the catalyst, we’re making bright science happen thanks 
to a rare and colorful mosaic of diverse competences, connections 
and collaborations - both inside and outside of DSM.

We’re able to tackle some of the very complex problems faced by 
WKH�ZRUOG�DQG�FRQWLQXH�WR�ĲQG�WKH�DQVZHUV�WR�ZKDW�ZH�GRQåW�\HW�
know.

WWW.DSM.COM

Are societal challenges driving science? 
Or is science driving societal change? 
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KKeeyynnoottee  PPrreesseennttaattiioonn  
Amoolya Singh 

Automating Design at an Industrial Biotech 

  

 

Amyris has developed a high-throughput genetic engineering platform for designing and building 
custom microbes to serve as living factories. Using an industrial scale fermentation process, our 
microbes convert cheap sugars into a wide variety of high value target molecules, including 
medicines, commodity and specialty chemicals. Our end products provide low cost, high quality 
malaria medication and renewable substitutes for fuels and chemicals. Amyris' R&D efforts span 
rational & random design and construction of microbial strains, high-throughput screening and 
analytical chemistry, fermentation at multiple scales, and genotype/phenotype data mining. 
Every aspect of this work is facilitated and accelerated by quantitative science and software & 
hardware automation.  In this talk, I will outline the computational challenges inherent in 
automating the design of microbial strains.  To meet these challenges, we use a range of 
innovations including genotype specification languages and high-level functional ontologies of 
parts and pathways; metabolic and statistical models; literature mining algorithms; and design of 
experiments approaches. 

Dr. Amoolya Singh is a computational biologist and Senior Scientist at Amyris. She leads 
Amyris R&D's Scientific Computing group, whose work includes innovations in genotype 
representation and data visualization, building mathematical and statistical models to analyze 
high-throughput, multivariate genotype and phenotype data; metabolic modeling and design-of-
experiments to perturb microbial biochemical pathways and identify bottlenecks therein; and 
statistical process control to accelerate Amyris' design-build-test-learn cycle. 

Amoolya obtained a bachelor's degree with honors at Carnegie Mellon double majoring in 
Biology and Computer Science; and a Ph.D. in computational biology from UC Berkeley jointly 
advised by Adam Arkin (Bioengineering) and Richard Karp (Math/CS). Between degrees, she 
worked as a software engineer at an Internet startup, a multinational wireless 
telecommunications firm, and a Wall Street investment bank. Prior to joining Amyris, Amoolya 
completed a postdoctoral fellowship at the European Molecular Biology Lab in Heidelberg, 
Germany (with Peer Bork) and a Computational & Life Sciences fellowship at Emory University 
(with Bruce Levin) in the fields of comparative genomics and metagenomics, population 
genetics, and experimental evolution. 
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KKeeyynnoottee  PPrreesseennttaattiioonn  
Natalio Krasnogor 

Accelerating Synthetic Biology via Software and Hardware Advances 

 
In this talk I will discuss recent work done in my lab that contributes towards accelerating the 
specify -> design -> model -> build -> test & iterate biological engineering cycle. This will 
describe advances in biological programming languages for specifying combinatorial DNA 
libraries, the utilisation of off-the-shelf microfluidic devices to build the DNA libraries as well as 
data analysis techniques to accelerate computational simulations. 

Prof. Natalio Krasnogor is Professor of Computing Science and Synthetic Biology, co-directs 
Newcastle'sInterdisciplinary Computing and Complex BioSystems (ICOS) research group and is 
director of the Centre for Synthetic Biology and the Bioeconomy (CSBB). Prof. Krasnogor holds 
a prestigious EPSRC Leadership Fellowship in Synthetic Biology, is the overall lead in the 
EPSRC Synthetic Biology ROADBLOCK project involving Newcastle, Nottingham, Sheffield, 
Warwick and Bradford Universities that seeks to develop in silico and in vivo techniques for 
engineering biofilms. He leads the "Synthetic Portabolomics: Leading The Way at the 
Crossroads of the Digital and Bio Economies" EPSRC project. 

With expertise in Synthetic Biology, Complex Systems and Machine Intelligence, Prof. 
Krasnogor gave several keynote talks (e.g., IEEE CEC, PPSN, GECCO); has >170 publications 
(H-index 37), with many of his papers in the top 0.1% and 1% for number of citations in 
computing science and has published also in top tier journals such as Nature Biotech, Nature 
Chemistry, and PNAs. He won several best papers prizes as well as Bronze, Silver and Gold 
awards of the American Computing Society's (ACM) HUMIES award for human-competitive 
results that were produced by any form of genetic and evolutionary computation and an ACM's 
Impact award. From 2012 to 2014 he was the Science Director of the European Centre for 
Living Technologies (Italy), was distinguished visiting professor at Ben Gurion University (Israel) 
in 2009 and Weizmann Institute of Science (Israel) in 2010, 2012, and 2013. 
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AAllllaann  KKuucchhiinnsskkyy  SScchhoollaarrsshhiipp  
 

Nicholas Roehner 
 

 

 

 

 

 

 

 

 

 

Dr. Nicholas Roehner is a postdoctoral research fellow in the Cross-Disciplinary Integration of 
Design Automation (CIDAR) lab of Prof. Doug Densmore at Boston University and in the MIT-
Broad Foundry at the Broad Institute of MIT and Harvard. He received his Ph.D. in 
bioengineering from the University of Utah in 2014 working with Prof. Chris J. Myers on 
computational methods for genetic design automation. During this time, he also served as an 
editor of the Synthetic Biology Open Language (SBOL) and contributed to the development of 
the SBOL 2.0 data standard. He is currently a researcher on projects under the 1000 Molecules 
component of the DARPA Living Foundries program, including software for designing genetic 
libraries based on experimental designs (Double Dutch) and a database for storing and tracking 
changes to large combinatorial spaces of possible genetic designs (Knox). His research 
interests include the application of languages, games, and simulation to the development of a 
hierarchy of abstraction for synthetic biology, one in which experts with different specialties can 
effectively communicate and collaborate across abstraction barriers. 

The second annual Allan Kuchinsky Scholarship to IWBDA is being generously sponsored by 
Agilent and Cytoscape. 

Previous recipients 

2015  Swapnil Bhatia 
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Design for Improved Repression in RNA Replicons

Jacob Beal
Raytheon BBN Technologies

Cambridge, MA, USA
jakebeal@bbn.com

Ron Weiss
Massachusetts Institute of Technology

Cambridge, MA, USA
rweiss@mit.edu

1. MOTIVATION
RNA replicons are an emerging platform for synthetic bi-

ology, in which the infective capsid of a RNA virus is re-
placed with an engineered payload while its self-replication
capability is retained [4, 3, 1, 6]. This self-replication capa-
bility allows RNA replicons entering a cell to amplify their
engineered elements, providing strong expression from a low
initial dose without integration into host DNA or propaga-
tion to other cells. Replicons thus offer an attractive plat-
form for developing medical applications such as vaccines [2,
3] and stem-cell generation [7], combining both strong ex-
pression and relative genetic isolation. Development of RNA
replicons to date has focused primarily on derivatives of
alphaviruses, a well-characterized family of positive-strand
RNA viruses, and most particularly the Sindbis and VEE
vectors [4]. Protein expression from RNA replicons can be
precisely predicted and controlled [1], and can support stan-
dard synthetic circuits such as cascades and toggle switches [6].

A key challenge for creating effective synthetic circuitry
with RNA replicons, however, is that regulatory devices of-
ten perform less well when expressed from replicons. For ex-
ample, L7Ae is a very strong RNA regulator, able to provide
more than 200-fold repression when expressed from DNA
plasmids, but was found to yield less than 30-fold repres-
sion when expressed from RNA replicons [6]. By exami-
nation of quantitative models derived from [1] and [6], we
find that simple circuit adjustments, to exploit rather than
oppose RNA replicon dynamics, should be able to reverse
this problem and in fact produce significantly better circuit
performance than is observed with DNA plasmids.

2. QUANTITATIVE EXPRESSION MODEL
Figure 1 shows a diagrammatic model of the interactions

in a two-replicon repression circuit modeled after [6]. In
this circuit, the L7Ae RNA regulator supresses expression
of mVenus fluorescent protein and is in turn degraded by
the small interfering RNA siRNA-FF4. When siRNA-FF4
is absent, L7Ae will not degrade and will repress mVenus,
whereas when it is present L7Ae will rapidly degrade and
mVenus should be high. This system may be simulated as
an ODE using the following equations:

dRi

dt
= αi ·N ·Ri (1)

dL

dt
= αL ·A ·R1 −

log 2

tL
·

1 + (S/DS)HS

1 +KS
−1(S/DS)HS

· L (2)

IWBDA 2016 Newcastle, UK
This work was sponsored by DARPA DSO under grant W911NF-11-054;
the views and conclusions contained in this document are those of the au-
thors and not DARPA or the U.S. Government..
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Figure 1: RNA replicon repression circuit: siRNA-
FF4 degrades L7Ae, which in turn represses mVenus
fluorescent protein.

dV

dt
= αV ·A ·R2 ·

1 +KL
−1(L/DL)HL

1 + (L/DL)HL
−

log 2

tV
· V (3)

dN

dt
= −

∑

i

dRi

dt
(4)

dA

dt
= −(

dL

dt
+

dV

dt
) (5)

where Ri is the number of copies of each replicon, N is
the amount of available transcriptional resources, S is the
amount of siRNA-FF4, L is the amount of L7Ae, V is the
amount of mVenus, A is the amount of available transla-
tional resources, tx is the decay half-life of species x, and
αx, Kx, Dx, and Hx are standard Hill equation coefficients.
When parameterized with best-fit values derived from [1]
and [6]1, the system behaves as shown in Figure 2, produc-
ing a 9-fold repression: much less than the 63-fold it predicts
from plasmid DNA and an underperformance ratio equal to
that observed in [6]. The model suggests that poor perfor-
mance is due to the high expression of L7Ae in its “off” state
and the inability of L7Ae to sufficiently repress mVenus be-
fore a significant amount has built up in the system.

3. PARAMETER OPTIMIZATION
Given the issues identified by the model and the nature of

this RNA replicon circuit, there are four tuning mechanisms
that offer ready means of adjusting performance. The high
L7Ae “off” expression can be decreased by decreasing the
relative initial dose of its expressing replicon or by decreas-
ing per-replicon expression by decreasing the strength of its
subgenomic promoter (a well-established mechanism for con-
trolling replicon expression, e.g. [5]). Likewise, the high ini-

1Note that due to the insufficiency of available experimental
data, some parameters are poorly constrained.
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Figure 2: Unoptimized circuit has poor dynamic
range due to leaky L7Ae“off” and early unrepressed
expression of mVenus.

tial expression of mVenus can be decreased by decreasing the
strength of its subgenomic promoter or by adding degrada-
tion tags to decrease its half-life.

To investigate the potential of these mechanisms, we per-
formed single-parameter scans, running simulations of each
adjustment across two orders of magnitude at 20 values per
decade. These simulations indicate that the two L7Ae mod-
ifications have a near-equivalent effect in significantly ampli-
fying the dynamic range of this circuit. Decreasing the half-
life of mVenus can also improve dynamic range by affect-
ing different dynamics, while adjusting mVenus promoter
strength does not improve dynamic range but only shifts
expression linearly.

Based on these single-parameter results, we conducted a
detailed two-parameter scan for both decreasing L7Ae pro-
moter strength and decreasing mVenus half-life. Figure 3
shows the results of this experiment, including an asymmet-
ric region in which the combination of the two modifications
is predicted to provide more than 500-fold dynamic range.
The combination of decreasing L7Ae dose and decreasing
mVenus half-life (not shown) produces very similar results.
Intuitively, in this area decreased L7Ae expression means
that unrepressed mVenus outcompetes L7Ae for resources
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Figure 3: Decreasing L7Ae promoter strength and
mVenus half-life can markedly improve the pre-
dicted dynamic range of repression.
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Figure 4: Optimized circuit with 7% L7Ae expres-
sion and 10% mVenus half-life has more than 50-fold
improvement in predicted dynamic range.

and decreases its“off” level, while decreased mVenus half-life
means that even a high initial transient can be extinguished
in the repressed state. Together, these predict expression
patterns such as in the example in Figure 4, predicting much
greater dynamic range for both L7Ae and mVenus.

4. CONTRIBUTIONS AND FUTURE WORK
Having predicted modifications to markedly improve the

performance of repression in replicon circuits, a clear next
step is for these modifications to be implemented in the lab
and tested experimentally to see whether the predicted im-
provements materialize (which may require combining SGP
and ratio manipulation to get sufficient range). Importantly,
precise quantitative prediction and design has previously
been demonstrated in replicons [1] and the predicted region
of high performance is fairly broad. These models may also
be extended to predict a larger range of systems, includ-
ing more modes of regulation and more complex replicon
architectures, thereby increasing the range of replicon ap-
plications that may be more effectively engineered.
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ABSTRACT 
Two major computation paradigms have been implemented so far 
in living cells - analog paradigm that computes with a continuous 
set of numbers and digital paradigm that computes with two-
discrete set of numbers. Here, we analyze the biophysical and 
technological limits of gene networks created based on analog 
computation in living cells. More specifically, we calculate the 
precision of analog systems impacted by extrinsic and intrinsic 
noise sources. Furthermore, an analytical description of a 
biophysical model recently developed for positive feedback 
linearization circuits and used in analog synthetic biology, is 
presented.  

CCS Concepts 
• Applied computing~Computational biology   • Applied 
computing~Biological networks   • Applied computing~Systems 
biology    

Keywords 
Synthetic biology, System biology, Analog computation, Digital 
computation, Feedback loops, Cellular noise. 

1. INTRODUCTION 
Early efforts at biomolecular computing have used binding and 
unbinding reactions to represent the "ON/OFF" or "1/0" logic states 
[1]. Consequently, proteins that bind to DNA or promoters and 
activate high levels of gene expression, represent the "1" logic state, 
while unbound, free proteins yield low levels of gene expression, 
and represent the "0" logic state. Many genetic circuits that mimic 
electronic digital circuits, have been constructed to perform 
Boolean logic gates, counter and memory devices in living cells [1].  
To date, engineered artificial logic gates in living cells have been 
proven difficult to scale due to cellular resource limitations, a lack 
of orthogonal genetic devices, high leakage levels of synthetic 
genetic devices and the absence of suitably sharp input-to-output 
transfer functions [2]. Recently, novel genetic circuits have been 
constructed based on analog design [3]. Such gene circuits take 
advantage of the complex operations already naturally present in 
living cells, to execute sophisticated computational functions. For 
example, analog genetic circuits exploit positive feedback loops to 
implement logarithmically linear sensing, addition, division [3] and 
negative feedback loops while performing square-root calculations 
to determine chemical concentrations [3]. Analog genetic circuits 
involve fewer components and resources, and execute more 
complex operations than their digital counterparts [3]. For an in-
depth analysis of the pros and cons of analog versus digital 
computation in living cells, readers are referred to excellent reviews 
on the subject [4].  
In the present article, we analyze the biophysical and technological 
limits of large-scale gene networks created based on analog 
computation in living cells.  The working dynamic range, noise 
margin, basal level of biological parts, sharpness of input-to-output 
transfer functions and copy number of synthesized 

proteins/molecules are assessed. In the second part of this paper, 
we analyze analog computation in living cells.  
2. Accuracy of analog systems in living cells: 
Computing elements in living cells that based on gen regulation can 
be described by an enzyme–substrate binding reaction via a Hill 
function: 

ݖ െ ଴ݖ ൌ ௠௔௫ݖ
ሺ௫Ȁ௄೏ሻ೙

ଵାሺ௫Ȁ௄೏ሻ೙
     (1) 

where, Kd is a dissociation constant, z0 is the basal level of binding, 
zmax is the maximum protein concentration achieved by the system, 
and n is the Hill coefficient. Figure 1a describes equation 1 and it 
includes two regions: an analog continuous mode and a digital 
mode. In the analog mode, the function can be described by a log-
linear transduction, while in the digital mode, it can be viewed as 
two discrete values ("0" and "1"). Equation 1 can be approximated 
at x=Kd or (y=ln(x/Kd)=0), using Taylor series, as:  

ݖ െ ଴ݖ ൌ ௭೘ೌೣ
ଶ ൬ͳ ൅ ௡

ଶ ݈݊ሺݔȀܭௗሻ൰    (2) 

Log-linear transduction, known as Weber's Law, is widely used in 
natural systems, such as audition, vision and cells [5], and offers 
advantages over linear-linear transduction. Naturally, signals 
propagate through networks with random fluctuations, which can 
be described by a Poisson process, generating shot noise that scales 
as the square-root of the molecular count [6]. There are two 
orthogonal sources of noise in any biological system; intrinsic noise 
with burst size (bint), generated by the system itself, and the 
extrinsic noise with bext size, generated by random fluctuations in 
the input or environmental parameters [6]. A stochastic model for 
a system that has a log-linear transduction is given by: 

͓ ௟ܰ௘௩௘௟ ൌ ͳȀට଼ሺଵା௕೔೙೟ሻ
௭೘ೌೣ

൅ ሺଵା௕೐ೣ೟ሻ
௄೏

ή ݊ଶ    (3) 

#Nlevel is the number of levels that an analog system can distinguish 
in the presence of intrinsic and extrinsic noise.  The burst size relies 
on the translation rate, number of amino acids (aa) in the 
synthesized protein and on half time of mRNA. Typically, in 
Escherichia coli, the translation rate ranges between 10-20 aa/sec, 
[7], and mRNA half time is around 3-5 min [7] and the burst size 

  
Figure 1. (a) Analog mode: input-to-output transfer function 
of equation 1 (blue line), log-linear function at y=0 (black 
line), and Noise analysis of log-linear analog systems, (b) 
precision of analog systems in a log-linear mode (bint=bext=b) 

(a) (b) 
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range between 3-15. Figure 1b describes the precision of log-linear 
analog system. To achieve a proper performance of analog systems 
based on protein-DNA biochemical reactions with 4-8 levels of 
information (2-3 bits of precision – equation 3), the effective Hill 
coefficient should be smaller than one, which is challenging to 
achieve in natural systems. 

3. Analog computation in living cells: 
Then, the first step toward implementation of synthetic analog 
computation, is to broaden the input dynamic range of genetic 
synthetic parts. Protein-DNA interactions typically have a narrow 
dynamic range, spanning 0.5 - 1 orders of magnitude. The input 
dynamic range of genetic parts is set by the cooperative binding of 
proteins to DNA and is often positive, with a Hill coefficient larger 
than one. Dainal et al. [3] implemented a positive feedback loop 
and decoy binding sites to shunt the proteins away from their target 
binding site, and achieved a Hill coefficient smaller than 1, with a 
very wide input dynamic range. In this article, we show a new 
analytical model that can explain the contribution of a shunt on an 
open loop and positive feedback loop. Figure 2a describes a 
transcription factor x (TF) that binds to m identical promoters. The 
m-1 binding reactions act as a decoy or shunt pathway for the 
transcription factors. For simplicity, we assume that the Hill 
coefficients for all the reactions are equal to 1. The biochemical 
reaction model of this system is presented in Figure 2a and its 
solution in steady state is given by: 
 

௉௥್భ
௉௥ ൌ ሺ௫೅ି௠ή௉௥್భሻ ௄೏Τ

ଵାሺ௫೅ି௠ή௉௥್భሻ ௄೏Τ      (4) 
 

where Pr is the total number of target promoters, Prf is the number 
of free target promoters, Prb is the number of target promoters 
occupied by transcription factors, xT is the total number of 
transcription factors and Kd is the dissociation constant. Equation 4 
can be viewed as a Michaelis–Menten with a negative feedback. 
The addition of decoy or shunt pathways increases the strength of 
the negative feedback loop and shifts the switch point of input-
output transfer function to higher values (Figure 2b). If we fit the 
simulation results of Equation 4 to a Hill function, we find that the 
effective dissociation constant scales with the number of shunt 
reactions Kdeff Pǜ.d. For a very large number of shunt reactions, 
Equation 4 can be approximated as a linear-linear function (insert 
of Figure 2b), with a very weak signal.  

To amplify the weak signal of the open loop circuit, a positive 
feedback loop regulating only the target promoter, was included 
(Figure 3a) [3]. A simple model of the circuit includes three 
elements: (1) a linear circuit that demonstrates the contribution of 
shunt reactions, (2) a positive feedback loop, and (3) inducer-
transcription factor binding reaction f(In). Then, we can express the 
solution of a graded positive feedback loop and shunt circuit as: 
 

ݖ ൌ ௭బ
ଵି೥೘ೌೣ

೘ή಼೏
ή௙ሺூ೙ሻ

         (5) 

We can distinguish between two cases: (1) a very strong 
(zmax�Pǜ.d>>1) positive feedback loop, which yields a sharp input-

output transfer function. In this case, the inducer-output protein 
transfer function is set by both binding reactions: the transcription 
factor–promoter binding reaction and inducer-transcription factor 
binding reaction (Figure 3b).  (2) A graded positive feedback 
(zmax�Pǜ.d<<1), which yields a log-linear transduction between 
input and output (Figure 3b). This can be achieved by increasing 
the number of shunted biochemical reactions, or by decreasing the 
binding efficiency of transcription factors to the promoter, or 
decreasing the translation/transcription rates of proteins affecting 
zmax. In this case, the inducer-output transfer function is set by the 
inducer-transcription factor binding reaction only and is given by: 

ݖ ൎ ଴ݖ ή ቆͳ ൅ ௭೘ೌೣ
௠ή௄೏

ή ݂ሺܫ௡ሻቇ     (6) 

Figure 3b shows that the reduction of zmax�Pǜ.d broadens the input 
dynamic range. We can see that our analytical model fits (Equation 
6) the exact model constructed based on biochemical reactions. The 
positive feedback loop and shunt circuit cannot widen the input 
dynamic range more than the dynamic range of the inducer-
transcription factor binding reaction. The maximum signal that can 
be achieved in such a system is z=z0ǜ���]max�Pǜ.G�, and therefore, 
the addition of shunt biochemical reactions decreases the signal 
output. A simple explanation was provided by Daniel et al [3], who 
suggest that the shunt creates several binding sites that delay the 
saturation of the transcription factor-binding site reaction at the 
target promoter. At the same time, as the inducer concentration 
increases, the positive feedback loop enables continuous 
production of just enough transcription factors.  
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Figure 2. (a) Open loop and shunt circuit: a transcription factor 
binds to m identical promoters. (b) Simulation results;  
contribution of shunt biochemical reactions on promoter activity  

 
 

Figure 3. (a) Positive feedback and shunt circuit. (b) Simulation and 
analytical results showing a graded positive feedback loop. 

(a) (b) 

(a) (b) 
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1. INTRODUCTION
The goal of synthetic biology is to allow biologists and

engineers to design and build new biological systems. One
way this task is achieved is though the composition of DNA
segments representing genetic parts and modules. In syn-
thetic biology, parts represent promoters, ribosome binding
sites, genes, terminators, etc. while modules are comprised
of these parts and include gates, switches, and oscillators.
Each of these constructs has a function which can be speci-
fied in a formal way using a language such as the hardware
description language Verilog. It has been shown that it is
possible to reliably synthesize genetic circuits specified in
this language using well established methods from logic syn-
thesis in digital electronics [4].

Although previous approaches are very good at predicting
the behavior of a designed circuit, they are Boolean in na-
ture and do not include information about the performance
of a design. Genetic circuit designs often contain real-time
and real-valued constraints that can affect the dynamics of
the system with varying levels of magnitude. To improve
on previous approaches and include performance metrics in
design specifications, temporal logics such as signal temporal
logic (STL) [3] can be used. STL adds the ability to create
specifications that include parameters intrinsic to genetic
components, interactions with complex environments and
other components, and timing of interactions and events.

For example, the genetic toggle switch shown in Figure 1(a)
can be described by the STL formula in Figure 1(b). This
STL formula states that the toggle switch starts in a state
where both TetR and aTc are above a value of 30 for 200
time units. Within 200 time units, TetR falls below 30 and
stays in that state for 200 time units. At this point, IPTG is
added to the system and is held at a value above 30 for 200
time units. TetR is then expected to rise above 30 within
400 time units following the introduction of IPTG.

In the work presented here, we utilize an extension to STL
called STL♭ that includes syntax and semantics for compo-
sition of genetic components [6]. Using temporal logic infer-
ence (TLI) [2], we can use experimental data to characterize
genetic modules with STL♭ specifications. Our method can
then build a design space tree by trying different composi-
tions of the characterized modules. To improve efficiency,
the design space tree is automatically pruned using biologi-
cal constraints for assembly rules and failure mode checks.

(a)

[G[0,200)(aTc > 30 ∧ TetR > 30)] ∧ [F[0,200)G[0,200)(TetR ≤ 30)]∧
[G[400,600)(IPTG > 30)] ∧ [F[400,800)(TetR > 30)]

(b)

Figure 1: The genetic toggle switch. (a) A physical realiza-
tion of the genetic toggle switch. (b) An STL specification
for the genetic toggle switch.

2. WORKFLOW
Given a library of modules and some experimental data,

the methodology presented here can be used to characterize
the modules with STL♭ specifications. These modules can be
composed using a tree-based search and prune design space
exploration technique to produce a genetic circuit that im-
plements a desired performance specification given in STL.

2.1 Characterization of Modules
Our method uses experimental characterization data along

with the structural specification of the genetic module to
construct a mathematical model representing its function.
This mathematical model is simulated to produce traces rep-
resenting possible behaviors of the system. These traces are
passed through TLI to produce an STL♭ specification that
captures the behavior of the module. However, TLI requires
not only a set of traces for the desired behavior of a sys-
tem but also requires a set of undesirable or unachievable
traces. To address this problem, we have devised an au-
tomated method that is capable of producing this set by
perturbing the set of traces produced during simulation.

For example, consider the repressilator module shown in
Figure 2(a). Using experimental data, a mathematical model
for this module can be constructed and simulated result-
ing in the simulation traces shown in Figure 2(b). This
plot shows how LacI, TetR, and λCI oscillate due to the re-
pression ring relationship they have with each other. Using
TLI, the SLT♭ specification for the repressilator shown in
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(a)

(b)

[G[0,400)F[0,900)(LacI > 15)] ∧ [G[0,1200)F[0,900)(LacI ≤ 15)]∧
[¬G[0,400)F[0,700)(LacI > 15)] ∧ [¬G[0,1200)F[0,700)(LacI ≤ 15)]∧
[G[0,400)F[0,900)(TetR > 15)] ∧ [G[0,1200)F[0,900)(TetR ≤ 15)]∧
[¬G[0,400)F[0,700)(TetR > 15)] ∧ [¬G[0,1200)F[0,700)(TetR ≤ 15)]∧
[G[0,400)F[0,900)(λCI > 15)] ∧ [G[0,1200)F[0,900)(λCI ≤ 15)]∧
[¬G[0,400)F[0,700)(λCI > 15)] ∧ [¬G[0,1200)F[0,700)(λCI ≤ 15)]

(c)

Figure 2: A diagram showing the steps involved in charac-
terizing a module for the repressilator. (a) A genetic module
representing the physical realization of the repressilator. (b)
Time series data for the repressilator showing oscillations in
the three signals. (c) The STL♭ specification resulting from
applying TLI to the data in (b).

Figure 2(c) is generated. This specification can be read as:
each signal (LacI, TetR, and λCI) will always eventually rise
above a value of 15 within 800 time units and will always
eventually fall below a value of 15 within 800 time units.

2.2 Design Space Exploration
The genetic modules in our library can easily be composed

using the STL♭ specifications obtained from our characteri-
zation method. However, genetic modules may not behave
as expected due to physical properties of genetic systems
being hard to quantify [5]. Genetic components can also fail
due to unanticipated nonmodularity that arises when genetic
components are used in new genetic and environmental con-
texts [1]. To help catalog these scenarios, we have developed
grammars for known failure modes, and after each iteration
of testing assigned modules in vivo, the results of both suc-
cessful and unsuccessful tests are used to fine-tune a set of
rules we use to prune out undesirable or impossible combi-
nations of modules. To name a few pruning rules, our gram-
mars are able to eliminate module combinations that in-
troduce cross-talk, that introduce secondary structures, and
that are prone to undesirable homologous recombinations.
They additionally consider different ways that modules can
be combined and how these different combinations can lead
to failure modes such as terminators on one strand of DNA
affecting transcription on the other strand.

Figure 3 shows an example of a possible design space tree
generated from a set of three modules. In this example,
including m1 and m2 in the same design would lead to cross-
talk as they both produce the same protein. Branches in

Figure 3: An example of a design space tree that could be
generated from a library of three modules and their char-
acterizations (m1,φ1 through m3,φ3). In this example, m1

and m2 produce the same protein, and therefore, they can-
not be composed together in the same design due to prob-
lems with cross-talk. As such, branches that would contain
both m1 and m2 are pruned indicated by the red X’s on the
design space tree.

the design space tree that include both of these modules are
pruned and no more exploration is done on these paths. In
the worst case, the pruning algorithm is unable to remove
any branches; however, in this example, it is able to cut the
design space in half by reducing a 15 node tree to 8 nodes.

3. DISCUSSION
The workflow presented here can be used to: 1) charac-

terize genetic modules with STL♭ specifications, and 2) effi-
ciently explore the design space of an STL specification given
a library of characterized modules. Once a set of designs are
found, they can be compared against a desired specification
using the distance metric found in [6], and the best design
can be synthesized in the wet-lab. With this methodology,
synthetic biologists will be able to convert physical modules
that are currently being stored in a fridge in their labora-
tory into STL specifications. They will then be able to use
these modules to automatically explore the design space of
and construct more complex genetic circuit designs.
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ABSTRACT 
Here we propose a working strategy to efficiently analyze 
biological population heterogeneities. We generate data of yeast 
single-cells by time-resolved flow cytometry and fluorescence 
microscopy in a microfluidic environment. Stochastic kinetic 
models are used to compute design regimes for the implementation 
of reliable logic gates and small genetic circuits.  

Keywords 
Riboswitch; Modeling; Microfluidics 

1. INTRODUCTION 
During the past years synthetic biologists supplied this research 
field with various RNA- and protein-based regulators to control 
gene expression and to start building artificial genetic circuits de 
novo. There is a vast set of well-working regulatory elements 
available such as promotors and terminators, transcription factors, 
riboswitches and reporter genes [2–6]. Although their individual 
functionality could be shown in a given assay, it is poorly 
understood how to combine several different genetic parts to set up 
functional higher-order circuitries from scratch [1]. It is therefore 
sought to determine and characterize intrinsic and extrinsic 
parameters that interfere with the construction of genetic circuits. 
Thus, existing engineered riboswitches and transcription factors are 
selected and coupled to set up logic entities that allow for the study 
of simple but versatile fluorescent reporter constructs in vivo 
(Figure 1). 

 
Figure 1. Example of a small genetic circuit operating in 
Saccharomyces cerevisiae. Expression of the RFP-coupled Tet-
Repressor is driven by a GAL4 activated promotor and further 
controlled by neomycin- and ciprofloxacin-sensitive 
riboswitches constituting a NOR gate. Expression of the 
ultimate reporter GFP is influenced by the activity of TetR.  
 
 
 
 
 
 

TetR may be inactivated by the small molecules tetracycline or 
doxycycline or captured by the inducibly transcribed TetR 
aptamer. 
To infer the influence of genotypic and phenotypic noise imposed 
by environmental factors and system-inherent kinetic parameters 
on rationally designed genetic systems, it is mandatory to make use 
of analytical techniques that operate on a single-cell level. We use 
flow cytometry and fluorescence microscopy on a microfluidic chip 
to gain insight into a given cell population and resolve time-
dependent changes of the fluorescence signal, respectively. Here, 
biological CAD is employed in a feed-forward manner to identify 
those parameters that, once adjusted, may enhance the performance 
of the engineered circuitry. To validate the functionality of these 
re-designed genetic switchboards, different reporter cassettes and 
newly selected riboswitches are inserted. 

2. IN VIVO EXPERIMENTS 
The genetic modules designed and implemented in this study 
consist of a promotor, riboregulator, terminator and a fluorescent 
reporter gene. Depending on the context, a variety of logic gates 
can be realized by a differential coupling of these parts. All 
measurements are performed with baker’s yeast and the 
fluorescence signal is recorded. 
2.1 Bulk Measurements 
For prototyping reasons, modules are first assembled on plasmids 
and analyzed as bulk. To exemplify the design of a module, a 
constructed NOR gate is displayed in figure 2.  
 

 
Figure 2. NOR gate assembled from a neomycin- and 
tetracycline-sensitive riboswitch and analyzed for GFP 
fluorescence levels (Z). Without input A or B about 23% of the 
fluorescence generated by a construct without NOR gate may 
be reached. Ligand addition reduces the fluorescence signal 
accordingly. 
2.2 Single-Cell Measurements 
Cells assayed for bulk fluorescence are further subjected to single-
cell measurements by flow-cytometry (Figure 3). From these data 
a vast phenotypic heterogeneity can be deduced. Since a primary 
goal of this study is to identify, model and tune parameters 
responsible for cell-to-cell variability, this is a major issue to be 
addressed and may not only be solved by a genomic integration of 
the genetic modules, thus decreasing genotypic noise by a copy 
number reduction. A detailed modeling of kinetic parameters that 
include synthesis and degradation rates of protein and mRNA as 
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well as reaction constants for the riboswitch-ligand interaction are 
to be assessed to reveal further target sites. 
     

 
Figure 3. Histogram of NOR gate from figure 2 expressed in 
yeast and measured by time-resolved flow cytometry. Samples 
were drawn from a continuous yeast culture during exponential 
growth (0-10h) and steady state (24h) phase.   

3. MICROFLUIDIC SYSTEM 
In order to capture cell-to-cell heterogeneity we utilize microfluidic 
chips for single-cell analysis. Yeast cells are trapped by PDMS 
structures and cultivated inside the chip. 
 

 
Figure 4. PDMS chip as microfluidic device. Yeast cells are 
trapped and tracked over time. 

These structures are flow-optimized to trap single cells, are 
bypassed if occupied and allow the washout of daughter cells 
(Figure 4). The mother cell is recorded with a microscope up to 
days and is supplied with new nutrients. We adapted the principle 
of pulse width modulation from electrical engineering to change the 
concentration of ligands within seconds with valves directly 
embedded in the chip. The microfluidic device provides good 
control over cell growth and ligand concentration and helps to 
automatize experiments and their analysis. Current work includes 
optimization of the experimental setup and an image processing 
pipeline to extract changes in fluorescence for each individual cell 
over time. 

4. MODELING 
Stochastic kinetics models of the logic gate variants accounting for 
population heterogeneity are built. In particular, extrinsic noise is 
captured through cell specific kinetic parameters (e.g. translation 
rate, ligand concentration) and through plasmid copy number 
variations. We adopt the moment-based approach of Zechner et al. 
to allow fast simulation and testing of different parameter sets and 
riboswitch architectures [7]. Presented time-lapsed flow-cytometry 
data is used to calibrate extrinsic and intrinsic model parameters 
using Markov chain Monte Carlo techniques. Based on the obtained 
parameter posterior distribution, average sensitivity coefficients for 
all experimentally accessible parameters are computed. The 
resulting sensitivity scores are used to rank candidate experimental 
redesigns of the gates.  Through the incorporation of extrinsic 
parameters, the computational analysis also pinpoints to the most 
effective redesign options for reducing the large observed cell-to-
cell variability- thus making the gate more reliable on the single-
cell level.      
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ABSTRACT 
The method of research and experimentation in biological 
sciences is evolving very fast. Fluid handling robots and on-
demand biology enterprises are automating biological experiments 
as an alternative to traditional manual protocol execution. There 
are various new high-level languages like Autoprotocols and 
Antha which allow for automation of protocol execution. These 
languages offer various benefits to the user like high-throughput 
experimentation, rapid prototyping and improved reproducibility 
of results. However, learning these new languages to automate 
protocols is not a trivial task for a non-computer scientist and 
using multiple languages can burden the user, as different 
languages are compatible with proprietary hardware platforms. To 
overcome this, we have developed an open-source web-based 
visual editor called BioBlocks for describing experimental 
protocols in biology. It is a visual high-level programming 
language which requires little or no programming knowledge to 
automate the execution of protocols locally or remotely i.e. in the 
cloud. The experiments are automatically translated to different 
robotic languages making BioBlocks a useful upper layer to 
robotic GUIs. BioBlocks allows the users to define complex 
experiments such as turbidostats and chemostats in a modular 
fashion. The experiments can saved, modified and shared between 
multiple users to execute on compatible platforms hence 
improving the reproducibility of their research.   

Keywords 
Lab Automation, Lab Protocols, Blockly, BioBlocks, Rapid 
prototyping, High-level programming language, Reproducibility 
in Biology. 

1. INTRODUCTION 
Reproducibility of experimental results has long been the elephant 
in the room plaguing biological sciences. With the cost of 
research and development increasing, the inability to reproduce 
the results of biological research has become a critical issue to 
address because of its economic and scientific impact1. There are 
many factors that contribute to the problem of reproducibility; the 
ambiguity introduced by natural languages (English) when 
describing methods, the person-to-person variability while 
carrying out experiments, inadequate data sharing, etc. 
  
Many interesting approaches have been proposed to tackle these 
problems such as use of programming languages for the 
description of biological protocols to reduce ambiguity2, 
automation of experiments via robotic execution to reduce human 
error3, improved data sharing and representation4 and applying 

quality control procedures5. Programming languages allow the 
description of biological methods in an unambiguous manner 
which reduces the possibility of misinterpretation. Further, the 
execution of protocols described using programming languages 
can be automated as their description (code) is machine-readable. 
There have been many efforts in this direction like BioCoder2 and 
Puppeteer (for protocol description)6 and AquaCore7 and Par-Par3 
(for protocol automation). However, this approach has not been 
entirely successful because it requires the user (biologist) to have 
prior knowledge of programming8,9.  

2. RESULTS 
Here, we present an open-source web-based tool for describing 
experimental protocols in bLRORJ\�� ,W� LV� EDVHG� RQ� *RRJOH¶V�
Blockly10, an open-source framework for building visual 
programming editors. Like other similar tools11, it consists of a 
toolbox of jigsaw-like blocks which can be linked together to 
generate code in multiple languages. We have used it  to develop 
a new visual programming environment with a new library of 
blocks called 'BioBlocks' which allows for description of 
experimental protocols by linking blocks in a simple drag-and-
drop manner. The logic of BioBlocks is largely based on 
Autoprotocol9, a language developed by Transcriptic12 for 
specifying experimental protocols in biology.  

 
The BioBlocks can be roughly divided into two-types of blocks 
namely, 'container blocks' which represent containers like 96-well 
plates, tubes and beakers and 'operation blocks' which contain 
common procedures (actions) carried out during experimentation 
like pipetting, measuring, electrophoresis etc. The blocks have 
been customized in a manner that prohibits linking of two 
incompatible blocks (the blocks snap away). The protocols 
described using BioBlocks are automatically translated in real-
time to simultaneously generate three different types of output. 
The first output is a natural language (English) description of the 
protocol to aid in verification. The output is in the conventional 
format consisting of step-wise description of the protocol. The 
second output is the representation of the protocol as a workflow. 
It is based on mathematical graphs, where the nodes and edges 
represent the containers and the action performed over the 
containers respectively. This provides the user more insight into 
planning and executing the protocol. The last type of output is a 
machine-readable code of the protocol for its automated 
execution. As a proof of principle, the output code is generated 
using JSON syntax in two modes. The first mode is fully 
compatible with Autoprotocol, potentially allowing for remote 
execution of the described protocols at Transcriptics which is a 
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commercial lab-in-a-cloud company that uses Autoprotocol 
syntax. The second mode is an extension of Autoprotocol which 
allows the description of protocols requiring feedback during 
execution e.g. continuous culture devices like turbidostats and 
chemostats. The users have the option to customize the blocks to 
generate code specific to their robotic platforms which would then 
allow automatic translation and execution of their protocols.  

 
Figure 1 BioBlocks: A few blocks from the BioBlocks library 
are shown.  The container blocks (blue) can be linked to the 
operation blocks (green) which in turn can be linked to each 
other to form complex protocols. 

The definition of constraints in the design of the blocks helps 
avoid syntactic and logical errors.. Syntactic errors are avoided 
because the code is generated in an automated manner and also 
due to the domain-specific customization of blocks i.e. the 
experimental biology domain. For example, certain operations 
like electrophoresis are compatible only with a specific type of 
container like agarose gels. Therefore, a user is not permitted to 
link containers representing multi-well plates or tubes to an 
electrophoresis block. Logical errors like overdrawing and under 
drawing fluid volumes can also be avoided. The constraints are 
system-wide encoded in the blocks but since the software is open-
source the user can create new blocks with different 
functionalities with a novel set of constraints or reuse/modify the 
existing constraints. 
 
BioBlocks allow non-programmers to describe complex 
conditional protocols with little effort. Experiments such as 
chemostats, turbidostats etc. which are being increasingly used for 
continuous evolution of genetic circuits and orthogonal sensors 
can be easily described. The real-time feedback and control of 
experiments, enables the user to guide the experiment based on 
real-time data, to obtain the best results. The protocols in 
BioBlocks are modular in nature and can be re-used in 
combination with other protocols by simply linking them together, 
to create new complex protocols. Care has been taken to ensure 
that visual manipulation of large protocol is easy; protocols 
described in steps/smaller modules can be collapsed to allow for 

easy navigation between different parts of a protocol. They can be 
saved, retrieved, modified and shared between multiple users. As 
the DIY community of making open and 3D printable lab13,14 
machines grows, BioBlocks would be very helpful for biologists 
to use it to operate the machines. 

3. CONCLUSION 
Here, we present a web-based visual programming environment 
that addresses the problem of reproducibility by reducing 
ambiguity and minimizing human error using automation. On the 
front end, it is a visual programming interface, which allows for 
the precise description of biological protocols in a simple and 
unambiguous manner. On the back end, the software system 
allows for the automated execution of the entire experiment on a 
compatible hardware platform hence allowing for rapid 
prototyping of biological experiments. This work is an attempt to 
make it easier for biologists to automate their experiments, 
without the user requiring little or no programming knowledge, 
allowing them to connect to multiple academic and commercial 
solutions. 

4. SOFTWARE 
Software available soon on our webpage- 
http://www.lia.upm.es/index.php/software/Bioblocks  
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1. INTRODUCTION
Systematic design is fundamental to synthetic biology.

The traditional bottom-up approach to synthetic biology de-
sign process involves the designer selecting and assembling
the genetic parts that they think will encode the desired
behaviour of the intended system at a genetic level. This
process relies heavily on the users knowledge of the parts
behaviour and understanding of the biological context (i.e.
chassis) in which the synthetic system will be deployed. The
designer has the task of trying to enhance their knowledge
from the wide of resources that are available in the numerous
databases, websites and scientific literature reports. This is
an arduous task and a rate limiting step in the design of
biological systems.

Understanding novel data in the context of external, ex-
isting data to gain knowledge has been one of the major fea-
tures of bioinformatics data analysis for many years. The
approach has been to integrate data from disparate, hetero-
geneous and heterologous datasets to provide an integrated
view of a certain area of biology. The integration is carried
out using a variety of approaches, but two major methods
have emerged as the most common; that of data warehous-
ing where all data is gathered from multiple data sources
into one database that can be mined to gain knowledge, and
data federation, where limited datasets are drawn from mul-
tiple, remote data databases and integrated on demand in
response to a particular query. Each of these approaches
have advantages and disadvantages. For example, the data
warehousing approach requires that the integrated dataset
is updated periodically as the source data changes and the
federated approach can suffer from reduced performance due
to the need to query multiple, remote, data sources simulta-
neously. Once integrated these data help a scientist access
data that enhances their knowledge of a biological domain
and helps further insights to be gained from the analysis of
novel datasets. The use of integrated data to help synthetic
biologists design biological systems is a promising approach
that has still to be exploited and research in this area has
been very limited to date.

Recently, we have developed two systems that provide

∗To whom correspondance should be addressed

Figure 1: Data augmented biodesign. Data from dis-
tributed databases is gathered, integrated and used
to aid synthetic biology systems design.

key components in the infrastructure necessary to allow a
user to access data that will enhance the design process,
so called data augmented biodesign (Figure 1). Firstly, we
have developed an ontology for synthetic biology (SyBiOnt)
[3] that allows both the entities and the relationships be-
tween those entities captured in a computationally tractable
format. This ontology provides a uniform data model into
which multiple heterogeneous data sources can be mapped
and integrated to produce a data model for a data ware-
house. Secondly, we have also produced a data warehouse,
termed the SBOL Stack [2], which stores synthetic biology
part definitions that have been mapped into the SynBiOnt
data format but, in addition, stores a variety of different
data sources in an integrated format. This data warehouse
can be used not only to store data about synthetic biology
parts, but also to store data that can be used to provide ad-
ditional information about those parts and their behaviour,
and also data that can be mined to produce new parts.

Here we describe a Web-based portal, AmBiT (Aug-
mented Biodesign Environment), that provides an environ-
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Figure 2: The AmBiT design environment. Systems can be designed at a genetic level and additional data
is provided to augment the process. In this example, information about the interaction of TetR with a TetR
regulated promoter is automatically supplied from the KEGG database.

ment for the design of biological systems where the user can
access a wealth of data, drawn from multiple data sources,
to aid them in the design of their system by augmenting
their existing knowledge with new data.

2. THE AMBIT SYSTEM
The AmBiT system provides a Web based environment

that allows the genetic design of a system using the familiar
diagrammatic drag and drop approach that has become a
well accepted approach employed by many CAD tools. In a
similar fashion to many other systems, genetic parts can be
specified de novo or selected from a palette of existing parts
from the menu provided.

However, AmBiT is linked to a data warehouse in the
form of the SBOL Stack which provides a large library of
thousands of genetic parts and, importantly, integrated data
about those parts drawn from a large range of online data
sources. This means that the genetic designs produced can
be enhanced by a rich linked data model complete with
sequence information, annotations, and cross-references to
databases. As the user adds parts and devices to the design
the system automatically mines the AmBiT repository to
provide additional information about the design to the user.
For example, proteins that are encoded by a coding sequence
can be added automatically since they are stored in the inte-
grated databases (drawn from GenBank and UniProt), and
interactions of those proteins with other entities in the de-
sign can automatically be provided. The resulting design
can be stored back in the AmBiT SBOL stack or exported
in the SBOL2.0 [1] format to share with other computa-
tional tools. The provenance of the added information can
be added to the SBOL2.0 in the form of annotations. The
system also has the capability of importing a basic SBOL2.0
formatted design and adding further interactions and anno-
tations to enhance this design, before re-exporting the en-

riched synthetic system, again in SBOL2.0 format.
The current version of AmBiT includes parts and de-

vices mined from the Bacillus subtilis and Escherichia coli
genomes. Also included are data from 10 disparate data
sources, together with over 20,000 parts and devices from
the current (2015) iGEM parts registry.

3. CONCLUSIONS
The provision of relevant data to a user has the potential

to drastically improve the design process, potentially en-
hancing both the accuracy and scale of the genetic systems
produced. To meet this challenge data needs to be auto-
matically mined and integrated from multiple data sources
and presented to the user in a friendly and intuitive envi-
ronment. The AmBiT system provides such an environment
by utilising a custom built data warehouse implemented in
the SBOL Stack and by utilising the SyBiOnt ontology to
mediate the data integration process.
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ABSTRACT 
Using a specialized AND/OR graph based on the stoichiometric 
principle, a novel representation of biochemical reactions is 
proposed. This enables us to extend the basic version of FogLight, 
as a pathfinding approach, so that it can deal concurrently with the 
stoichiometries and the process of pathfinding. This approach 
stoichiometrically guarantees the balance of found metabolic 
pathways without significant time/space cost. 
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Model development and analysis ÆÆ Modeling methodologies 
• Applied computing ÆÆ Life and medical sciences ÆÆ 
Bioinformatics 
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1. INTRODUCTION 
Synthetic biology is an evolving research field that combines the 
investigative nature of biology with the constructive nature of 
engineering. It treats living systems as a hierarchy of functional 
modules one of which is metabolic networks [1]. The engineering 
of these networks is defined as the optimization of its enzymatic 
pathways to ensure that their product compounds are produced at 
a high yield and in high titers by cell factories [2]. Many scientists 
are interested in finding the pathways if they exist. 
Two complementary approaches have been used to answer the 
above question: constraint- and graph theory-based methods [3]. 
The graph-based pathfinding approaches focus on discovering 
pathways without considering fundamental principles of the living 
factories, such as stoichiometric principles. However, some of the 
principles can be considered after doing the process of 
pathfinding. The algorithm proposed in [4], namely FogLight, 
used this strategy to verify the found metabolic pathways 
according to stoichiometry constraints with the aim of satisfying 
steady-state condition. For ensuring the steady-state condition, a 
system of linear equations �with ݊ equations and ݊ variables 
(where ݊ is the number of reactions) is solved as a post-process 
step. The result of this procedure is a sequence of biochemical 
reactions which produce a compound from another.  
For the purpose of finding balanced pathways, we have extended 
FogLight to take stoichiometries into account during the 
metabolic pathfinding process rather than after it. The advantage 
of the extended version of FogLight, namely extFogLight, is the 
ability of finding balanced pathways with concurrent 
consideration of the steady-state constraints and the process of 
metabolic pathfinding, even though FogLight leads to the same 
results through a post-process step. We describe the reformed 

modules of extFogLight in the following section. To this end, the 
AND/OR graph model of the metabolic network utilized by 
FogLight, must also be generalized based on the stoichiometric 
principles to be used in extFogLight.  
As discussed in [4], a metabolic network is visualized as a set of 
Boolean functions consisting of AND/OR operations with two or 
more variable. As a simple example, in the biochemical 
reaction�݉ଵ ൅ ݉ଶ ՜ ݉ଷ, the metabolite ݉ଷ is produced if the 
metabolites ݉ଵ and ݉ଶ are both present. That is, the relation 
between these three metabolites is given by the Boolean 
function�݉ଷ ൌ ݉ଵ�����݉ଶ. Conversely, considering two 
reactions ݉ଵ ՜ ݉ଷ and�݉ଶ ՜ ݉ଷ, the relation between the 
corresponding metabolites can be interpreted as the Boolean 
function�݉ଷ ൌ ݉ଵ����݉ଶ, which means the production of ݉ଷ 
depends on the existence of ݉ଵ or��݉ଶ. In this paper, to find 
stoichiometrically balanced pathways, we generalized the original 
model of metabolic AND/OR graph to include stoichiometries, a 
piece of quantitative information, and finally provide an 
appropriate procedure to assess the elemental balances. The 
generalized form of the model associates another label (weight) 
with every edge in the graph which will be described in detail. 

2. MATERIAL AND METHOD 
2.1 Generalized Representation 
Each metabolic network can be represented by a circuit graph. 
Here, we extend our mathematical definition of the metabolic 
AND/OR circuit graphܩ� ൌ ሺॽǡ ८ǡ ॷॽǡ ॷ८ሻ, provided in [1], to 5-
tuple ܩ ൌ ሺॽǡ८ǡ ॷॽǡ ॷ८ǡॾ८ሻ as follows: 

x ॽ and ८ ൌ ൛ሺݒ௜ǡ ௝ሻݒ ׷ � ௜ǡݒ ௝ݒ א ॽ�ܽ݊݀�ሺݒ௜ǡ ௝ሻݒ ് ሺݒ௝ǡ  ௜ሻൟݒ
are nonempty sets of vertices (metabolites) and arcs 
(biochemical reactions), respectively. 

x ॷ௏ and ॷ஺ are two disjoint nonempty sets of the unique 
identifiers for labeling the vertices and the arcs within 
 respectively, based on the name of the metabolites ,ܩ
and their related reactions. 

x ॾ८ describes a nonempty set of weights (denoted by 
ࣱሺݒ௜ǡ ௜ǣݓ௝ሻ), consisting of the ordered pairs ሺݒ  ௝ሻݓ
associated with each arc ሺݒ௜ǡ ௝ሻݒ א ८, in which the 
integer numbers ݓ௜ and ݓ௝  respectively represent 
stoichiometric coefficients of the vertices (metabolites) 
௜ݒ א ॽ and ݒ௝ א ॽ participating in reaction κ௘ א ॷ८.  

2.2 extFogLight: An approach based on the 
weighted metabolic AND/OR graph 
Elementary biochemical reaction 5L, the L-th step of a given 
metabolic pathway, can be represented by the equation of the 
following form: 
௦ଵܵଵݓ ൅ ௦ଶܵଶݓ ൅ ௦௠ܵ௠ݓ൅ڮ ՜ ௣ଵݓ ଵܲ ൅ ௣ଶݓ ଶܲ ൅ ൅ڮ ௦௡ݓ ௡ܲ�
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Considering our proposed weighted AND/OR graph in Section 
2.1, ࣱ൫ܵ௜5L ǡ ௝ܲ

5L൯ ൌ ሺݓ௦௜5L ǡ ௣௝5Lሻ for ͳݓ ൑ ݅ ൑ ݉ and ͳ ൑ ݆ ൑
݊, in which ݓ௦௜5L  and ݓ௣௝5L  represent stoichiometric coefficients 
of substrate ܵ௜ and product ௝ܲ in bioreaction 5L, respectively. 

The stoichiometric imbalance of a sequence of elementary 
biochemical reactions can be due to the less molar production of a 
main compound in bioreaction 5Lcompared to the consumption of 
the same compound in the next reaction, i.e., 5L൅൅ͳͳ. In other 
words, based on the aforementioned equation, we would have no 
balanced pathway if condition ݓ௣௝5L ൏ ௦௜5L൅൅ͳͳ, for ௝ܲݓ ൌ ܵ௜ is 
satisfied. Algorithm 1, Lines 8-9, 17-18 and 21-22, depict our 
solution to this problem by using ܿݏ ൌ ௦௜5L൅൅ͳͳݓ ௣௝5Lൗݓ , for� ௝ܲ ൌ ܵ௜, 
resulted from the mentioned inequality condition. There is an 
easy, but efficient, solution that helps us to simply overcome the 
imbalance problem. To this end, coefficient ܿݏ ൐ ͳ is multiplied 
by the stoichiometric values of the reactants of reaction 5L.  

Since extFogLight is the extended version of FogLight, the 
process of finding the metabolic pathways is retrosynthetically 
(i.e., starting from a target product ݒ א ॽܪ ؿ ॽܩ to a source) done 
through the subgraph ܪ of a graphܩ��. Accordingly, Line 2 of 
Algorithm 1 shows this procedure which is fully explained in [4]. 
As stated before, the search space was modeled .by .a .generalized   

�������������,(	#�����(���"��,(�"����*�&'�#"�#��	#�����(�

� ܩ������� ൌ ሺॽீǡ ८ீǡ ॷॽǡ ॷ८ǡॾ८ሻݒ�� ൌ ��Lݐ݁݃ݎܽݐ ൌ ૛૜�
����������'(�#��(����#)"���� �"����$�(��ሾ�ሿ݈݋ܵ�'-�+

��� 

��� 
��� 
����ൌ׷�ܪ���������
��ܩ���
��� ����
��ߪ�'���)'��#��(�(%�� '�"#(��!$(-�� do 
���  ����
	���	���ሺݑǡ  ���ሻݒ
���   ሺݑԢǡ Ԣሻݒ  (௙௥௢௡௧ߪ)�����ൌ׷
	�� ݒ�����   ് Ԣ�������κሺ௨ǡ௩ሻݒ ൌ κሺ௨ᇲǡ௩ᇲሻ�����
��

��    ���
�ǡݑ))   (௙௥௢௡௧ߪ�,(ݒ
��� ௨ᇲݓ����   

5L൅൅ͳͳ ൐ ௩ݓ
5L����
� 

���     ࣱሺݑǡ ሻݒ ௨ᇲݓ�ൌ׷
5L൅൅ͳͳ ڄ ࣱሺݑǡ ሻݒ ௩ݓ

5LΤ � 
����   
��
 
����    ሺݔǡ ሻݕ  �௥௘௔௥ߪ������ൌ׷
����    �����κሺ௨ǡ௩ሻ ് κሺ௫ǡ௬ሻ�����
� 
���� ௥௘௔௥ାଵߪ     ൌ׷  -௙௥௢௡௧ߪ
����     ��� ( ሾ݅ሿ ՜  (௥௘௔௥ାଵߪ�,ݒ
����     ሺݖǡ ሻݐ  (௙௥௢௡௧ߪ) ����ൌ׷
�	��     ���
�ǡݑ))   (௥௘௔௥ାଵߪ�,(ݒ
�
�� ௭5L൅൅ͳͳݓ�����     ൐ ௩5Lݓ �����
� 
����      ࣱሺݑǡ ሻݒ ௭ݓ�ൌ׷

5L൅൅ͳͳ ڄ ࣱሺݑǡ ሻݒ ௩ݓ
5LΤ � 

����    
��
 
����     ���
�ǡݑ))   (௥௘௔௥ߪ�,(ݒ
���� ௫5L൅൅ͳͳݓ����     ൐ 
����௩5Lݓ� 
����      ࣱሺݑǡ ሻݒ ௫ݓ�ൌ׷

5L൅൅ͳͳ ڄ ࣱሺݑǡ ሻݒ ௩ݓ
5LΤ � 

�
����   

�
��௙௥௢௡௧ߪ����)'�����"� )��'���+&#"��$�(�+�-�����
��

����  (௙௥௢௡௧ߪ) �����   
����   
��
 
�	��    ����
 ���&�'�+�(�����#!!#"�(�&��(��'�"#(�#�'�&*���� do 
�
�� ௙௥௢௡௧݈݋ܵ      (௙௥௢௡௧ߪ) ����ൌ׷
�
����   

�
ݐ݊݋ݎ݂ߪ�� �� ൌ ݐ݊݋ݎthen�݂ ��׎ ൌ׷ ݐ݊݋ݎ݂ ൅ ͳ. 

�       
 

AND/OR graph in which ‘AND’ and ‘OR’ (inspired from the two 
familiar Boolean gates) determine the types of searching process 
steps that should be followed through. Lines 6-7 and 20 show how 
extFogLight deals with the multiple different inputs of the now- 
and new-processing ‘AND’ gates. As illustrated in Algorithm 1, 
output of extFogLight will be a set of the different pathways 
which each stack (denoted byߪ�) includes one of them. If the label 
of a new-processing input ሺݑǡ ሻݒ א ८ு ؿ ८ீ�currently existed in 
stackߪ�௙௥௢௡௧, it is pushed. Otherwise, the label κሺ௨ǡ௩ሻ א ॷ८ is 
compared with the labels of the arc on the top of the last stack 
  .and then it is placed on the top of it if they are identical (௥௘௔௥ߪ)
On the other hand, Lines 12-16 focus on handling new ‘OR’ gate. 
As each of the inputted arc to an ‘OR’ gate may be resulted in 
discovering a new pathway, this arc and copy of the other arcs 
saved in the now-processing stack must be processed separately. 

3. RESULTS AND DISCUSSION 
Using extFogLight, we were able to find some balanced metabolic 
pathways from glucose to valine and AMP with no significant 
time/space overhead in comparison with FogLight. Moreover, as 
extFogLight inherits the solution space (a reduced space [4]) from 
its predecessor, it can find stoichiometrically balanced pathways 
without missing any admissible ones. 
Details of the shortest pathway found by extFogLight within the 
KEGG compound network related to conversion from glucose 
(������) to valine (����
�) have been shown below:  

������� ՜� �����
� ՜� �����	� ՜� ������� 5�����ሱۛ ۛۛ ሮ� �������
5�����ሱۛ ۛۛ ሮ��������՜��������՜��������՜�����
� 
While in bioreaction 
����� two moles of ������ disappear for 
appearance of two moles ������, in 
�
�	� only one mole of 
������ is produced and this amount is not sufficient for 
�����. 
This inequality in production and consumption of an intermediate 
reactant causes imbalance problem of the pathway which it can be 
solved by increasing rates of the first four reactions twice the rates 
of the last four reactions. As a result, the flux vector of the above 
pathway will be ሾʹǡʹǡʹǡʹǡͳǡͳǡͳǡͳሿ் obtained by extFogLight.  
Glucose/AMP is another pair of source/target metabolites between 
which extFogLight looks for the balanced pathways. The results, 
including the pathways and their rate vectors, are as following:  
Pathway 1, ሾʹǡʹǡʹǡʹǡʹǡʹǡͳሿ்: �������՜������
�՜��������՜�
�������՜��������՜��������՜������
�՜��������

Pathway 2, ሾͳǡͳǡͳǡͳǡͳǡͳǡͳሿ்: �������՜������
�՜��������՜�
�������՜��������՜��������՜��������՜������� 
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ABSTRACT 

PathwayGenie is a web-based tool to allow wet-lab synthetic 
biologists to design libraries of plasmids to express synthetic 
metabolic pathways. 

The application integrates a number of tools to provide a full 
design pipeline, from pathway and enzyme selection, through 

ribosome binding site and codon usage optimization, to design of 
experiments and the support of DNA assembly. Community 
standards such as SBML and SBOL are supported. 

PathwayGenie has been applied to a number of pathway designs, 
and the experimental implementation of such designs is in 
progress. 

CCS Concepts 

• Applied computing 

• Life and medical sciences 
• Computational biology 

Keywords 

Synthetic biology; metabolic engineering; metabolism; design; 
pathway; enzymes; molecular biology. 

1. INTRODUCTION 
Metabolic engineering is an interdisciplinary process requiring 
numerous computational and experimental steps in order to 
produce target chemicals at a desired yield and titre. 
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The Manchester Centre for Synthetic Biology of Fine and 
Speciality Chemicals (SYNBIOCHEM) adopts an iterative 
DESIGN-BUILD-TEST-LEARN cycle involving pathway 
selection, plasmid design and assembly, numerous screening 
approaches including mass spectrometry based metabolomics 
approaches, and machine learning for results interpretation and 
iterative optimization of the process. 

Key to these efforts is the development of computational design 
tools to facilitate the process. PathwayGenie integrates a number 

of novel and existing tools to allow wet-lab synthetic biologists to 
design pathways of metabolic enzymes and collections of 
plasmids to express such pathways. Such a pipeline involves 
pathway and enzyme selection, ribosome binding site (RBS) and 
coding sequence (CDS) optimization, search space reduction 
through design of experiments (DoE) and consideration of 
assembly methods. 

2. MATERIALS AND METHODS 
PathwayGenie is a web application, with a server written in 
Python using the Flask web framework (http://flask.pocoo.org/) 
and a Javascript front-end using jQuery (https://jquery.com/) and 
Bootstrap (http://getbootstrap.com/). 

Freely available community standards such as SBML [1] and 
SBOL [2] are used for definitions of pathways and genetic 
constructs respectively. Custom Python scripts have been written 
to enable required operations on SBOL documents, such as 

concatenation and restriction digestion. The data repository ICE 
[3] is used for storage of SBOL documents. 

3. RESULTS AND DISCUSSION 
The PathwayGenie pipeline is illustrated in Figure 1. Individual 
tools are described below. 
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Figure 1: Representation of the PathwayGenie workflow, 

indicating the steps from chemical target input to design of 

parts and bridging oligos, from which plasmids may be 

assembled. 

3.1 Tools 

3.1.1 RetroPath 
The retrosyntheis tool RetroPath [4] is utilized for pathway and 
enzyme selection. RetroPath explores and enumerates metabolic 
pathways connecting the endogenous metabolites of a chassis cell 
to the target compound, considering multiple factors including 
maximizing yield, mitigating the accumulation of toxic metabolic 
intermediates and suitability of enzymes for a given host. 

3.1.2 PartsGenie 
Once enzymes have been selected, PartsGenie optimizes the 
design of each enzymatic part, typically a construct including an 
RBS, a CDS and spacer sequences to enable assembly. Designing 
enzymatic parts individually allows for their reuse and for 

combinatorial assembly methods to be implemented. PartsGenie 
implements a simulated annealing algorithm to simultaneously 
design RBSs of a desired translation initiation rate with 
RBSCalculator [5] while simultaneously optimizing codon usage 
for a given host organism. Both single enzymes and pools of 
homologous enzymes can be designed, to further support 
combinatorial pathway assembly methods. 

3.1.3 SBC-DoE 
Rather than designing a single plasmid to express a desired 
metabolic pathway, SYNBIOCHEM generates variant libraries of 
plasmids, allowing screening and subsequent learning to be 
performed, allowing for iterative improvements of designs. 
Variable factors to consider include host selection, vector 

selection, the order of the enzymatic parts within the plasmid, and 
the strength (or absence) of promoters between enzymatic parts. 

It is clear that implementing all combinations of these factors 
could quickly become prohibitively expensive. Intelligent 
sampling of such a multifactorial search space is provided by the 
design of experiments (DoE) module, which uses statistical 
principles to sample a feasible set of combinations to be 
implemented experimentally. 

3.1.4 DominoGenie 
Assembly of individual enzymatic parts into plasmids expressing 
a synthetic metabolic pathway can be performed with a number of 
molecular biology techniques. SYNBIOCHEM utilises the ligase 
chain reaction (LCR) [6] for assembly, a process that uses 
bridging oligos (“dominoes”) to link individual parts together. 

DominoGenie takes the output of the DoE and designs such 
bridging oligos, a process involving the calculation of consistent 
melting temperatures and the mitigation of undesired 
misannealing events. 

3.2 Usage 
By combining enzymatic parts and appropriate pools of bridging 
oligos, variant libraries of a given metabolic pathway can be 
assembled, expressed and screened. 

PathwayGenie has been applied to the design of variant libraries 
of three distinct enzymatic pathways. The experimental assembly 
of these designs is in progress. 

Subsequent work will involve the integration of PathwayGenie’s 
design methods with robotic platforms to enable automated 
assembly. 
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Introduction
One of the most common applications of metabolic circuits
is to produce a desired chemical in a chassis organism, such
as the Escherichia coli (E. coli), by importing heterologous
genes encoding for the enzymes that participate in the biosyn-
thetic pathway. Recently, an automated pipeline named
RetroPath was developed to synthesise embedded metabolic
circuits [1]. These circuits are to be embedded in E. coli
for a wide range of applications such as regulating biomass
productions, sensing specific molecules, processing specific
molecules, and releasing specific molecules. In RetroPath,
the available circuit design space, constrained by the set of
design specifications, is searched and a set of optimal circuits
is obtained. In this process, the basic steps are as follows:

1. Step 1: Define the input set of metabolites S, the out-
put (target metabolite set)T, and the metabolic space,
i.e., the set of all possible metabolites and chemical re-
actions that can be generated in vivo, M;

2. Step 2: Define the specifications of the desired circuit;

3. Step 3: Compute the set of enzymes involved in at
least one minimal pathway that converts S into T;

4. Step 4: Enumerate all metabolic pathways converting
S into T (see [2]); and

5. Step 5: Solve a nonlinear optimization problem wherein
the objective function comprises the expected reaction
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efficiencies, inhibition effects, and perturbation effects.
Here, the flux balance analysis (FBA) is used.

The FBA (see [4]–[6]) predicts metabolic flux distributions
at a steady state by solving the linear programming problem

maximize wT v subject to Sv = 0 and α ≤ v ≤ β,

where wT v denotes the biomass, v denotes the vector of
metabolic fluxes, S is the stoichiometric matrix, and (α,β)
are the a priori known bounds on the fluxes. Thus, it is
inherently assumed in RetroPath that the chassis organism
has reached a steady state following the insertion of the het-
erologous gene. As shown in [4], such an assumption of opti-
mality may not be valid for genetically engineered knockouts
and bacterial strains that were not exposed to long-term
evolutionary pressure. Following [4], we show that Step 5
can indeed be executed more efficiently by assuming that
the metabolic fluxes undergo a minimal redistribution with
respect to the flux configuration of the wild type. This min-
imization of metabolic adjustment (MOMA) is computed by
solving the quadratic programming problem

minimize
1
2
∥v∥2 + vT v∗ s. t. Sv = 0 and α ≤ v ≤ β,

where v∗ denotes the flux distribution predicted by the FBA.
We next show that the efficiency of RetroPath can be im-

proved if transcriptomic data is available. This is achieved
by replacing the use of FBA in Step 5 first with the PROM
algorithm derived in [3] and then with an extension PROM-
E derived by us. PROM refines the upper bounds and the
lower bounds in the metabolic flux constraints of the FBA
by using Bayesian estimation on the available transcriptomic
and metabolomic datasets. Here, the probabilities on the
gene-TF interactions are empirically determined using avail-
able datasets; the more the number of datasets, the better is
the expected performance. Effectively, PROM implements
a slight modification of the FBA using linear programming
and achieves an improvement in not only the capacity to
generate larger genome-scale models but also in the accu-
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9 3Comparison of Growth Rate Predictions

Predicted Growth Rate ([3])
Predicted Growth Rate (PROM Local)
Predicted Growth Rate (PROM-E)

Measured Growth Rate ([9])

Figure 1: Our proposed algorithm PROM-E predicts the growth rates better than PROM [3] and RFBA
[8] on the datasets of [8] across a variety of anaerobic conditions. For aerobic conditions, the PROM-E and
PROM perform equally well and slightly better than RFBA.

racy of predicting the flux states. We then show how further
improvement are obtained using our extension PROM-E.

Results
We now illustrate how our extension PROM-E of PROM
estimates the flux rates more accurately than PROM on the
datasets of [8] wherein growth phenotypes from A System-
atic Annotation Package (ASAP) are predicted for commu-
nity analysis of genomes database. The ASAP database has
growth phenotypes of several E. coli gene KOs under vari-
ous conditions. In [3], 15 TFs for which growth phenotypes
under different 125 conditions are considered and it shown
that PROM predicts the growth phenotypes more accurately
than RFBA [8]. In [3], six strains with KOs of key transcrip-
tional regulators in the oxygen response (∆arcA, ∆appY,
∆fnr, ∆oxyR, ∆soxS, and the double KO ∆arcA∆fnr) were
constructed and then the growth rates were measured in aer-
obic and anaerobic glucose minimal medium conditions. As
Fig. 1 shows, our proposed PROM-E algorithm predicts the
growth rate more accurately than PROM in anaerobic con-
ditions and equally well in aerobic conditions. Furthermore,
the standard deviation of the prediction error is significantly
lower in PROM-E compared to PROM. We obtained these
results in MATLAB R2015b interfaced with COBRA Tool-
box 2.0 [7] and Gurobi Optimizer 6.5. As the cost of col-
lecting omics datasets is reducing at Moore’s law, we expect
that our approach will soon be useful in practical contexts.
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ABSTRACT
Application of the design-build-test-learn cycle to synthetic
biology allows the development of increasingly efficient cell
factories for bio-based production of a wide range of valuable
chemicals. To fully exploit lab throughput capabilities under
technological constraints, more focus on experimental design
is needed. At each iteration of the cycle, predictive models
for biological parts, systems and devices should guide next
target constructs to build and test through automated pro-
tocols, whereas learning strategies should determine ways to
efficiently explore the design space. Here, we present a full-
fledged toolbox for optimal experimental design focused on
synthetic biology production of chemicals.

CCS Concepts
•Applied computing → Bioinformatics; Systems biol-
ogy; •General and reference→ Experimentation; •Theory
of computation → Active learning;

Keywords
synthetic biology; design; build; test; learn; design of exper-
iments

1. INTRODUCTION
Experimental design is a piece of precision engineering

central to synthetic biology for efficient chemical production.
Current synthetic biology demands increasing efforts on ex-
perimental design in order to fully exploit design capabilities
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Figure 1: Design of experiments as part of the work-
flow of the design-build-test-learn cycle of synthetic
biology.

under technological constraints and lab throughput [6], [7],
[10], [11]. As shown in Figure 1, design of experiments (DoE)
should be performed within the design/build/test/learn cy-
cle after the learning stage, once the next design target has
been identified [9]. Observations at the end of the iteration
of the cycle, including negative data from failures, should
inform the next iteration. Active learning approaches from
the field of machine learning should guide hypothesis-driven
design of experiments by defining the factors and constraints
of next-iteration design space [8].

DoE applies statistical principles in order to optimize the
number of experimental runs in function of existing fac-
tors. For instance, in [1], more than 10 factors are listed for
synthetic biology designs operating at different levels and
time/space scales, such as transcriptional, translational or
post-translational. In order to automate DoE at each iter-
ation of the cycle, we have developed SynBioChem-Design
Of Experiments (SBCDOE), a SynBio toolbox for design of
experiments.
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2. MATERIALS AND METHODS
2.1 Combinatorial library generation

Our tool generates combinatorial libraries to explore the
design space determined by a target chemical-producer path-
way that will be imported into a chassis organism. A path-
way construct is initially defined by the sequential composi-
tion of genetic parts available in the parts repository. From
the point of view of DoE, each part is considered as a factor
and the number of levels associated with the factor is given
by the number of possible variations of the design parameter.
We used two DoE approaches: a) regular fractional factorial
design by means of the planor R package [5]; b) orthogonal
arrays, which are a generalized form of mutually orthogonal
latin squares, by means of the DoE.base R package [4]. We
considered an additional factor given by the variation of the
positional order of genes. This factor can be used in order
to perform permutations of the desired n genes within the
construct and combinations can be reduced to n by using a
latin square. The tool accepts SBOL v2 [2], taking advan-
tage of its ability to define constraints between components.
Each resulting construct in the library is processed through
design and optimisation algorithms of DNA parts (RBS and
CDSs) and plasmids that are tailored to the chosen assem-
bly method. The tool is wrapped into a biologist-friendly
web interface for ease of future application.

2.2 Automated assembly
Our Hamilton robotics platforms have been optimised for

the effect assembly of DNA pathways and the analysis of
downstream combinatorial libraries. Equipped with both 8
channel and 96 head liquid handling capabilities and inte-
grated PCR (Trobot) allows for the fast and effect assem-
bly of DoE-based generated pathway libraries. Automated
worklist packages generated from DoE-based libraries are
feed directly to the platform for pathway assembly.

Platforms are equipped with a solid phase extraction vac-
uum manifold allowing efficient and reproducible extraction
of target compounds, coupled with a cytomat storage unit
and inbuilt plate reader with a throughput upwards of 12000
samples per day. Our best performers are cherry picked for
downstream quantitative mass spectrometry (MS) analysis.

3. RESULTS AND DISCUSSION
As shown in Figure 2, our DoE approach was applied to

the design of combinatorial libraries for pathway optimiza-
tion. Here, we considered as factors the following parts: a)
enzyme sequence; b) promoter strength; c) positional order
of genes. In order to select parts in pathways we applied
our pathway design pipeline RetroPath [3]. This pipeline
was recently shown to successfully select optimal pathways
and enzymes for the production of flavonoids, and is easily
extensible to the production of other fine chemicals. Next, a
collection of plasmids and promoters were chosen. In terms
of DoE, each enzymatic step in the pathway enters as a fac-
tor with as many levels as sequence candidates. Promoter
strength and plasmid copy number are additional factors.
Furthermore, an additional factor was considered regarding
the sequential order of genes in the plasmid. The approach
allowed streamlining the interface between design and build,
notably reducing the number of experimental runs to test in
order to inform the learning stage, achieving in that way
a synthetic biology workflow harboring an optimal balance

Figure 2: Detail of a DoE-based library composed of
4 genes, 3-level promoters and 2 different plasmids.
Images were generated using Pigeon CAD tool.

between our experimental throughput and design capabili-
ties.
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1. INTRODUCTION
The Synthetic Biology Open Language (SBOL) [1] is an
emerging standard for the expression of both structural
and functional data regarding biological constructs. The
data is encoded in an RDF-XML format that allows for
hierarchical representation of the construct. As with all
data standards, files encoding SBOL data must be validated
according to a set of validation rules that describe correct
formatting and encoding, as well as a minimum acceptable
set of information which represents a complete and correct
construct. Furthermore, it is useful to be able to convert
between files in the SBOL standard and files that other
tools are able to use and interpret. Our validator has
functionality to convert between SBOL versions 1.1 and
2.0, as well as between SBOL and GenBank, a commonly
used format for annotated DNA sequences. Our validation
software embeds the libSBOLj [2] validation routines to
allow validation of SBOL 2.0 files through web access to
validation, as well as RESTful API calls for validation. This
software allows for a universal standard for validation that
existing tools (such as iBioSim [3] and Cello [4]) can use for
validation without requiring tool developers to create, test,
and maintain validation routines.

2. VALIDATION REQUIREMENTS
Proper validation of a file has several aspects. SBOL’s val-
idation rules are divided into two distinct categories. The
first group is the required validation rules, and the second is
the best practice validation rules. Required validation rules
are a set of rules set in the SBOL specification that define
precise relationships and requirements for valid SBOL [1].
These rules define things such as the number and nature of
relationships between specific SBOL objects, attributes, and
formats for these objects, and proper encoding and represen-
tation of the objects. A file is valid SBOL, if and only if it
complies with all of these rules, so they are the most impor-
tant to check. These rules are developed to be as machine-
checkable and unambiguous as possible. Best practices vali-
dation rules describe a set of rules in the SBOL specification
that define guidelines that help to ensure sensible and mean-
ingful SBOL. These rules are, by nature, often less machine-
checkable, though it is still desirable that these retain this
trait so that they can be programatically validated. A file
can still be valid SBOL if it does not pass these rules, but
its sensibility, usefulness, and exchangability may not be the
same level as one that passes both validation and best prac-

tices checks.

3. THE SBOL VALIDATOR
Our validator is backed by libSBOLj, a Java library for read-
ing, writing, and encoding data in the SBOL standard and
includes several validation routines that allow for checking
of both required and best practice validation rules. The
library performs certain validation checks on reading the
RDF/XML file, and a second set of checks once the file has
been read into the internal data model. Currently, the stan-
dard is version 2.0, which represents a significant departure
from both the model and amount of data encoded in its 1.1
version. libSBOLj also provides several methods for con-
verting the SBOL data model to/from other formats. In
particular, it allows for the conversion between SBOL ver-
sions and between SBOL and the GenBank format.

The web-based validator, shown in Fig. 1, is essentially a
PHP wrapper around the Java library. Files can be up-
loaded or copied into the validation form, and all validation
options available in the library are available in the validator.
Furthermore, the validator is designed to be able to return
any converted files to the user so that all functionality of
libSBOLj’s validation routines are available. The validator’s
form processing utility creates several PHP objects that are
all components of an overarching ValidationRequeset object.
This object uses its component field objects to generate the
Java command for validation and execute it. The resulting
string is sent to a ValidationResult object for processing and
then returned to the user via a web interface.

Our validator also has a RESTful API [5] endpoint to allow
programmatic validation of SBOL files through a web ser-
vice. The validation API extends the framework for the web-
based validator. First, its endpoint processing utility accepts
a JSON object from the POST request headers and checks
to ensure that all necessary fields of the JSON object are in-
cluded and properly formatted. A properly-formatted JSON
object first requires a sub-object which contains Boolean
switches and strings for each of the validation options given
through the web validator. All of these options must be sent,
even if they are empty or false – no values are assumed from
missing elements. Secondly, the user must specify whether
or not they would like a file returned to them. Finally, all
required files must be encoded as separate strings. The end-
point utility accepts and validates all JSON requests, and
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Figure 1: Screenshot for the web validator interface.

builds an APIRequest object (which is simply an extension
of the ValidationRequest class) using this JSON object. The
APIRequest is then used to build and execute the validation
command. The result of the command is passed to the re-
quester in the form of another JSON object containing the
result of the validation.

4. DISCUSSION
Though any application that wishes to perform validation
on any SBOL files can simply include the libSBOLj library
as a dependency and build any validation commands itself,
providing a centralized service for validation of these files

allows for a standard and universal definition of validity that
can be applied, developed, and debugged independent of the
development of each of the specific libraries. Furthermore,
a single validator that is accessible through the web helps
to ensure that competing validation routines do not emerge,
avoiding risk of multiple definitions of validity that may have
slight variance or discrepancies.

At time of writing, no SBOL libraries except libSBOLj im-
plement validation for file conversion. pySBOL, libSBOL,
and libSBOLjs are the three other major libraries currently
under development that could benefit from the API valida-
tion – it shifts the onus of writing and maintaining validation
routines to a single source. Therefore, library developers can
simply write methods to access the RESTful API, a process
that is simple, well-documented, and extensible in many lan-
guages. Additionally, many tools currently support reading
and writing SBOL documents and more are under develop-
ment. If these tools read and write SBOL without using one
of the four main libraries (libSBOLj, libSBOL, pySBOL, lib-
SBOLjs) they will also be able to validate their output to
ensure full compliance with the specification using the web
API.

Finally, the developers of the SBOL standard can use the
validator as part of the compliance certification process. Af-
ter dictating a set of constructs to be created in SBOL, one
phase of validation of a tool’s output would be validating
their results, while another would be comparing the output
of the tools to a premade file using the validator. A work-
flow such as this allows the community to define what is
and what is not SBOL specification compliance, addressing
the emerging issue of tools claiming compliance without the
ability to read, write, and interpret valid SBOL documents.

Our validator is currently accessible online at http:
//www.async.ece.utah.edu/sbol-validator, with the
API accepting requests at http://www.async.ece.utah.
edu/sbol-validator/endpoint.php.
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1. INTRODUCTION
Synthetic biology is an engineering discipline where biolog-
ical components are assembled to form devices or systems
with more complex functions. A workflow, such as the one
shown in Fig. 1, is necessary to advance the field of syn-
thetic biology by giving biologists the ability to abstract
their designs and use automated software to ease the de-
velopment process [9]. In this workflow, DNA sequences for
known components are obtained from databases, such as the
SBOL Stack, the iGem Registry, and the JBEI-ICE reposi-
tory. These DNA sequences can then be edited and manip-
ulated inside a sequence computer-aided design (CAD) tool,
such as SBOLDesigner [3, 7], to create a complete struc-
tural design of genetic circuit components. Next, circuit
computer-aided engineering (CAE) tools, such as Cello [6]
and iBioSim [5], can be utilized to compose genetic circuit
components into complete genetic circuit designs, including
the addition of functional design information for simulation
and analysis. Finally, the complete genetic circuit can be
archived in the part repositories, completing the cycle.
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Figure 1: The SBOL enabled workflow for designing
genetic circuits.

The Synthetic Biology Open Language (SBOL) facilitates
communication between these tools and services [4]. SBOL
is a standardized digital format that allows biologists
to share genetic designs stored in a principled medium.
The SBOL standard facilitates communication between
experimental biologists, computational biologists, genetic
engineers, and their computer tools. The latest version,
SBOL 2.0, introduces the specification of generalized genetic
components, enhances means to annotate and constrain
sequence features, and enables the description of behavioral
aspects of a biological design [1].

SBOLDesigner is a simple, biologist-friendly CAD soft-
ware tool for creating and manipulating the sequences of
genetic constructs using SBOL natively. This abstract de-
scribes our update of SBOLDesigner to support SBOL 2.0,
as well as the enhancements that this conversion enables.

2. SBOLDESIGNER
SBOLDesigner has an simple user interface that allows
biologists to visualize and edit the details of their creation. It
supports hierarchical or nested assembly and offers generic,
user-defined parts to ease fabrication from partial sequences
to complete genetic constructs. Additionally, the user can
flip the orientation of parts and view or edit their names
and descriptions. Throughout the design process, SBOL
Visual [8] symbols, a system of schematic glyphs, provide
standardized visualizations of individual parts.

The original version of SBOLDesigner has been updated
to SBOL 2.0. While the user interface remains largely the
same, the transition from SBOL 1.1 to SBOL 2.0 as the
backend data model required re-implementing features using
the libSBOLj 2.0 Java library [10]. Fig. 2 shows the main
parts of the SBOL 2.0 data model that are used. SBOL
2.0 separates SequenceAnnotations from SBOL 1.1 into
Components, SequenceAnnotations, and Sequence-
Constraints, which requires a fundamental change in the
representation of parts in SBOLDesigner. Overall, adapt-
ing SBOLDesigner to SBOL 2.0 enables the workflow de-
scribed above and maintains the relevance of this CAD tool.

Figure 2: A simplified view of the structural portion
of the SBOL 2.0 data model.

Fig. 3 shows the user interface of SBOLDesigner with
part of the genetic toggle switch circuit on the canvas. This
canvas represents a ComponentDefinition that brings to-
gether information on the design’s Sequence, its Compo-
nents, and their organization. Below the canvas is a row
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of genetic elements that can be added to the design. When
placed on the canvas, each element represents a Compo-
nent. TheseComponents are organized by SequenceAn-
notations and SequenceConstraints. SequenceAnno-
tations specify the precise Location and orientation (po-
sition and direction) of a Component’s Sequence. Se-
quenceConstraints encode the information on how Com-
ponents are ordered. Clicking on the ”focus in” button
expands a Component to expose its ComponentDefini-
tion, generating a nested canvas. This feature allows the
user to create hierarchically defined designs.

Figure 3: SBOLDesigner’s user interface showing a
hierarchical view of a genetic toggle switch circuit.
This design is composed of two genetic inverters,
and each inverter is composed of a promoter, ribo-
some binding site, coding sequence, and terminator.

Fig. 4 shows the menu for specifying and editing a Compo-
nentDefinition’s role, display ID, name, description, and
sequence. The role of the Component can be promoter,
ribosome binding site, coding sequence, terminator, etc. A
new feature is the ability to specify a more specific refine-
ment role from the Sequence Ontology Project [2]. Addi-
tionally, SBOLDesigner 2.0 supports importing Com-
ponentDefinitions and Sequences from external SBOL,
GenBank, and FASTA files.

Figure 4: SBOLDesigner’s window for editing a
ComponentDefinition for a promoter.

When the design is complete and ready to export, SBOLD-
esigner stitches together all of the specified Sequences to
form a composite root Sequence that is attached to the root
ComponentDefinition. If desired, this root sequence can
then be sent to a DNA synthesis service for fabrication.

3. DISCUSSION
SBOLDesigner completes a workflow for users of genetic
design automation tools. It combines a simple user inter-
face with the power of the SBOL standard and serves as a
launchpad for more detailed designs involving simulations
and experiments. Some new features include SBOL Stack
integration, the ability to import and write GenBank and
FASTA files, extended ontology support, the ability to par-
tially open designs with multiple root ComponentDefini-
tions, and backwards compatibility with SBOL 1.1. Sup-
port for RNA and protein parts, more general Sequence-
Constraints, user annotations, saving into existing designs,
and automated Sequence optimization are being added.
With sequence CAD tools like SBOLDesinger, genetic de-
sign software like iBioSim andCello, and parts repositories
like the SBOL Stack, biologists have a wide array of tools
for prototyping and automating design of genetic circuits.
These tools stimulate advancement of synthetic biology and
allow biologists to easily approach genetic design.
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ABSTRACT
We present a spatially explicit modeling platform, Bioform,
which allows for the design, simulation and analysis of syn-
thetic bacterial populations. The design of biological sys-
tems in Bioform is flexible, enabling one to represent con-
structs in a variety of forms appropriate for the desired level
of abstraction. A virtual lab provides the modeller with
equivalent devices to those typically used in wetlab experi-
ments.

Allowing for the representation of a variety of cellular and
environmental properties, a wide range of bacterial popula-
tions can be simulated, from planktonic cells and colonies,
to biofilm formation and development. An extendable and
modular framework allows for the platform to be updated
as scientific knowledge advances, coupled with an intuitive
user interface to allow for model definitions with minimal
programming experience.

1. INTRODUCTION
Synthetic biology aims to repurpose biological components

for novel applications. The design, synthesis and analysis of
such systems is time and resource intensive, typically involv-
ing multiple iterations around the workflow.

To catalyse this process in-silico models have been de-
veloped, providing insights into the dynamics of proposed
systems allowing verification of their feasability prior to syn-
thesis. Such models typically focus on genetic circuits and
the behaviour of single cells, however the dynamics and self-
organising capabilities exhibited by populations of interact-
ing cells is in need of renewed effort.

The development of distributed multicellular devices allow
for mixed cohorts of bacteria with each species programmed
to carry out simpler tasks. A major challenge in the de-
velopment of these systems resides in their scalability and
robustness, thus models of population dynamics are essen-
tial in the realisation of such systems.

2. IMPLEMENTATION
Developed in Java on a modified version of the Cortex3D

platform [1], Bioform is a multiscale agent-based modelling
environment for specifying custom model behaviour, paral-
lelisable on distributed CPU computing. Agents are mod-
elled as physical entities with biological processes, embedded
in chemical fields. The platform allows for processes that oc-
cur at a range of spatial and temporal scales to be defined
and integrated.

The platform is designed with a modular architecture, al-
lowing for model features to be represented as discrete com-
ponents which can be readily added, removed and modified
for the specific modelling application. This is achieved via a
three component architecture consisting of a simulation core,
a modelling library and a modelling interface. This plug n’
play framework allows for rapid prototyping of models and
reiterative designs for the reification of models.

2.1 Framework architecture
The core of Bioform is the computational engine, integrat-

ing all model defined processes and scheduling their execu-
tion for parallel execution.

The modelling library contains discrete submodels describ-

Figure 1: Model of biofilm (left) and confocal microscopy
image of actual biofilm [2] (right)
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ing specific model behaviour, such as physical, chemical and
biological processes as well as environmental properties.

The modelling interface allows for the composition of mod-
els via attaching library submodels to the simulation core.

2.2 Model features
Newtonian physics are implemented with Langevin dy-

namics dictating agent movement. Basic cell morpholgy,
pressure sensing, surface charge, cell shoving, physically bon-
ded geometries and environmental forces can be represented.

A diffusion-reaction system implemented as a 3D grid al-
lows for custom definition of chemical species, including dif-
fusion, degradation and reaction rates. Chemicals can exist
in the extracellular space or within cells and can be trans-
ported across membranes via a variety of mechanisms.

A wide range of biological processes are implemented, in-
cluding cell growth and division, quorum-sensing, conjuga-
tion, cell-cell and cell-surface adhesion as well as gene regula-
tory networks. Processes may be represented at a variety of
abstractions, such as gene networks represented as boolean
networks or sets of ordinary differential equations.

2.3 Analysis features
A virtual lab is implemented for model analysis, offering

typical wetlab instruments and mathematical analysis fea-
tures. This includes a simulated spectrophotometer to ob-
tain optical density measurements. Mathematical tools in-
clude measurements of the mean squared displacement and
velocity autocorrelation function of bacteria, as well as de-
tailed data gathering regarding cell interactions, gene ex-
pression and spatially distributed biomass concentrations.

3. CASE STUDIES
3.1 Synthetic biofilm formation

Modelling biofilm formation of synthetic Escherichia coli,
simulating cell growth, motility, basic gene regulation and
secretion of extracellular polymeric substances. We aim to
understand the mechanisms responsible for architectural dif-
ferences in the biofilms formed by mutant strains of E. coli.
Figure 1 shows an example of a modelled biofilm. Calli-
bration of the model on experimental data ensured model
validity, and model feedback has insofar directed further ex-
perimental data gathering and aided in the formalisation of
hypotheses about the system.

3.2 Bacterial coaggregation
We model the coaggregation of bacterial strains found in

the mouth, namely Streptococcus gordonii and Actinomyces
oris. Cell-cell interacitons include specific interactions due
to cell surface adhesins and receptors, as well as through
non-specific mechanisms such as van der Waals forces and
electrostatic repulsion. Optical density measurements de-
crease as aggregates form. Figure 2 expands on the details
of this study.

4. CONCLUSIONS AND FUTURE WORK
We have presented an overview of Bioform and example

case studies illustrating its potential for computer aided de-
sign in the synthetic biology workflow. Future developments
include an expansion of the modelling library and virtual
lab, development of a graphical user interface, alongside op-
timisation of the simulation core and integration with the

Figure 2: (a) Intial mixed population. (b) Aggregated popu-
lation. (c) Streptococcus gordonii (represented as a sphere).
(d) Actinomyces oris (represented as a sphere). (e) Adhesion
interactions for S. gordonii and A. oris. (f) Real (solid) and
simulated (dashed) optical density measurements. Green: S.
gordonii, Red: A. oris, Blue: Mixed population (g) Number
of interaction partners per cell.

Infobiotics Workbench 2.0 [3]. We plan to implement parsers
for interfacing with SBML, SBOL and MATLAB. Develop-
ment of an image processor to allow for model initialisation
from microscopy images will ensure a seemless modelling
process for experimentalists.
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1. INTRODUCTION
The Tools for Engineering Biology (TEBio) project is aimed

at developing algorithms and software for the automated de-
sign of multi-cellular genetic circuits.

In general, there are many possible solutions to a design
problem, and so when designing a circuit it is necessary to
make comparisons between candidate designs. Our initial
work has therefore focused on the comparison of models and
systems, rather than directly on design.

We have also focused on the use of visualisation to sup-
port comparisons, as we believe that there is considerable
potential for improved visualisation in synthetic biology.

This abstract describes two initial contributions: a tool
for visually representing a single model in SBML format,
or visually comparing multiple models (SBML-diff); and a
visualisation tool for the results of Bayesian parameter esti-
mation and model comparison using Approximate Bayesian
Computation (TEBio-Fit).

2. VISUALLY COMPARING SBML MOD-
ELS

2.1 Existing tools
There are several existing tools which are capable of vi-

sually representing a single SBML model as a bipartite re-
action graph. Several of these are large GUI packages with
many other features (e.g. CellDesigner [2], iBioSim [5]),
such that the visualisation component is difficult to script
or incorporate into other tools. There are also a few free-
standing tools that can generate a DOT representation of a
reaction network from an SBML file (e.g. The Systems Bi-
ology Format Converter’s SBML2DOT Java module [6], or
the python library VisualiseSBML [3]). A recent paper [7]
provides a tool for comparing SBML models; it is intended
for a slightly different purpose (to help track the history of
a model as it changes over time), cannot directly compare
more than 2 models, and has fewer options for controlling
the graphical output, but supports CellML as well as SBML,
and can produce reports in Markdown or HTML format.

2.2 Implementation
Our goal was to create a freestanding (but easily com-

posable) tool that can be used to quickly visualise a single
model, or to compare a set of models. It reads in SBML,
and produces output in DOT that can be converted to an
image by GraphViz, or by alternative software.

Whilst it is possible to compare a set of models by simply
juxtaposing an independently created visualisation of each,
this has the disadvantage of requiring the user to actively
compare the diagrams to ‘spot the differences’, a task made

harder by the fact that unstable network layout algorithms
may assign equivalent nodes to very different spatial loca-
tions when visualising different models. In contrast, we use
a pre-attentive cue (colour) to highlight the differences be-
tween models without the need for search; colours were cho-
sen to be distinguishable by colourblind users. We provide
the option of either producing the DOT code for a combined
diagram superimposing all of the models, or separate dia-
grams for each model (but with the invisible features from
all other models influencing the layout to ensure consistent
node placement).

Each reaction is represented by a rectangular node; each
species is represented by an elliptical node. Directed edges
with solid lines join each reactant species to the correspond-
ing reactions, and each reaction to the corresponding prod-
uct species. Dashed lines join species to reactions whose rate
they modify, but in which they are not reactants; the corre-
sponding kineticLaw for the reaction is analysed to deter-
mine whether this influence is activatory or inhibitory, and
the arrowhead shape is set accordingly. Rules of type Assig-
mentRule or RateRule that set concentrations of particular
species are represented as parallelograms, with dotted lines
indicating directed away from the species they depend on,
and towards the species that they affect. Reactions or rules
that appear in more than one model, but with different ki-
netic laws, are displayed with a grey background. Colouring
is used to indicate whether each node and edge is common to
all models (grey), some but not all models (black), or a sin-
gle model (a colour specific to that model). A commandline
option allows the user to choose between labelling reaction
nodes with the corresponding reaction name, kinetic law, or
name and rate law, or leaving them unlabelled.

3. VISUALISING RESULTS OF PARAME-
TER ESTIMATION

In systems and synthetic biology, it is common to use
Markov chains as models. However, Bayesian analysis of
such models is difficult due to the unavailability of a likeli-
hood function. One approach is to sample from the (approx-
imate) posterior distribution using Approximate Bayesian
Computation.

TEBio-Fit is an interactive tool for visualising the re-
sults of applying ABC methods to parameter estimation and
model selection. The interactive graphs are implemented in
Javascript using the D3.js library[1], and work in recent ver-
sions of Firefox or Chrome, without requiring the installa-
tion of any additional software or plug-ins.

Currently, it uses ABC-SysBio [4] as a backend, but could
be extended to support additional systems and methods (e.g.
conventional MCMC for models with a likelihood function).
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Figure 1: Example output from SBML-diff, compar-
ing two models for how a gene might be regulated
by a regulatory RNA. Options allow the labels for
reaction nodes to be removed, or replaced by the
corresponding kineticLaw

Figure 2: Two screenshots of TEBio-Fit, showing
the model comparison view (left) and the single-
model detail view (right). This example is accessible
as an interactive demo at http://sysos.eng.ox.ac.uk/
tebio

.

The results are presented as a webpage, grouping together
information that would otherwise be scattered across multi-
ple files (numerical results from output files, model details
from input SBML files, settings from configuration files, ex-
planations from manuals). This is a self-contained inter-
active report that can be presented to third parties, and
provides explanations of each figure at the point of need.

An overview page provides a visual comparison of the
models being compared (produced using SBML-diff) and a
table of the kinetic laws for each reaction, a table of accep-
tance rates and simulation time at each generation, a stacked
bar chart of the model probabilities, and a dot-plot show-
ing the closeness of fit for each sample. A single-model page
shows the model’s details, the prior distribution specified for
its parameters, a matrix of scatterplots of the samples, and
time-series of simulations using the corresponding parame-
ter values. Selecting a rectangular region in any scatterplot
highlights the corresponding points in all scatterplots, and
hides other trajectories from the time-series plot.

Interactivity fulfils several roles in this system. It allows
the user to see all the data, yet also focus only on what is im-
portant to them at a particular moment, by fading or hiding
the representations of other data-points. It provides precise
numerical details and context, in the form of a tooltip when
the user mouses over specific elements. It allows direct navi-
gation between related views of the same data (e.g. clicking
on the stacked bar chart navigates to the single-model view
with samples from the corresponding generation plotted; by
selecting particular regions of parameter space, the user can
see the shape of the corresponding simulation trajectories).

Links to code and example output are available at
http://sysos.eng.ox.ac.uk/tebio/
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1. INTRODUCTION
Synthetic Biology Open Language (SBOL) version 2 [1]

is one of the emerging synthetic biology (synbio) data stan-
dards. It facilitates the computational design and exchange
of novel, reproducible and composable designed biological
systems. SBOL is defined as a data model and RDF/XML
serialization. While the data model is flexible in its ability
to be generic and extensible as well as very explicit, it can
sometimes be too verbose. A single biological design con-
cept may be captured through multiple SBOL entities, and
this level of normalization can make it difficult for a person
to edit SBOL data manually. While well-suited for precise
machine communication, SBOL RDF/XML is too verbose
and complex for humans to directly edit non-trivial designs.

Software tools and libraries are emerging to manipulate
SBOL. For example, libSBOLj [5] can be linked to other soft-
ware, enabling them to read, write and manipulate SBOL
data. While libSBOLj supports tool developers, it does not
directly help synthetic biologists work with SBOL. CAD and
visualisation tools have been developed to visualise designs
and make the designs easier for humans to communicate [4,
3, 2]. However, visual design is an essentially manual pro-
cess. We have identified a need for a light-weight SBOL
scripting language that bridges the gap between manual, vi-
susal design, and software development.

Here, we present ShortBOL, a human readable/writable
shorthand language for SBOL. This language is developed
for synthetic biologists who wish to rapidly sketch synthetic
biology designs using a simple, text based scripting lan-
guage. The terminology used is designed to be much closer
to the concepts synthetic biologists have when describing
designs. Using this language, design information can be
captured more easily and quickly, without limiting the func-
tionality that SBOL already provides.

2. THE SHORTBOL LANGUAGE
ShortBOL is designed to be easy to use for synthetic biolo-

gists who may not have much software development training.
The language is text based, has a simple syntax that uses
white spacing to demarcate blocks, as in popular program-
ming languages such as Python, rather than punctuation,
as in RDF/Turtle or JSON. A standard template library
is provided, covering the SBOL data model and its use for

∗To whom correspondance should be addressed

capturing genetic designs. Power users can create new tem-
plates to capture abstractions common within their designs
or their synbio domain. If these libraries are made available
on the Web, they can then be imported and used by others.

The ShortBOL shorthand is built around a minimal se-
lection of language constructs. A typical shorthand docu-
ment is a list of imports, property assignments and template
applications. Template libraries are pulled into a Short-
BOL document using import statements. These libraries
are themselves written in shorthand, and declare new tem-
plates. Custom templates can be used to provide simple
aliases, application-specific syntax, access to common ter-
minologies, and can even be used to model complex param-
eterised multi-component designs. Assignment statements
associate a value with an identifier, using the equals (=) op-
erator. For example, repressor = tetR associates the value
tetR with the identifier repressor. This can be used to set
up aliases to provide more natural local names for remotely
defined terms and design components.

SBOL entities are created within the shorthand by us-
ing the colon (:) operator to apply a template (Figure
1A). For example, lacI_cds : CDS introduces a new iden-
tifier lacI_cds that will hold the value of expanding the
CDS template. In this case, the CDS template expands to
a SBOL:ComponentDefinition template with the type set
to the DnaRegion BioPAX term and role set to the CDS
(SO000316) Sequence Ontology term, as recommended in
the SBOL best practices for encoding a CDS using SBOL
(Figure 1B). Some templates are parameterised by one or
more arguments. For example, the DNASequence template
expects a single argument, containing a DNA string. When
the template is expanded, the elements property of the re-
sulting SBOL:Sequence is set to be equal to the supplied
argument. This mechanism allows common design and com-
position patterns to be captured relatively easily within tem-
plates, without requiring a full programming language.

Template applications can be directly followed by an in-
dented block of ShortBOL expressions. These are used to
declare additional properties and their values. For example,
the template application lacI_cds : CDS may be followed
by an indented block containing the assignment descrip-
tion = "The lacI CDS".

2.1 Expansion
Shorthand documents go through an expansion pipeline,
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A)

import shorthand:sbol2

lacI_cds : CDS
description = "The lacI CDS"
name = "lacI"
sequence = lacI_seq

lacI_seq : DNASequence("atggtgaatgt")

B) ↓ Template Expansion

lacI_seq : Sequence
encoding = <SBOL:IUPACDNA >
displayId = "lacI_seq"
elements = "atggtgaatgt"

lacI_cds : ComponentDefinition
role = <SBOL:CDS >
type = <SBOL:DNA >
displayId = "lacI_cds"
description = "The lacI CDS"
name = "lacI"
sequence = lacI_seq

C) ↓ Rendering to SBOL RDF/XML

<sbol:ComponentDefinition rdf:about="http: // partsregistry.org/
cd/lacI_cds">

<sbol:persistentIdentity rdf:resource="http: // partsregistry.
org/cd/lacI_cds"/>

<sbol:displayId >lacI_cds </ sbol:displayId >
<dcterms:title >lacI </ dcterms:title >
<dcterms:description >lacI CDS </ dcterms:description >
<sbol:type rdf:resource="http: //www.biopax.org/release/

biopax -level3.owl#DnaRegion"/>
<sbol:role rdf:resource="http: // identifiers.org/so/

SO:0000316"/>
<sbol:sequence rdf:resource="http: // partsregistry.org/seq/

lacI_seq"/>
</sbol:ComponentDefinition >
<sbol:Sequence rdf:about="http:// partsregistry.org/seq/seq/

lacI_seq">
<sbol:persistentIdentity rdf:resource="http: // partsregistry.

org/seq/seq/lacI_seq"/>
<sbol:displayId >lacI_seq </ sbol:displayId >
<sbol:elements >atggtgaatgt </ sbol:elements >
<sbol:encoding rdf:resource="http: //www.chem.qmul.ac.uk/

iubmb/misc/naseq.html"/>
</sbol:Sequence >

Figure 1: Rendering SBOL documents using Short-
BOL. A genetic circuit representation in ShortBOL
is recursively rendered using templates until stan-
dard SBOL documents are produced. A) Shorthand
representation of a CDS component. B) This short-
hand representation is recursively expanded into a
version that includes no reference to a template. C)
Standard SBOL representation of the same compo-
nent is produced.

being re-written until they become RDF/XML documents.
The steps are as follows:

• Import processing: Import URIs are resolved to ShortBOL
documents. These are then interpreted and the declared
assignments and templates made available to the current
shorthand script.

• Variable assignment: Assigned values are associated with
their alias, and made available for value substitution.

• Template registration: Templates are associated with
their identifier, and made available for future application.

• Variable substitution: Identifiers are looked up in the cur-
rent assignment dictionary, and if found, replaced with
the corresponding value.

• Template expansion: If the name of a template applica-
tion matches a registered template, expand that template
and set all the nested properties.

• Hoisting: If a property’s value is set to a complex object

where a reference was expected (e.g. the sequence prop-
erty of a ComponentDefinition holds as value a Sequence
instance), hoist the value up to the top level and replace
the value with a reference.

• Assigning identifiers: Mint identifiers (URIs) for any in-
stances that are anonymous in shorthand but need iden-
tifiers in an RDF rendering.

• Transliteration to RDF/XML: Generate XML/RDF from
the processed shorthand script. This is a direct trans-
literation of the URIs associated with identifiers, prop-
erty names and remaining template applications to RDF
resources, predicates and classes.

3. CONCLUSIONS
ShortBOL fulfills the need for an SBOL shorthand. It is

designed to be easy for biologists to read and write, allowing
the rapid creation and exchanging of synbio designs without
heavyweight computational tools or the need for a mediat-
ing GUI. ShortBOL comes with a formal syntax and seman-
tics, so is also suitable for machine exchange. ShortBOL is
not intended to replace SBOL, which can represent complex
design information with user-defined semantics. Moreover,
SBOL is based on RDF and can benefit from existing Se-
mantic Web tooling. The ShortBOL syntax simplifies the
creation of SBOL documents. As a textual language, with a
defined syntax, it has the advantage of describing design in-
formation unambiguously for machines, compared to visual
languages which are for human consumption.

Development of a fully on-line editor and expansion
pipeline is ongoing, supporting while-you-type integration
with other SBOL tooling, including VisBOL ([4]). We
hope that the open nature of ShortBOL template libraries
will support rapid development of SBOL extensions and
domain-specific design terminologies1. Moreover, we envis-
age community-driven development of template libraries to
intuitively design biological systems according to the needs
of different labs.
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INTRODUCTION 
Systematic design, also known as design-build-test cycle, has 
become instrumental in the development of synthetic biology as an 
engineering discipline. An important part of the systematic design 
approach is to define the behaviour of synthetic biology parts, 
within a particular host, such that it is repeatable. 

A common concept in much of engineering is that systems can be 
produced from the combination of standardised components. For 
this to be accomplishable in synthetic biology, there is an 
imperative to develop fully characterised parts that can be made 
available in public catalogues or registries, so they can be picked 
and reused following a bottom-up design approach. Taking the 
example of the design of a device, the first step in the process is to 
define the device specifications –then, on the basis of the 
specifications, to develop the design. The modularisation approach 
means that the device will comprise a number of parts connected 
together. 

It is important to note that, as with the same approach in other 
fields, the interfacing of the parts may be non-trivial. However, this 
is offset by the fundamental power of the approach, which is that 
every device does not need to be designed and built from scratch. 
Previous devices (either originating from nature, or human 
designed, possibly by other teams in different locations) can be 
reused and altered with standard parts drawn from repositories. 
When there is a requirement for new parts to be designed and built 
they need to go through a process of characterisation, which may 
also include host characterisation and DNA assembly. 

An important part of the systematic design approach is to define the 
behaviour of synthetic biology parts, within a particular host, such 
that it is repeatable. This process is called characterisation [3], 
which consists of describing the part’s behaviour and performance 
by two sets of information – the characterisation data (which is the 
record of the part’s behaviour within the host cell) and the metadata 
(data on the experimental and other conditions). These sets of data 
should be the result of a characterisation experiment performed 
specifically for the part under study. Systematic design and 
modularisation require that the properties of parts and their 
functional behaviour are extremely well characterised [3]. 

Different biopart repositories have been created to date, such as the 
iGEM Registry of Standard Biological Parts [5], the Virtual Parts 
Repository [8], the Standard European Vector Arquitecture 
(SEVA) Repository [4], or the JBEI Inventory of Composable 
Elements (ICE) [2], to name a few. Although they are taking 
advantage of standards such as FASTA, GenBank or SBOL[1] for 
the representation of genetic constructs, when it comes to the 
representation of other quantitative or qualitative features, they all 
implement their own data models. It is our opinion that the absence 
of a common data model for the representation of bioparts, which 
goes beyond the sequence annotations and includes quantitative 
and qualitative features of a biopart, is hindering the development 
of all these repositories into standard tools that are commonly used 
by synthetic biologists in conjunction with bioCAD tools. 

DATA MODEL 
Aiming for standardisation of biopart datasheets, present raw data 
measurements in an efficient manner and to facilitate their storage 
and retrieval, we have developed the first data acquisition standard 
for synthetic biology: DICOM-SB [6]. It is based on the highly 
successful Digital Imaging and Communications in Medicine 
(DICOM). Its data model comprises not only the representation of 
the raw data produced by the experiment, but, also, all the metadata 
related to the experimental context (e.g. chassis information, 
biopart sequence, experimental protocols, experiment date, 
modality settings, etc). DICOM-SB been specifically tailored for 
synthetic biology, such that it is modular, optimised for the storage 
of large amounts of data and empowers data interoperability. 

Once standard experimental results are available, the data undergo 
a process of curation (involving e.g. normalisation and data 
analysis) to produce the final set of features available in a biopart 
datasheet. The present work focuses on expanding the data model 
previously presented by the authors [5], such that it can be used to 
encode any kind of biopart datasheet at any repository, following a 
unified model. 

The UML diagram in Figure 1 represents the basic information 
entities required in the curation of a datasheet: an Analysis Protocol 
is executed, taking as input the experimental results from the wet 
lab, and producing a set of curated data (normalised and analysed). 
Input and output data can be modelled as DICOM-SB Series, which 
currently allows the representation of raw data coming from plate 
reader or flow cytometer modalities. Raw data formatted in several 
series can be used to generate different metrics (e.g. relative 
promoter units / RPU, doubling time, growth rate) as properties of 
a Metrics table. Properties may change depending on the type of 
biopart under analysis, equipment used, etc. The protocol may (or 
not) be related to a Model that describes the processing steps 
(Model already existing in SBOL 2.0). 
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Upon completion of the data analysis, all the Metrics Tables are 
grouped into a Datasheet (see Figure 2). This should be the entity 
to be referenced when talking about the implementation of a 
specific biopart within a host. It should contain at least one 
reference to a metrics table from the “metrics” property, as well as 
references to the institution where the component has been 
characterised, person / team running the experiments, person / team 
processing data, etc. 

PRESENT AND FUTURE WORKS 
The Synthetic Biology Information System (SynBIS) developed at 
the Imperial College Centre for Synthetic Biology and Innovation 
(CSynBI) is using the data model here introduced to disseminate 
the data obtained from our automatised characterisation pipeline. 
Examples of datasheets encoded using a preliminary version of the 
model proposed here can be found at the SynBIS website [7], where 
the reader can find pdf descriptions of several datasheets, as well as 
an API offering XML and SBOL serializations. The CSynBI is also 
working with other institutions aiming to better understand the data 
they produce, enhance the present model accordingly (and 
potentially produce new official DICOM-SB and SBOL 
extensions) and automate the incorporation of the data they produce 
into SynBIS. 

 
Figure 2: Producing datasheets from metrics. 
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ABSTRACT
In order both to uncover design principles of gene regulatory
networks and implement synthetic circuits with increasing
levels of complexity, advanced tools for optimal automated
design of biocircuits need to take into account more sophis-
ticated setups [1]. Here we present a computational tool
for automated design of biocircuits with predefined perfor-
mance specifications that exploits the efficiency of Mixed In-
teger Nonlinear Programming solvers to handle high levels
of complexity and, on the other hand, incorporates multiple
criteria in the design.
From the perspective of forward engineering, our multi-

objective modular approach allows designing gene circuits
that, in addition to predefined performance specifications,
can mimic additional desirable properties of natural circuits.
In a reverse engineering mode, the design space is explored
to automatically infer structure-functionality relationships
of gene networks from Pareto solutions. We use a mixed
integer modeling framework based on ordinary differential
equations (ODEs), complementing methods recently devel-
oped in the field [1] relying on rule base stochastic modeling.
We show examples of forward design (automated design of
switches and oscillators from a library of components) and
reverse engineering (exploring design principles of biological
oscillators, switches and stripe forming motifs).
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1. METHODS, RESULTS AND DISCUSSION
We encode the dynamics of gene regulation in a mixed

integer framework. A gene circuit is characterized by two
vectors x and y of real and integer variables respectively,
and the dynamics are given by a set of ordinary differential
equations of the form:

ż = f(z, x, y, k), z(0) = z0 (1)

where z is the vector of state variables containing the lev-
els of the species involved, x is the vector of real variables
containing the set of tunable parameters, y is the vector of
integer variables encoding the circuit structure and k is a
vector of fixed parameters. This mixed integer description
can accommodate different kinetics (mass action, Hill, etc)
and levels of detail (granularity).
The design targets are encoded in a set of objective func-

tions of the form: Ji(ż, z, x, y, k), i = 1, . . . , S, and the au-
tomated design is formulated as finding the vector x of con-
tinuous variables and the vector y of integer variables which
minimize the vector J = (J1, J2, . . . , JS), subject to the dy-
namics (1) and to additional constraints.
Our method combines an ε−constraint strategy with state

of the art MINLP solvers to obtain the Pareto front of opti-
mal solutions to the multiobjective problem. The software
implementation is available upon request.
Multiobjective Forward-Engineering Design. In the

forward mode, we start from a library of parts or compo-
nents and search for circuits among all possible combina-
tions of devices. Circuit structures are defined by a vector
of binary variables y where each entry indicates whether the
corresponding device (promoter-repressor pair) is active (1)
or not (0).
Switch-like behaviour in response to inducers. Circuits

with switch-like behaviour in response to different inducers
have been found by [2] using a single objective optimization
approach. By introducing as additional design criterion the
cost of protein production (protein burden), we find non in-
tuitive configurations with practically the same performance
[4], as illustrated in Fig 1 A. In this way we show how multi-
objective optimization leads to well defined design problems,
providing additional information to select better circuit can-
didates for lab-implementation.
Sustained endogenous oscillations. Starting from a library

of components [5] and encoding the desired oscillatory be-

53



−1 −0.95 −0.9 −0.85 −0.7 −0.75
0

1000

2000

3000

4000

Q1

lacI

tetR

Para Para
araC

LacI
Plac

tetR
1

Plac
araC

araC
Para

tetR

Plac1Plac1Ptet2 lacI lacI

LacI
Plac

tetR
1 Ptet

LacI
2

Q2 = P1

Q3

Q4
Para

P2

P3

P4 P5

P6

P
λ

P
tet

P
bad

tetR araC cIR

0 1 2 3 4 5 6 7 8

x 104

0

400

800

1200

1600

2000

0 1 2 3 4 5 6 7 8

x 104

-1 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55
0

50

100

150

200

250

300

350

400

450

P
ro

te
in

 C
o
s
t

Performance

P1  (IFF3)

P2  (IFF1)

P3  (IFF1)

P4  (IIF1)

P5  (IIF1)

P6  (IFF1)

P7 (IFF1) 
P8  (IFF1)

10 15 20 25 30

0

10

20

0 5

cell index

p
ro

te
in

 le
ve

l (
ss

)

A

B

C5
0

1.48

  1
0

15.17

P1 (IFF3)

P
ro

te
in

 C
o
s
t

Performance

P
ro

te
in

 L
e
v
e
l

time time

A B

C

2D circuit

3D circuit

dynamics low kd dynamics high kd 

Repressilator-like circuit:

1

0

10

20

10 15 20 25 300 5

cell index

p
ro

te
in

 le
ve

l (
ss

)

A

B

1
.6

3

0.4

0.02

4.21

P8 (IFF1)

C

7000

9000

11000

13000

15000

-0.995-1 -0.99 -0.985 -0.98 -0.975

R1

R2

R3

R4

R5

R6 R7

R8

R9

Performance

P
ro

te
in

 C
o
s
t

active 
pair

D

tetR lacI cI araC

Plac
Plac
Plac
Plac
P
Ptet
Ptet
Para

1

2

3
4

λ

1

2

Figure 1: Examples of multiobjective design problems. A) Pareto front of 2D-3D circuits with switch-
like behaviour (performance vs protein production cost or protein burden). Structure matrix with active
promoter-transcript pairs is indicated. B) Endogenous Repressilator-like oscillator with optimal stability
and tunability, and its corresponding dynamics for low and high degradation constant (kd). C) Pareto front
of 3D stripe forming circuits (performance vs protein production cost). Stripes generated by both Pareto
extremals (P1 and P8) are shown. D) Pareto front of circuits with switch-like response upon induction and
unconstrained number of devices (performance vs protein production cost).

haviour in a suitable objective function we find a number
of oscillators with a Repressilator-like structure. Using the
multiobjective approach we select those circuits that, in ad-
dition to sustained oscillations satisfy the tradeoff between
stability of the limit cycle oscillator (robustness against per-
turbations in the trajectory), and tunability of the period
(variability of the period with respect to a degradation con-
stant in the system). Period tunability has been postulated
as evolutionary advantageous in a wide range of natural os-
cillators. We depict in Fig 1 B one of the circuits fulfilling
the tradeoff.
Automated inference of design principles. In re-

verse mode our method allows exploring design principles of
gene regulatory networks. We start from biologically verified
models encoded in the mixed integer framework (1). We se-
lect the decision variables and a priori objectives, solving the
resultant multiobjective problem to obtain the Pareto front
of nondominated circuits. Solutions are further analyzed to
get insight into the design principles of regulatory circuits,
including what behavioural targets are in a tradeoff, as well
as potential relationships between structure-parameter pat-
terns and functionality.
Stripe forming motifs. Feed-forward IFF1 and IFF3 mo-

tifs are found as core structures for stripe formation in 1D
tissues in [3] by combining exhaustive exploration and ana-
lytical methods. Using optimization, we automatize the sin-
gle objective search ensuring computational efficiency and
optimality (circuit with best stripe formation performance).
Adding the cost of protein production as an opposing objec-
tive we obtain the Pareto front in Fig 1 C. We can conclude
that IFF3 and IFF1 are stripe forming motifs, with struc-

tures evolving from IFF3 to the IFF1 as we move along the
Pareto front (performance vs. cost).
Switches. In order to automatize the analysis of the solu-

tions we develop a clustering method to automatically detect
structure-parameter patterns along the Pareto front. This
is illustrated in Fig 1 D where we find four clusters along
the front of non dominated circuits.
Oscillators. Starting from the same 3-gene model, we

search for sustained oscillators finding that CFF4 and IFF3
not only exhibit oscillatory behaviour but also fulfill the
tradeoff between oscillation stability and period tunability.
Acknowledgments: We acknowledge funding fromMINECO

project SYNBIOFACTORY (DPI2014-55276-C5-2-R).
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1. INTRODUCTION
Consider the design of a small bacterial gene cluster con-

taining up to four genes. Even under the assumption that
all of the cluster genes must have the same orientation and
that the library of available parts for controlling these genes’
expression contains only four constitutive promoters, four
ribosome binding sites, and four terminators, there are still
684,544 different cluster design variants to choose from. En-
coding and storing these design variants in most modern ge-
netic part/design repositories [3] requires a significant amount
of memory, over 6 gigabytes if one assumes an average of 10
kilobytes per design variant. As genetic design scales from
larger gene clusters [5] to genomes, it is clear that storing
each individual design variant is not a practical solution to
specifying the space of all possible designs and tracking how
different versions of this space change over time. Both of
these concepts–design specification and version control–are
critical to the support of tools for learning what makes a
genetic design work.

Previous rule-based [1] and grammar-based [2] approaches
to genetic design have been successful in specifying the com-
position constraints and patterns of DNA components mak-
ing up design variants, but they have done so without a firm
theoretical basis for comparing these specifications. With-
out such a basis, it is difficult for a machine to merge simi-
lar specifications and calculate the differences between them,
two key features of modern version control systems. To meet
this need, we have developed an approach to genetic version
control and implemented it in a tool called Knox. Our ap-
proach builds on the formal framework of a language/tool
called Finch1, in which genetic design variants are specified,
compared, and composed as “genetic design spaces.”

2. GENETIC DESIGN SPACES
A genetic design space is a graph that implicitly repre-

sents many genetic designs by encoding rules for composing
sets of DNA components. As shown in Figure 1, each de-
sign space consists of a set of nodes and a set of directed
edges between these nodes. In general, each edge can be
labeled with a set of DNA components to choose from, but
here we label each edge with a single DNA component for
simplicity. Regardless, each path from a start node (green)
to a stop node (red) represents a linear composition of one
DNA component from each edge into a genetic design (see
Figure 1C). Designs inferred in this manner are “correct by
construction,” adhering to the rules encoded by the graph.

1www.synbiotools.org
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Figure 1: Version control of a Cello-designed Ma-
jority circuit with Knox. (A) Building up the ge-
netic design space for the Majority circuit. Each
gray arrow represents the application of an opera-
tor from Knox. (B) Pruning the design space and
later reverting to its original form. (C) Enumerat-
ing designs from the pruned design space and storing
performance data. See [4] for a definition of circuit
score. The dashed line indicates the worst circuit
score found.
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Besides storing large numbers of genetic design variants
more compactly, the design space formalism has the added
benefit that new design rules can be incorporated via straight-
forward graph operations. Knox provides a variety of such
operations for editing and combining design spaces, includ-
ing Join, OR, AND, Merge, Repeat, and Delete. In Fig-
ure 1A, Merge, OR, and Repeat are used to build up a de-
sign space that captures all gene and promoter orders for a
Majority transcriptional logic circuit designed with Cello [4].

3. GENETIC VERSION CONTROL
As a version control system, Knox provides operators sim-

ilar to those used in Git, including Branch, Checkout, Com-
mit, Merge, and Revert. Unlike their Git equivalents, the
Knox version control operators take the semantics of de-
sign spaces into account, which enables Knox to record ver-
sion histories in terms of changes to a graph rather than
changes to text. In this way, biodesign automation (BDA)
tools can more readily interpret these changes and act upon
them for applications such as machine learning. Changes to
a graph are computed by merging the paths from its start
node with those of its previous versions and removing the
common edges.

Figure 1 provides an example of how Knox can aid in the
refinement of the Majority circuit. Since every Knox op-
erator that combines two design spaces also combines their
version histories, building up the initial design space for the
Majority circuit from the design spaces for its individual
genes in Figure 1A also creates a record of which design
spaces were combined and in what order (see Figure 2).
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Figure 2: The changing version history of the ge-
netic design space for the Majority circuit. Each
white box represents saved changes to the design
space (a commit), while each red box represents
a different version/branch of the design space and
points to the latest commit on that branch. Each
gray arrow represents an operation in Knox and cor-
responds with an arrow in Figure 1. The dotted line
indicates that two commits are identical.

In Figure 1B, the Majority design space is pruned so that
it only captures designs in which all one-promoter genes pre-
cede all two-promoter genes. In particular, the Branch oper-

ator is used to create two different versions/branches of the
Majority design space. The Delete operator is then used to
prune these branches so that they only contain one-promoter
and two-promoter genes, respectively. As shown in Figure 2,
these changes are saved/committed to the separate branches
before being combined using the Join operator. All combi-
national operators in Knox can take two design spaces or
two branches of a single design space as inputs.

Finally, as shown in Figure 1C, circuit designs are enumer-
ated from the pruned design space and data are collected on
their performance and scored. Since these designs are not
much better than the worst designs tested so far, one might
use the Revert operator to undo the changes to the design
space shown in Figure 1B. Like its Git equivalent, the Re-
vert operator creates a new commit that is a copy of a pre-
vious commit, rather than destroy the intervening commits
(see Figure 2). In doing so, a complete record of all changes
made to the branches of the design space is maintained, such
that one may revisit any previous state of the design space.

4. CONCLUSION
Knox is not just a database for efficiently storing genetic

design variants. It is a genetic version control system that
enables BDA tools to track and revert changes to genetic
design spaces as new data on design performance are gath-
ered and new design rules are learned. As genetic design
scales to larger systems containing many sequence feature
variants, version control will play a critical role in support-
ing applications ranging from statistical design to machine
learning. This support could involve further extension of the
genetic design space formalism to incorporate quantitative
data on system parameters and conditional probabilities.
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AABBSSTTRRAACCTT 
The growth rate in our collective knowledge about individual 
proteins and biological systems capable of posing potential 
threats to public safety and/or the environment is 
tremendous. This knowledge, however, is widely distributed 
across diverse research communities, institutions and even 
journals. No centralized information source focuses on 
annotating the potential for a given protein to cause harm 
and in what context this harm can arise. Here we introduce 
two key tools to address this challenge. A web-based 
curation system allows experts to curate sequences of 
concern. A companion web-based screening system aids 
synthetic biologists in screening sequences against a 
curated collection of potential threats. Together these tools 
can lower the bar to effective biosecurity screening and 
increase the safety of synthetic biology research. 
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BBiiooiinnffoorrmmaattiiccss   
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BBiiooiinnffoorrmmaattiiccss   

KKeeyywwoorrddss 
Biosecurity; synthetic biology; synthetic DNA; security; 
pathogenicity; biosafety; screening; algorithms; gene 
ontology.   

11..� IINNTTRROODDUUCCTTIIOONN  
With the rapid growth in design capability in synthetic 
biology, it is now possible to create large numbers of 
constructs often using heavily mutated sequence that does 
not directly resemble the reference sequence from which it 
was originally derived. At the same time, scientific advances 
in the understanding of the processes behind pathogenicity 
(in a variety of hosts and biological contexts) are rapidly 
creating new knowledge of protein sequences that, in 
context-dependent ways, can cause harm to human beings, 
specific plants or animals, or to the environment more 
broadly. 
Regulatory regimes in the US, EU and other countries 
recognize this potential for harm in biological agents known 
to naturally express these proteins. The pace of regulation, 
however, cannot keep pace with science; an increasing 
number of recently discovered organisms [1] and viruses [2] 
are known to pose a threat, but access to these organisms 
or materials is often not directly regulated even years after 
their initial discovery. 
These factors, taken together, have created an environment 
in which ethical, responsible synthetic biologists may 
unwittingly create constructs capable of causing harm, but 
be unable to predict or understand that capability prior to 

instantiating synthetic designs in living systems. As 
predicting function from primary sequence alone is not 
feasible [3], these scientists would be well-served by having 
access to 1) a repository of metadata on what sequences 
can cause harm along with regulatory status and 2) an 
effective screening system for checking DNA or protein 
sequences against that metadata and alerting the user to 
any potential concern. In addition, a screening system 
capable of addressing these needs must itself be amenable 
to automation so as to fit seamlessly into high-throughput 
design/build/test workflows. 
The current burden for sequence screening falls on the 
companies that synthesize gene-length double-stranded 
DNA. The US government, in 2010, provided guidance [4] 
to these companies, recommending a set of basic screening 
practices to ensure that sequences from pathogens or 
toxins falling under current biosecurity or export control 
regulation were not inadvertently sequenced or exported. 
In 2009, major synthesis companies formed the 
International Gene Synthesis Consortium (IGSC), an 
industry body dedicated to developing best practices in 
biosecurity screening and assisting governments in 
preventing misuse of gene synthesis technology. The IGSC 
developed a harmonized screening protocol [5], spelling out 
the process by which member companies screen ordered 
sequences. IGSC member companies screen using the 
IGSC Regulated Pathogen Database, an internally curated 
set of sequences that fall under the control of one or more 
governmental regulations. IGSC does not make this 
database or any screening tools available to the public, 
limiting the utility of their screening expertise only to 
sequences ordered commercially by synthetic biologists. In 
addition, the Regulated Pathogen Database by its very 
nature is updated only as the regulatory environment 
changes; it is not intended to keep up with scientific 
knowledge but rather to establish a baseline for safety that 
parallels government regulation. 
Here we demonstrate a pair of software tools to address 
both the lack of publicly available protein-level metadata on 
pathogenicity as well as the lack of open source tools for 
effective screening. 

22..� SSEEQQUUEENNCCEE  AANNNNOOTTAATTIIOONN  
Knowledge about the capacity of any single sequence to 
cause some type of harm is extremely distributed. Individual 
communities of researchers focus on widely varying aspects 
of pathogenicity including the ability of organisms to infiltrate 
host cells, hijack host cellular machinery, hide from the host 
immune system and even to enhance the host immune 
response. 
The distributed nature of this knowledge makes 
centralization challenging but not impossible: witness the 
Gene Ontology consortium [6], which has done exactly this 
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centralization for more general function and location-based 
categorization of genes. SNPedia [7] is another example of 
open knowledge created and maintained by a community. 
For each polymorphism, SNPedia provides a description 
and links to relevant journal articles. SNPedia even offers a 
application, Promethease, which leverages SNPedia 
contents to analyze individual variability. 
We have created a Mediawiki-based user interface in which 
interested parties can submit sequences along with tag-
based annotation of roles in pathogenicity. The interface is 
available at seqshield.com. Users are encouraged to submit 
several tags for each sequence to describe the general 
patterns of harm associated with a given sequence modeled 
as 

Host + Context = Outcome + Level of Concern 
The present system takes a tag-based approach so as not a 
priori to impose a single controlled vocabulary. The 
collection of tags resulting from community annotation could 
form the basis of such a controlled vocabulary over the 
longer term. 
As each sequence is uploaded, users are asked to add tags 
in each of four categories. Tagging ‘Host’ and ‘Level of 
Concern’ are mandatory; adding tags for ‘Context’ and 
‘Outcome’ are optional given the additional complexity and 
domain knowledge required.  
As an example, a sequence encoding the toxin ricin might 
be tagged by a user as: 

��� ��
�
� 
���� human 
����
�� ingestion, inhalation 
���	��
 fever, cough, respiratory_failure, death 
�
�

�������	
�� extreme 
The goal is accumulation of metadata over time more than 
universal completeness. The system is centrally hosted and 
offers the entire set of curated sequences (or subsets based 
on queries by tag) for download as FASTA or BLAST 
Database for use in screening. 
Data quality and public participation can both be concerns 
associated with publicly available databases. To maximize 
immediate utility, we have carried out an initial curation 
process adding many pathogenic proteins to the database 
in an attempt to include most potentially regulated 
sequences or other sequences known to be harmful. We 
have also curated a white list of NCBI GI identifiers 
corresponding to proteins we consider harmless. That white 
list is also open to curation. 
We use CAPTCHAs to prevent unauthorized bot-driven 
curation and require user registration before creating or 
editing pages. GI identifiers are periodically verified (for 
existence) and records tagged for human review on failure. 
Users can also flag records to request community or 
administrator review. 

33..� SSCCRREEEENNIINNGG  TTOOOOLL  
Constructing a screening system capable of determining 
whether a given sequence poses a biosecurity risk requires 
a degree of investment in time and expertise not available 
to all synthetic biologists or even to all synthetic biology 
companies. Even assuming one has access to a database 
of dangerous sequences, basic parameterization of an 
aligner and result processing (including culling alignment 
counts to similar regions so as not to hide homology to 
shorter regions) requires domain expertise. 
Here we introduce bioseqscreen, a Python-based reference 
implementation of a screening system available at 

github.com/twistbioscience/bioseqscreen. Given a query 
nucleotide sequence, the tool compares that sequence (via 
BLAST [8]) to the set of protein sequences derived from the 
annotated collection produced by the interface discussed in 
the previous section. 
Results can be filtered by the degree of homology, E-score 
and alignment length. Passing hits are summarized by the 
distribution of tags associated with those sequences and 
the regions of the query found problematic. Links to the 
originating database entries are provided so that users can 
follow-up in more detail. In compliance with IGSC guidance, 
the algorithm is 100% sensitive and reports can be 
downloaded for archival use. Screening short (<200 bp) 
sequences will result in a large number of false positive 
findings. Effective screening of oligo-length sequences 
requires a unique algorithmic approach not (yet) addressed 
by this tool. 
The screening system sits atop a database and includes a 
RESTful API for screen request submission and result 
retrieval as well as a graphical user interface. The 
application is easy to install and operate on a laptop 
computer, and scales reasonably well to high-throughput 
use via API calls. 

44..� CCOONNCCLLUUSSIIOONN  
We have introduced two software tools enabling a new 
approach to effective biosecurity based on community 
knowledge and participation. It is our hope that the 
annotation tool will help the synthetic biology community to 
track emerging science on the link between individual 
proteins and negative outcomes. We also hope the 
screening tool enables the community to broaden both 
interest in- and effective practice of biosecurity so that 
practitioners are empowered to evaluate the safety of their 
designs during the design phase rather than waiting until 
synthesis or even expression.  
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1. INTRODUCTION
Synthetic biological circuits in living cells are commonly de-
signed with certain intended logic functions that make cells
respond to specific environment stimuli or even change their
growth and cellular development. When it comes to design-
ing logic circuits in a cell, in addition to functional correctness
one may further require the circuit configuration changes to
be stored and propagated to its descendant cells. In recent
work [1], a scheme for constructing synthetic cellular circuits
with integrated logic and memory was proposed, where re-
combinases such as Bxb1 and phiC31 were used to imple-
ment various two-input logic gates. The so implemented cir-
cuits were built and tested in Escherichia coli cells and they
showed a long-term memory for at least 90 cell generations.
This approach, however, is primarily limited by the available
recombinases and may not be scaled to implement large cir-
cuits. In this paper, we overcome this limitation by using the
CRISPR/Cas9 system for large logic circuit implementation.

Before introducing our method, we illustrate the inner
working of the scheme proposed in [1] with a two-input AND
gate example shown in Figure 1. Let chemicals AHL and aTc
be the inputs to the AND gate. Inducers AHL and aTc first
activate the expression of recombinases Bxb1 and phiC31, re-
spectively. These recombinases will then irreversibly invert
(flip) the DNA sequences flanked by their recognition sites.
The DNA sequences being flanked can be a promoter, a tran-
scription terminator, or a reporter, say, a green fluorescent
protein (GFP). Inverting these DNA sequences will alter the
output gene expression. In Figure 1, two terminators were
flanked by the recognition sites of recombinases Bxb1 and
phiC31, and the output green fluorescent reporter is highly
expressed only when both inducers AHL and aTc are in high
concentration to flip, and thus disabling, both terminators.
Therefore, the circuit of Figure 1 effectively implements a
two-input AND gate. Note that such DNA sequence changes
will survive cell division and can be inherited by the descen-
dant cells. Hence the logic function with a long-term memory
is achieved.

To construct a circuit containing m gates each with n in-
puts, the prior method may require up to mn different types
of recombinases. The construction is not feasible when the
number of available recombinases is less than mn. Because
CRISPR/Cas9 systems [2] are able to induce irreversible DNA
sequence inversions [3, 4, 5] and target millions of different
sites according to its single guide RNA (sgRNA) sequence,
it can potentially be used to implement large logic circuits
with a long-term memory. In this paper, we demonstrate how
the CRISPR/Cas9 system can be used to implement complex
logic gates and large logic circuits. Unlike prior work [6] using
Cas9 to repress gene expression without its nuclease activity,
our method utilizes the Cas9 nuclease as recombinases.

2. METHODS

Figure 1: Implementation of an AND gate using recombi-
nases. The right-turn arrow represents a promoter; the red
and blue triangles are the targeting sites of recombinases Bxb1
and phiC31, respectively; the letter T’s flanked by the target-
ing sites are transcription terminators; the green box repre-
sents the gene encoding the green fluorescent protein.

Figure 2: Schematic illustration of DNA sequences inversion
using Cas9 nuclease.

Figure 3: Implementation of a 3-input AND gate using Cas9
nucleases. The red, blue, and orange triangles denote the
targeting sites of Cas9-sgRNAi, i = 1, 2, 3, respectively.

Similar to recombinases, Cas9 nuclease is also capable of irre-
versibly inverting DNA sequences. Figure 2 shows a schematic
illustration how Cas9 proteins induce irreversible inversion.
First, the Cas9-sgRNA complex specifically binds to its recog-
nition sites composed of a short DNA sequence called proto-
spacer adjacent motif (PAM) and a DNA sequence comple-
mentary to sgRNA. After targeting, Cas9 nuclease cleaves the
DNA strands and generates two double-strand breaks (DSBs).
Finally, it inverts the DNA sequences between the two DSBs.
Since the recognition sites are destroyed after the inversion,
Cas9 nuclease cannot bind and invert the sequence again.

With the ability to induce DNA sequence inversion, Cas9-
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Figure 4: Implementation of basic 3-input logic gates using Cas9 nucleases. The inputs of each gate from top to down are
TF1, TF2, and TF3, respectively; TFi activates the expression of Cas9-sgRNAi; the red, blue, and orange triangles denote
the targeting sites of Cas9-sgRNAi, i = 1, 2, 3, respectively.

sgRNA complex can replace recombinases to fulfill gate op-
erations. Since Cas9 nucleases with different sgRNAs have
different recognition sites and there are billions of different
sgRNA designs, there are equivalently billions of different
recombinases made of Cas9-sgRNA complex, which makes
multi-input cellular logic gates feasible. As an example, Fig-
ure 3 show a realization of a 3-input AND gate using Cas9
nucleases. The logic gate takes three different transcription
factors (TFs) as inputs. Let TFi activate the expression
of sgRNAi, for i = 1, 2, 3 along with Cas9 nuclease. Then
sgRNAi and Cas9 nuclease together form a complex to induce
the inversion of the corresponding DNA sequence. In order
to express GFP in this gate, first we require Cas9-sgRNA1 to
invert the inverted promoter so that the GFP gene can possi-
bly be expressed. Second, Cas9-sgRNA2 is needed to flip the
terminator to avoid the termination of transcription before
reaching the GFP gene. Third, Cas9-sgRNA3 is demanded
to upright the GFP gene. Collectively, to have GFP highly
expressed all TFi’s must exist, which makes this circuit a 3-
input AND gate.

In Figure 4 we present nine other basic 3-input gates im-
plemented with Cas9 nucleases. One special implementation
is the XOR gate in (H). In this gate existence of one or three
input TFs results in one or three times of GFP gene inver-
sion and makes the upside down gene become upright, while
existence of two input TFs makes GFP gene flip twice and
remain upside down. Similar situations happen in the XNOR
gate in (I).

Since Cas9 nucleases can be applied to the implementa-
tions of multi-input gates, we are not constrained to only 3-bit
gates and basic gate types such as AND, OR, NAND, NOR,
XOR, and XNOR gates. Rather, we can construct complex
logic gates with more inputs. Figure 5(A) shows an example
of a 4-input logic circuit

O = (A1 + Ā2 ⊕A3)Ā4,

which can be directly realized by a single 4-input complex
logic gate, instead of cascading multiple two-bit gates.

Another advantage of constructing genetic gates using Cas9
nucleases is that more logic gates can be built in DNA strands
of a given length using Cas9 nucleases than recombinases. It
is because the length of the targeting site of a Cas9 nuclease
(20 nt) is shorter than that of a recombinase (about 50 nt for
Bxb1 and 40 nt for phiC31 ). This also makes Cas9 nucle-
ases more appropriate for the implementation of large logic
circuits.

Figure 5: (A) Schematic illustration of a 4-bit non-basic
logic function O = (A1 + Ā2 ⊕ A3)Ā4 (B) Corresponding
implementation using Cas9 nucleases.

3. CONCLUSION
We showed the possibility of using CRISPR/Cas9 systems to
implement large logic circuits with long-term memory. We
gave a few examples of multi-input gate implementations,
which can be composed to form large circuits; a systematic
construction of general complex logic gates is to be detailed in
a technical report. Also we discussed its several advantages in
terms of scalability and DNA length efficiency. We envision
its wide bioengineering applications.
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ABSTRACT 
The development of techniques that allow environmentally-
friendly, large-scale production of materials is critically important 
for today’s economy and society. In this paper we describe the 
first steps towards 3-dimensional printing of bacterial cultures and 
their possible application for the production of different materials. 
To achieve this, a commercial 3D printer was purchased and 
modified for bacterial systems. Printing temperature, printing 
speed, spatial resolution, and alginate-based bio-ink chemistry 
were all adapted. As a proof of principle, our 3-dimensional 
printing technique was applied to the production of spatially 
structured, microbially reduced graphene oxide (mrGO) using 
Shewanella oneidensis. Our combination of 3D printing 
technology with biologically engineered systems enables a 
sustainable approach for the production of numerous new 
materials.  

CCS Concepts 
 • Applied Computing ߡߡ��Life and medical science ߡߡ��Systems 
Biology  

Keywords 
3D printing, synthetic biology, Shewanella oneidensis, materials 
production, graphene, microbial reduction 

1. INTRODUCTION 
Tissue (bio-)printing is an emerging technique with multiple 
applications in medicine and biology, including visualization, 
education and transplantation. [1][2][3] To date, the prices of 
these techniques are tremendously high and not yet adapted for 
bacteria. Current efforts on bacterial printing suffer limitations of 
poor spatial resolution [4] or require laborious clean-room 
fabrication of microstructures that shape the printed bacteria [5].  
We have developed a “microbial 3D printer” that can deposit 
bacteria cells in specific three-dimensional patterns using simple 
devices and chemistries to produce materials. Our focus was to 
achieve a high spatial resolution as well as to print reproducible 
samples. As a demonstration, the technique was applied to the 
production of graphene. This two-dimensional carbon material 
combines excellent mechanical strength, high flexibility, good 
optical transparency, high carrier mobility, and maximal surface 
area. [6] [7] Microbial reduction of graphene oxide (GO) by the 
bacteria S. oneidensis is an extremely promising environmentally-
friendly large-scale method of microbially reduced graphene 
(mrGO) production. [8] [9] 
Herein, these material-modifying properties of the bacteria were 
connected to our new 3D printing technique. The combination of 
multiple methodologies to print 3D microbial structures with post-
processing methods allowed us a high-resolution deposition of 
bacteria and the fabrication of spatially-patterned materials. 

2. MATERIAL AND METHODS 
2.1 Printer ink 
7R�REWDLQ�����ȝ/�RI�bio-ink containing Escherichia coli, 1 mL of 
bacterial cells was spun down at 4000 rpm for 3 minutes and the 
supernatant discarded. The cells were resuspended in ����ȝ/� RI�
sterile Lysogenic Broth (LB) (Sigma Aldrich), DQG�����ȝ/�RI����
w/v sodium alginate were added to the solution, followed by 
vortexing. The printing surface was prepared by the equally 
distributed application of 100 µL 0,1 M CaCl2. 
7R� REWDLQ� ���� ȝ/� RI� bio-ink containing Shewanella oneidensis, 
the same protocol was followed except that Tryptic Soy Broth 
(TSB) was used instead of LB, and graphene oxide powder was 
added at 0.005g/mL, 0.01g/mL, or 0.02g/mL.  

2.2 Printing system 
The extruder and heater of a standard 3D printer (DIY CoLiDo 
from ReprapWorld) were replaced by a syringe tip and a self-built 
peristaltic pump (Fig. 1). [11] Silicon tubing (VWR DENE 
3100103/25) with an inner diameter of 1 mm and an outer 
diameter of 3 mm connects the syringe with a continuous stirred 
ink reservoir, and the pump is used to regulate the speed of bio-
ink extrusion. Printed objects were drawn in the free, online CAD 
program Tinkercad and implemented for printing using CoLiDo 
Software.  

 
Fig. 1. Modified 3D printer  

2.3 Graphene Oxide synthesis 
A modified Hummer and Offeman method [8] [9] was used to 
chemically synthesize GO.  In brief, 0,5 g graphite (Pure graphite 
flakes NGS Trading & Consulting GmbH with an average flake 
size of 45 ȝm (Ma -399,5 RG)) was mixed on an ice bath under 
continuous stirring with 20 mL H2SO4 and 5 mL HNO3. The 
mixture was stirred for 30 min, then 3 g KMnO4 were added (still 
on an ice bath). The mixture was stirred again for 30 minutes and 
incubated on the ice bath for one hour. The sample was heated to 
35°C for 3 hours and diluted with 40 mL ultrapure water. The 
mixture was incubated at 35°C for 2 hours, and then 100 mL 
ultrapure water was added. Finally, 3 mL H2O2 (30%) was slowly 
added, and the mixture was washed, centrifuged (1500rpm), and 
sonicated (2h).  
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2.4 Bacterial strains, media, and imaging 
Shewanella oneidensis MR-1 (ATCC® 700550™) was cultured in 
TSB media, and E. coli TOP10 cells constitutively expressing 
GFP or RFP were aerobically cultured in Luria broth media at 
37°C with continuous shaking (250 rpm). Spinning disk confocal 
microscopy was performed using excitation at 488 and 561 nm to 
acquire 74 z-stack images over a height of 37.5 ȝm. 

2.5 Analysis of the produced material 
A thin structural element was transferred from the 3D printed 
material onto a MICA sheet (Sigma Aldrich), after multiple 
washing steps using ultrapure water. The surface topography was 
studied via AFM (Bruker Multimode AFM with Nanoscope IIIa 
controller) in tapping mode. Raman Spectrometry (inVia model 
from Renishaw) was performed using an excitation line of 632,8 
nm, provided by a He-Neon laser. 

3. RESULTS & DISCUSSION 
In order to create a bacterial 3-D printer, the extruder of a 
standard 3D printer was removed and replaced with a modified 
print-head, to prevent excessive heating of the bacteria. Addition 
of a custom-built peristaltic pump allowed for adaptation of the 
pumping velocity to the low viscosity of our samples. Custom 
bio-inks were developed in which bacteria were mixed with 
dissolved alginate. The addition of calcium ions during the 
printing process triggered rapid cross-linking of the alginate 
molecules, forming a stable, biocompatible scaffold to support the 
bacteria. This gel retained its 3D structure on the order of hours to 
days but was fully removable upon vacuum drying and washing. 
Initial printing was performed using bio-ink containing 
fluorescent E. coli to demonstrate the spatial resolution of our 
multi-layer (3-dimensional) bacterial printing. 

 
Fig. 2. High-resolution 3D printing of alginate-based bio-ink 

Specific automated control of the pump and the print-head was 
implemented, resulting in the printing of high-resolution lines of 
bio-ink with a thickness of approximately 1 ± 0,2 mm (Fig. 2). 
This resolution is limited by the duration of bio-ink gelation and 
partially uncontrolled diffusion processes. Printing of multiple 
layers on top of each other resulted in an increase in line thickness 
of approximately 0,25 ± 0,05 mm per layer (Fig. 2). This minimal 
spreading can likely be further improved via additional tuning of 
the bio-ink composition and the printing parameters.  

 
Fig. 3.  Bio-ink prevents mixing between bacterial layers  

Inspection of the interior structure of stacked layers of printed bio-
ink was performed by alternating the printing of fluorescent E. 
coli bacteria of two different wavelengths (green and red). 
Spinning disk fluorescent confocal microscopy indicated that 

bacterial mixing was limited to a region with thickness of < 10 
ȝm. In the absence of alginate, the bacteria printed in stacked 
layers were extensively co-mingled (yellow) (Fig. 3).  
Experiments to produce spatially patterned mrGO will be shown 
at the conference. In short, the printing of bio-ink containing 
Shewanella and graphene oxide allows the microbial reduction of 
GO to occur within the spatially patterned ink. Our preliminary 
results using E. coli ink demonstrate that we have developed the 
technology to print bacteria three-dimensionally in a cost-efficient 
way and in a stable matrix. Connecting these novel bacteria 
printing techniques with approaches of synthetic biology will 
further improve its value as a “green” material production process 
and patterning methodology. 
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ABSTRACT
MakerFluidics is a microfluidic fabrication and control paradigm
that operates within a set of constraints guided by the ide-
als of automation and the modern “maker movement”. This
paradigm integrates into the larger microfluidic design flow
shown in Figure 1, but it can also be employed on its own.
MakerFluidics accepts physical and temporal valve control
requirements and a microfluidic device layout as inputs and
generates all of the necessary control software, manufactur-
ing files and assembly information required to build a self-
contained microfluidic device and control infrastructure.

1. INTRODUCTION
A significant aim of the modern maker movement is to

make technology and technological “know-how” accessible
to the masses. One way to accomplish this goal is to de-
vise solutions using resources that are flexible and ubiqui-
tous[5]. A significant criticism often levied against the field
of microfluidics is its high barrier to entry often as a result
of the need for highly specialized fabrication and control
equipment as well as expertise that is typically found only
in labs dedicated to microfabrication[7]. This work seeks to
create a design-to-device, automated microfluidic work-flow
constrained by the ideals espoused in maker culture.

2. CONSTRAINTS
An important goal of the maker movement is to increase

technology’s accessibility. This ideal is levied on MakerFlu-
idics in the form of a series of constraints, the first of which
is that all fabrication equipment must be sourced through
ubiquitous consumer and retail product outlets such as Ama-
zon.com in the Unites States, or Amazon.ca, .co.uk, .jp, etc.
internationally, and each individual piece of equipment re-
quired for fabrication and control must cost less than $100.
A desktop CNC mill and 3D printer are excepted from this
constraint on the basis that they are common maker-space
tools with a wide variety of uses extending well beyond the
field of microfluidics; the cost of the CNC mill (Othermill,
Othermachine Co.) and 3D printer (Ultimaker 2, Ultimaker
B.V.) used in our lab are each less than $2,500. Addition-
ally, all elements of the complete software tool chain must
be free and/or open-source.

To further facilitate microfluidic accessibility, all fabri-
cation and control protocols must be accomplished with-
out specialized infrastructure beyond a wall electrical out-
let. This excludes fume hoods, clean room facilities, tank
storage, vacuum lines and corona/plasma bonders. The pro-
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Figure 1: MakerFluidics is part of a larger microflu-
idic design flow that spans from biological specifica-
tion to microfluidic fabrication and control

cess for designing, fabricating and controlling programmable
(i.e., valved) microfluidics within the specified constraints is
explored. Each stage of the process includes a comparison
of current methods to methods developed or adopted by the
MakerFluidics framework.

3. MICROFLUIDIC FABRICATION
The fabrication of a microfluidic device typically has two

main steps: pattern geometries and seal layers[4].
Channel and valve geometries are etched in thermoplastic

polymers using a desktop CNC mill. This stands in sharp
contrast from conventional methods of microfluidic fabrica-
tion, namely photolithography and wet etching, which re-
quire the use of clean room facilities and highly specialized
equipment. The CNC approach is well-suited for integrating
valving technologies such as monolithic membrane valves [1]
(Figure 2) and centrifugal capillary valves [3]. A significant
trade-off for the relative ease of CNC milling thermoplas-
tics using a desktop (i.e., not industrial-grade) CNC mill
is that the maximum resolution is 25µm with an expo-
nential increase in reliability seen at feature sizes greater
than 250µm[2], whereas microfluidic geometries using con-
ventional methods such as photolithography can reliably
achieve features smaller than 1µm[4].

Once geometries are etched into the desired substrate,
sealing these channels becomes the next challenge. Poly-
dimethylsiloxane (PDMS) is a common material for fabri-
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PDMS Membrane 

Flow Layer 

Control Layer 

Flow Flow 

A. Closed Valve B. Open Valve 

Figure 2: Normally-closed monolithic membrane
valves [1] are realized by introducing discontinuities
in the flow layer (blue) and a corresponding pneu-
matic cavity in the control layer (red). These two
layers are separated by a PDMS membrane. To
open the valve a vacuum is introduced into the cav-
ity in the control layer.

cating microfluidics[4] and is also commonly used to encap-
sulate solar panels and outdoor lighting. It is because of the
latter property that PDMS (Sylgard 184, Dow Corning) is
available through retail outlets, such as Amazon, and, thus,
falls within the constraints for adoption by the MakerFlu-
idics fabrication paradigm. PDMS can be sealed irreversibly
through modifications to its surface chemistry via plasma or
corona exposure or sealed reversibly simply using the mate-
rial’s inherent Van der Waals attraction to various materi-
als including itself, glass and thermoplastics[4]. Since irre-
versible sealing through surface treatments involves special-
ized machinery, MakerFluidics employs the latter method
via Van der Waals force. The trade-off being that the re-
versible seal cannot withstand pressures greater than 5psi[4].
Using these techniques we have fabricated a number of con-
tinuous flow devices inluding the device shown in Figure 1
as well as centrifugal microfluidic systems.

4. EXPERIMENTAL CONTROL
MakerFluidics views experimental conditions as a sequence

of temporally-specified valve conditions. This necessitates a
data structure consisting of an enumerated array of valve
objects and a sequence of temporal specifications regarding
their state. This data structure is automatically generated
by microfluidic CAD software developed in CIDAR Lab, but
it can also be created manually as a series of wait statements
and valve conditions shown in Figure 3. These valve objects
are linked to the microfluidic layout provided to the fabrica-
tion software through the use of a JSON object for display
in a graphical user interface (GUI).

Pneumatics are provided through an array of 3D printed
syringe pumps controlled by custom firmware on an Arduino
microcontroller. This microcontroller receives serial com-
mands derived from the GUI running on a host computer.
The MakerFluidics control GUI and firmware is extensible
and interoperable with a conventional, solenoid-driven con-
trol infrastructure.

5. CONCLUSIONS
The field of microfluidics is a promising area for expand-

ing the boundaries of bio-design automation. Unfortunately
this field carries a high barrier to entry in terms of exper-
tise and equipment. The field of physical manufacturing
and computing once had similarly high barriers; the cost
of computer-controlled precision machinery could only be
borne by industry. Time brought down the cost of the
machinery but that alone was not enough to bring physi-
cal manufacturing to the consumer. It was only through
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Figure 3: The temporal specification (A)[6] for a
device containing six valves (B, C). The specification
in (A) dictates the set of conditions in (B) to begin
the assay. After 2000ms the valves change state to
that shown in (C), thus affecting the movement of
fluid through the device.

low-cost techniques paired with an enthusiastic community
that created a market for accessible manufacturing tech-
niques, which ultimately led to the rise of consumer-grade
3D printers and CNC mills in addition to low-cost, ubiq-
uitous computing platforms such as microcontrollers (Ar-
duino, MSP430, etc.) and single-board computers (Rasp-
berry Pi, BeagleBoard, etc.). This work aims to lower the
barrier to entry into microfluidics by developing microflu-
idic solutions able to be employed by the masses. This is
accomplished by viewing accessibility as a constraint to de-
velopment. It is our hope that with enough eyes, microflu-
idics can open up new avenues for automation within the
bio-design community.
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ABSTRACT 
Perchlorate (ClO4-) contamination of groundwater, surface water 
and food supplies is a widely spread hazard for the environment 
and our health on earth. However, it also poses a challenge for our 
future aims to colonize the planet Mars. Martian soil contains 
0.5 - 1% perchlorate, which therefore needs to be remediated in 
order to cultivate edible crops. Using synthetic biology approaches, 
the Leiden iGEM team will equip the bacterium Escherichia coli 
with the tools to convert the toxic compound perchlorate into 
chloride and oxygen. To this end, we will introduce a set of codon-
optimized genes from Dechloromonas aromatica, encoding for the 
perchlorate reductase complex, which reduces perchlorate to 
chlorite (ClO2-), and chlorite dismutase that then splits chlorite to 
chloride (Cl-) and oxygen. By designing this system as re-usable 
modules, called BioBricks, we pave the way for many future 
applications. Altogether, our system is widely applicable to remove 
perchlorate from contaminated soils on earth, while also being 
useful for future Mars expeditions. 

Keywords 
iGEM; perchlorate; soil remediation, Mars; Martian soil; 
Escherichia coli; Dechloromonas aromatica; perchlorate 
reductase; chlorite dismutase; simulated partial gravity; 
microgravity; Random Positioning Machine; BioBrick. 

1. INTRODUCTION 
Perchlorate is a highly soluble anion (ClO4-) that is toxic for 
mammals, including humans. The compound interferes with the 
iodine uptake in the thyroid gland, thereby affecting our 
metabolism as well as physical and mental development [1].  

Most of the perchlorate present on earth is synthetically produced 
for various industrial applications, and is present in fireworks, in 
rocket fuel and in oils [5]. Also nitrogen fertilizers contribute to the 
perchlorate contamination of soil, resulting in a large-scale 
investigation at request of the European Commission last year. The 
biggest problem lies in the high solubility of perchlorate, making 
that this compound easily leaches. Therefore it accumulates into the 
groundwater, thus contaminating our drinking water sources[6][7]. 
Notably, recent studies indicated that Martian soil contains 0.5 - 1% 
perchlorate, which potentially poses a challenge in face of the 
intended missions to this planet [8].  

Apart from the toxic effects of touching or ingesting perchlorate 
directly, plants grown on perchlorate-contaminated soils 
accumulate this toxic compound, making them inedible [6]. 

One potential method to decontaminate perchlorate from soil is by 
using bacteria that can convert perchlorate by reduction. Due to the 
high reduction potential of perchlorate (ClO4-/Cl- Eo = 1.287 V), 
some bacteria can use this compound as an electron acceptor. Such 
bacteria typically utilize the enzymes perchlorate reductase and 
chlorite dismutase to convert perchlorate into chloride and oxygen 
[4]. In this project, we will apply a synthetic biology approach to 
equip the model bacterium Escherichia coli with the necessary 
tools to convert perchlorate. Not only will our design be useful for 
soil remediation on earth, but also for future expeditions to Mars.     

2. OUR PROJECT 
2.1 The perchlorate reduction system from 
Dechloromonas aromatica 
Perchlorate reducing bacteria are found in different environments, 
such as pristine and hydrocarbon-contaminated soils, aquatic 
sediments, paper mill waste sludges, and farm animal waste 
lagoons. Most species belong to the genera Azospira and 
Dechloromonas[4]. The genes encoding for the perchlorate reducing 
system are contained on a conserved gene cluster [12], which will be 
transferred to E. coli as four modular BioBricks (Fig. 1)..   

The actual conversion of perchlorate to chlorite is carried out by the 
perchlorate reductase complex[8], which contains the PcrA, PcrB, 
and PcrC subunits. PcrD, which is also essential for perchlorate 
reduction, is a chaperone protein required for the assembly of the 
PcrAB complex prior to translocation via the Tat secretion 
pathway. The perchlorate reductase complex resides in the 
periplasm[2] and is tethered to the inner membrane via components 
of the electron transport chain (QDH, DHC; Fig. 2) [12]. The product 
of the perchlorate reductase complex is chlorite (ClO2-), which is 
further degraded by the enzyme chlorite dismutase (Cld). This 
periplasmic homotetramer converts chlorite into chloride (Cl-) and 
a molecule of oxygen [14]. Perchlorate reductase and chlorite 
dismutase only properly function in anaerobic or micro-aerobic 
environments [3].   

Codon-optimized versions of the genes encoding the proteins 
necessary for the reduction of perchlorate are currently being 
synthesized and will subsequently be introduced in E. coli to 
provide this model chassis with perchlorate reducing capability.  

Figure 1. Schematic overview of the conserved gene 
cluster used, encoding the perchlorate reducing system. 
Codon-optimized genes will be transferred to E. coli as 
four modular BioBricks, each expressed from its own 
promoter (arrows). Terminators are indicated as a T. 
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2.2 Characterization of E. coli under Martian 
gravity conditions 
Previous studies have indicated that E. coli seems to grow faster in 
space than on Earth [10]. To further explore these differences, we 
will characterize the physiological response of E. coli cells grown 
in an environment with a simulated gravity of Mars. For this, we 
will use a so-called Random Positioning Machine. Using RNA 
sequencing and validation by qPCR, we will identify the genes that 
are differentially expressed at reduced gravity. In addition to a 
better understanding of the physiological response of the cells, this 
approach will also enable us to identify promoters that can be used 
for the expression of our BioBricks. This will ensure that our 
system is expressed under conditions of reduced gravity.  

2.3 Modelling the metabolic fluxes and 
bioreactor functions 
The effects on the growth of E. coli upon introducing the 
perchlorate reductase will be modelled in silico. We will employ 
Elementary Flux Mode analysis based on stoichiometric data such 
as the E. coli core model by Orth, Fleming and Palsson [13]. This 
should help us to optimize E. coli for perchlorate reduction in an 
otherwise opaque metabolism. We will also model how the 
biological detoxification by our design would function in a 
contained environment such as a bioreactor. The use of a bioreactor 
would prevent release of the genetically modified organism into the 
environment and creates the needed micro-aerobic environment. 
 

3. THE LEIDEN iGEM-TEAM 
Our team consist of thirteen highly motivated bachelor and master 
students (Fig. 3), with backgrounds ranging from biology to 
physics and mathematics. By participating in the 2016 international 
Genetically Engineered Machine competition (iGEM), we would 
like to contribute to the community of synthetic biology and hope 
to meet many inspiring people. The results of the project will be 
presented during the Giant Jamboree in Boston (October 2016). 
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Figure 3. Team picture of the enthusiastic Leiden iGEM team.  

Figure 2. Schematic representation of the perchlorate 
reductase, which converts perchlorate to chlorite, and which 
is subsequently being converted into chloride and oxygen by 
chlorite dismutase. Mature PcrA contains a Molybdopterin 
cofactor (Moco). The insertion of this cofactor into apoPcrA 
is facilitated by PcrD, prior to secretion via the Tat 
translocation pathway (Based on Bender 2005 and Melnyk 
2013). 
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ABSTRACT 
In this paper, we describe methods for using Business Process 
Management systems to improve the efficiency of Synthetic 
Biology workflows. The systems of Business Process 
Management and its associated notation are detailed, and their 
implementation into a synthetic biology workflow are described. 
A system is discussed whereby Business Process Management 
software is integrated with other software packages and laboratory 
robotics in order to standardize and increase the efficiency of 
laboratory workflows. 

Keywords 
Business Process Management; Business Process Model Notation; 
Databases; Enterprise computing; Synthetic Biology. 

1. INTRODUCTION 
Synthetic biology is intended to bring engineering principles to 
the discipline of genetic engineering. Key engineering principles 
are the use of standardized parts and workflow processes, both of 
which should be consistent and replicable. Modelling the 
processes requires a method of specifying tasks and corresponding 
notation, a defined set of user interfaces, and the ability to 
integrate with existing standards and technologies. The methods 
should be constructed to maximize workflow efficiency, data 
collection and provide opportunities for the automation of tasks. 

This project aims to develop an open-source Business Process 
Management (BPM) system aimed at the needs of synthetic 
biologists. Business Process Management software is used to 
model workflow processes, which can then be uploaded to a 
server which will generate a workflow and accompanying data 
model that records task timings, allows data entry and      
facilitates the integration of processes into external  applications. 
End users of the workflow are able to access the data remotely 
through a web interface. 

2. BUSINESS PROCESS MANAGEMENT 

2.1 Business Process Model and Notation 
Business Process Model and Notation (BPMN) is a widely 
accepted format developed for specifying processes in graphical 

form [1]. BPMN is the core of BPM and provides a standard form 
of communication. It is currently the internationally accepted 
standard for process modelling [2]. As industrialization is an end 
goal of synthetic biology [3], the use of industry-standard tools 
such as BPM will increase synergy between industries and 
academia. 

The benefits of using BPM include: 

x Ease of constructing and altering processes with 
minimal programming. 

x Ability to define simple user interfaces. 
x Visibility of all sub-processes and individual tasks that 

form a process. 
x Reproducibility of processes due to design of processes 

in standard BPM notation. 
x Standardised representation of protocols.  

2.2 Modelling a Process1 
Figure 1 shows a Synthetic Biology workflow process modelled 
with BPMN. The process is divided into two lanes, one assigned 
to a user and one for a robot, where the task triggers an automated 
process. Tasks in each lane are to be completed by their assignee, 
and as the process of automation continues, tasks can flow from 
the user to the robot lane.  

 

Figure 1. An example of a synthetic biology workflow process 
in BPMN modelled in Bizagi Process Modeler [2]. The circles 
symbolize the start (green circle) and end (red circle) of the 
task. The blue rectangles symbolize tasks. The workflow is 

divided into two lanes, for user tasks (bottom lane) and robot 
tasks (top lane). 

                                                                 
1 These authors should be treated as joint first authors. 

SAMPLE: Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advantage 
and that copies bear this notice and the full citation on the first page. To 
copy otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
IWBDA2016, August 16–18, 2016, Newcastle,UK.  
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2.3 Existing Business Process Management 
Tools 
Other Business Process Management Suites are offered by major 
companies such as Oracle, IBM and Pega. Bizagi is being used as 
a basis for this project because of its data model is contained in an 
accessible SQL Server backend and its free status for small-scale 
enterprises. 

3. INTEGRATING TECHNOLOGIES 
3.1 Integration of Software 
Business Process Management (BPM) encompasses a field of 
techniques used to optimize workflows. In this study, BPM 
methods are used to model synthetic biology processes to 
standardize experiments, increase the ease of automation and 
allow analysis of workflow data. This study demonstrates an 
implementation of BPM for synthetic biology, with the data 
structure stored in a SQL Server Database, and custom ASP.NET 
websites used for additional data handling and analyzing. 
As part of this integration, the workflow processes were first 
modelled using industry-standard BPMN. The processes were 
then automated and combined to produce an application that could 
be accessed by an end user via a web-browser. Tasks in the 
process can be undertaken by an experimentalist or interface with 
other technologies. 
Figure 2 shows the modelling of the data structure within Bizagi. 
These are translated these into SQL tables in SQL Server Express, 
which can be accessed with Object Linking and Embedding 
through ASP.NET, allowing users to complete the workflows 
either through the Bizagi interface or a custom web interface. 

 
Figure 2. Data modelling in Bizagi Studio. Data is modelled as 

a series of entities that relate to each other. 

Figure 3 shows the custom ASP.NET interface designed for 
laboratory technicians to keep track of their workflow. Each step 
of a workflow can be associated with an image and instructions, 
along with a timer indicating a minimum and maximum time that 
each step should take. As the user steps through the process, the 
time taken for each step is recorded to the database, allowing 
future process analysis. The user can also record notes at each 
step, and customized input fields can be added for each step. 

 
Figure 3. Mockup of the enterprise system running on a 

mobile device. 

3.2 Integration with Robotics 
A language which translates protocols into instructions for a 
variety of liquid handling platforms can be incorporated into the 
application. This would enable the automated implementation of a 
single synthetic biology protocol across research centers with 
different types of liquid-handling robots and instrumentation. 
Software such as the BioCAD suite [4] and the stack for robotic 
execution of protocols developed by Vasilev et al [5] would allow 
process in the workflow to be viewed, analyzed and controlled 
remotely via one common web application. With the exception of 
a few unavoidable manual tasks (such as the preparation of 
samples), this would lead to a total automation of the workflow. 
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ABSTRACT 
Advances in large-scale de novo DNA synthesis technologies 
provide access to thousands of custom-designed sequence variants 
at low cost. Building on our algorithms for the design of diverse 
coding sequence libraries, we have developed a web-based tool to 
generate orthogonal codon variant genes. It is our hope that this 
tool will reduce the cost of gene library synthesis and enable 
research into the precise effects of codon utilization in gene 
expression in a variety of organisms. 

Categories and Subject Descriptors 
D.2.2 [Algorithms]: Nonnumerical Algorithms and Problems –
computations on discrete structures 

General Terms 
Algorithms, Experimentation. 

Keywords 
Gene design, genomic libraries, synthetic biology. 

1. INTRODUCTION 
Gene synthesis is a process during which oligonucleotides are 
combined into larger DNA sequences, ranging from hundreds to 
hundreds of thousands of nucleotides in length.�Techniques such 
as the in-vitro isothermal assembly [2] have been used to 
assemble sequences of varying lengths, including mega-base 
genomes [1].� In [5] the same technique was used to create a 
combinatorial library of biochemical pathways, containing 144 
combinations of 3 promoters and 4 gene variants. This feat 
demonstrated the effective use of assembly methods to accurately 
construct combinatorial libraries and, more importantly, rationally 
designed sets. 
Traditionally, due to the complexity of designing genomic 
sequences with well-controlled attributes and the gap of 
knowledge on the effect of these attributes, large-scale gene 
design experiments have relied on random synonymous mutations 
to generate the gene libraries. Welsh et al. [8] synthesized 72 
variants and chimeric combinations of genes encoding 
commercially valuable proteins and showed that variation in 
expression is highly correlated to codon usage in Escherichia coli, 

pinpointing 5-6 codons as most critical for expression. In 
constrast, a paper from the Plotkin lab [3] claimed that most of the 
variance in expression results from the amount of secondary 
structure in the 5’ end of the gene, after testing 154 variants of the 
GFP protein carrying random synonymous mutations. Further 
analysis of Plotkin’s dataset by Supec and Mac [7] identified 5 
specific codons from 4 amino acids to contribute almost all of the 
variation in expression levels attributable to codon usage. These 
codons were different than the ones identified by Welsh et al. 
Additional findings from the Plotkin lab [4] indicate complex 
relationships between codon selection, translation initiation and 
elongation, misfolding of proteins and autocorrelation. 
Currently it is not clear, even in well-studied model organisms, 
which rules one should follow to design genes for optimized gene 
expression. A common belief, emphasized by Plotkin’s group in 
[3] and by Super and Mac in [7], is that the mechanisms which 
determine gene expression can be established only by further 
large-scale experimentation. Toward that goal we have developed 
a web-based tool that enables the design of synthetic protein 
coding gene libraries to address the needs for large-scale in-vitro 
experimentation, while minimizing the cost of synthesis. 

2. METHODS AND RESULTS 
In our previous work [6] we investigated and solved the problem 
of minimizing the number of genomic fragments needed to 
synthesize a library of gene variants, all coding for the same 
amino acid sequence, but each having a unique codon distribution. 
For testing 4 different frequency levels (such as low, medium low, 
medium high and high) of the usage of a codon, 4 designs would 
be needed, each utilizing the codon at one of the 4 levels. For 
examining the effects of 5 different codons at 4 levels each, one 
would need to synthesize 1024 (45) different genes, to account for 
all possible combinations. The number of individual gene variants 
increases exponentially with the number of codons that we wish to 
investigate, as does the cost of synthesizing all the different genes. 
Our algorithm minimizes the number of sequence fragments 
required to construct gene variants, by sharing common fragments 
among variants. Let us examine a gene that can be assembled 
using 10 overlapping segments. We define as 1x coverage the 
total worth of sequence required to synthesize one gene variant. 
For each codon whose frequency we intend to alter, our algorithm 
examines consecutive DNA fragments to identify groups 
(intervals) containing enough corresponding amino acids to allow 
a ‘step’ between the frequency levels we wish to achieve. 
Assuming that we would like to create constructs that vary the 
usage of a particular codon according to the frequencies (.05, .30, 
.55, .80), we would identify consecutive fragments containing at 
least 25% (the step) of the corresponding amino acid’s 
occurrences in the gene. 
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Figure 1: Combinatorial design of library that varies the usage of two 

codons, with 4 frequency values per codon, 16 gene variants. All 
neighboring oligos share overlaps. The graph representation uses 
white nodes for internal oligo regions and black nodes for overlaps. 
Edges connect nodes (regions) that are part of the same oligo. 

Then the algorithm identifies disjoint groups of consecutive 
fragments which, when combined, can produce the desired 
constructs, each with a unique frequency of the codon under 
consideration. An example varying the occurrences of two codons 
is shown in Fig. 1. Instead of ordering 160 fragments to assemble 
the 16 desired gene variants, 24 segments suffice, with 24 being 
also the minimum number to realize this library design. 

 
Figure 2: Input interface of CVLTool. In this example we input the 
DNA sequence encoding the GFP protein, and we request a design 
that varies 4 codons at 4 frequency values each. The “Delta” 
parameter signifies the difference between varying codon frequencies. 

We have now developed a gene library design software, the 
Codon Variant Library Tool (CVLTool), whose input and output 
screen are shown in Fig. 2 and 3 respectively. The example shown 
involves the design of a GFP library varying 4 codons from amino 
acids (S, T, V, A) at 4 frequency levels (.05, .30, .55, .80). The 
GFP protein has a length of 238 amino acids, and with an oligo 
size of 90bp and overlap length of 18bp we need 10 overlapping 
fragments to cover the whole coding sequence. The resulting 
library design has 7.2x coverage, and demands ordering only 
2.8% of the amount of sequence the 256 separate genes would 
require. The CVLTool displays information about the library 
design, and the corresponding graph demonstrating the assembly 
of the oligos. While the number of occurrences of codons not 
involved in the design remains globally unaltered, a number of 
synonymous codons are swapped in and between certain oligos to 
avoid unintended overlaps. Once the library design is realized, the 
oligo DNA sequences can be downloaded in text format. 

The CVLTool will be accessible at http://algo.tcnj.edu/cvltool. 

 
Figure 3: Output screen of CVLTool. Displays library design and 
gene variant graph. “Download Oligos” button enables the retrieval of 
oligo DNA sequences in text format. “Fragments utilized” and 
“Design” information is described in detail in [6]. 
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1. INTRODUCTION
Systems engineering is an interdisciplinary field that fo-

cuses on building and maintaining complex engineering sys-
tems over their entire life cycles. Applying standards and
core concepts of related sub-fields such as performance en-
gineering (which focuses on ensuring that a system meets
its expected performance requirements throughout its life
cycle) and reliability engineering (which focuses on making
sure that a system does not fail more than expected during
its life cycle) is a promising way to advance synthetic biol-
ogy’s potential applications in research areas such as stem
cell research, cellular medicine, and cellular environmental
monitoring and sensing.

Recent work has demonstrated that genetic logic circuits
can be specified, synthesized, and built using a hardware
description language (like Verilog) [3]. Although this was a
vital stepping stone in creating a reliable framework to syn-
thesize genetic regulatory networks, Boolean functions lack
the functional richness required to capture the finer details
of molecular biology. Furthermore, sparse or poorly defined
characterization of genetic modules makes creating robust
genetic circuits difficult [2]. As biologists try to build more
complicated genetic systems, where the performance specifi-
cation of the desired system includes additional parameters
that are intrinsic to genetic components and their interac-
tions with the complex environment they operate in, a more
holistic approach is required. To accomplish this goal, we
have designed a software tool that accounts for many types
of decisions made throughout a complete specify-design-build-
test-learn work flow to enable iterative design of complex
genetic systems.

2. IMPLEMENTATION AND WORKFLOW
We introduce Phoenix as a design environment that can

implement an end to end implementation of systems engi-
neering for synthetic biology.

• Specification: Any genetic system would require 3
specifications:

– Functional specification: which describes the
overall expected behavior of a system as well as
the interaction with environmental context

– Performance specification: which describes the
temporal logic and timing constraints

– Structural specification: which describes the
orientation of DNA strands as well as the combi-
nation and relative positions of DNA components.

These specifications are available as parameterized Sig-
nal temporal logic(STL) function templates for an in-
verter, oscillator or toggle switch. A user can specify a
system consisting of one of these modules or a combi-
nation of these modules. The user can also upload an-
notated DNA sequence data (multi-part genbank files)
which is stored in a database using Clotho (a database
management tool for synthetic biology). Structural
orientation of the DNA components are specified us-
ing Eugene (a rule based design language) [4]. The
structural specifications are checked against known de-
sign rule constraints using grammar files (written in
ANTLR) to check the validity of the structural design.

• Design: The tool then builds a module tree to break
down the structure of the genetic module [5] down to
the abstract DNA components [5] required to build the
genetic system. A detailed list of components (supple-
mented with temporary testing components) is gener-
ated along with instructions required to assemble the
parts (using Raven [1]). These testing modules can
function like ‘unit tests’ for the genetic module being
built.

• Build and Test Once these components have been
built and tested in vivo, the raw cytometry data is pro-
cessed by a data analysis script using the Bioconduc-
tor library in R. These characterized modules are then
used to synthesize a genetic regulatory network with
assigned DNA components using parameter estimation
and in silico simulation. The assignment algorithm
uses various design space pruning methods along with
stochastic methods (like simulated annealing). These
assigned modules are checked against the STL specifi-
cation for the system and scores for each assignment is
assigned based on the closeness to the STL formula [6].
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Figure 1: Phoenix tool map and flow. Specify: To build robust systems, functional, performance and structural specification is required.
This example describes a genetic inverter. Design: The design step creates a module tree based on the structural and functional
specifications. The DNA components(augmented with testing modules) required to build the genetic system as well as assignments for
the genetic regulatory network are synthesized. Build: The build step generates assembly instructions to build these genetic components
and modules in vivo. Test: In the test phase, raw cytometry data is gathered for the systems built in the Build step. Verify: These
results are then processed and verified against the performance specification for the genetic system to compute the robustness of the
system.

The assignments with the best scores are then gener-
ated as the output of that iteration along with assem-
bly instructions (using Raven) to build them in vivo.
These assignments are tested and verified against the
performance specification of the genetic system.

• Verify and Learn: The results of both successful
and unsuccessful assignments are cataloged and used
to fine-tune and improve the synthesis results for suc-
cessive iterations using principles of machine learning.

3. CONTRIBUTIONS
Synthetic biology has various tools in the Specify(GEC,

Eugene), Design(Cello, SBROME), Build(Pr Pr, Puppeteer),
and Test/Verify(iBioSim, Tinkercell) phases of BDA. Each
tool focuses on a very specific task and solves a very spe-
cific sub problem. However, to ensure reliable performance
throughout the entire life cycle of a system, it is important
to have an interactive and hierarchical tool that guides users
with detailed instructions throughout the BDA process. The
framework is designed to ensure that the functional, perfor-
mance and structural specification of the genetic system is
well defined, reproducible and reliable. The iterative process
will use principles of reinforcement learning to improve the
performance of the synthesis and assignment algorithms for
successive iterations.
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1. INTRODUCTION 
The application of scientific knowledge for the manipulation 

of matter at the nanoscale is an emerging field of research that is 
generating a large degree of interest not only to the scientific 
community but also to the public in general. This field is known as 
nanotechnology. Nanoparticles, small agglomerates of atoms, play 
a central role in the field. They are important because they have the 
potential to compose the building blocks for the construction of 
nanodevices and because materials reduced to the nanoscale 
frequently have properties different from the bulk parts. Gold 
nanoparticles (AuNPs) are probably the most studied nanoparticles 
and can be considered the model entities for the field. One of the 
reasons why AuNPs are so researched is that they display the 
surface plasmon resonance (SPR) phenomenon when at nanoscale. 
SPR happens when the mean free path of the conduction electrons 
in the bulk material is bigger than the particle radius and is 
characterized by a standing oscillation of the free electrons in the 
metal when stimulated by photons at certain wavelengths [1]. 
AuNPs have been widely studied for applications in a range of 
fields, such as electronics, medicine and catalysis. 

Overall, the methods for synthesizing metallic nanoparticles 
can be grouped into three categories: chemical, physical and 
biological methods. Chemical synthesis is the preferred method. In 
general, this approach is simple and has good controllability, 
however it frequently raises concerns for personal and 
environmental safety because of the necessary handling of harsh 
chemicals. Physical methods are more commonly used for the top-
down manufacturing of nanodevices than for the synthesis of 
nanoparticles. The main reason for this is the high cost of 
equipment in comparison to other methods. Biological processes 
are better explained as a chemical reduction performed by 
biomolecules. This approach is gaining increased attention due to 
the lack of requirement of strong chemicals, high temperatures or 
pressures, the low cost involved, and the simplicity of the method.  

Several different organisms have been demonstrated to be able 
to synthesize metallic nanoparticles. These include species of 
bacteria, algae, fungi and even plants. Although extensive work has 
been done for the determination of new species capable of 
producing metallic nanoparticles, very little research has been 
directed towards the mechanisms involved in nanoparticle 
biosynthesis. What is known so far is that the process starts with 
adsorption and/or absorption of metallic ions by the organisms, 
followed by biochemical reduction [2].  

Shewanella oneidensis is a facultatively aerobic Gram-
negative bacterium isolated from the Lake Oneida in New York [3]. 

This strain is peculiar for having an advanced protein system that 
allows it to utilize a range of inorganic compounds as terminal 
electron acceptors. This system, called the Mtr pathway, is 
comprised of a group of c-type cytochromes and proteins that 
shuttle electrons from the quinone pool to outside the cell. A 
representation of the Mtr pathway can be found in Figure 1. It can 
be seen in Figure 1 that the electron, coming from the cytoplasmic 
membrane, is transferred from CymA, a tetraheme cytochrome, to 
the PEC, a decaheme cythochrome that is composed of one of four 
paralogs, MtrA, MtrD, DmsE and SO4360. �-barrel, a protein that 
can be either MtrB, MtrE, DmsF or SO4359, facilitates the direct 
transfer of electrons from PEC to OMC, a decaheme cythochrome 
made of one of three paralogs, MtrC, MtrF and OmcA, that is then 
responsible for reducing the inorganic compounds extracellularly. 

 
Figure 1:  Mtr pathway of S. oneidensis MR-1 (Adapted from 
[4]). OMC stands for outer-membrane cytochrome, PEC for 
periplasmic electron carrier, OM for outer membrane and CM 
for cytoplasmic membrane. 

This special system in S. oneidensis makes it attractive for the 
biomanufacturing of metallic nanoparticles, as it is reasonable to 
assume that the respiratory mechanisms of the organisms, if are not 
fully responsible, might have at least an influence in the reduction 
of metallic ions in solution. In fact, previous studies have already 
used this strain for the biosynthesis of different kinds of metallic 
nanoparticles, including AuNPs [5]. 

Here, we investigate the effect of OMC in the biosynthesis of 
AuNPs. We report the formation of gold nanoparticles by several 
mutants of S. oneidensis containing all the combinations of gene 
deletions of the OMC paralogs. The parameters monitored were 
surface plasmon band peaks, gold ions adsorption capability, 
quantity of nanoparticles produced and characteristics of the 
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particles made (size and shape). These experiments provide some 
insights into the factors that influence nanoparticle formation and 
improved controllability of the AuNPs formed. Ultimately we are 
interested in isolating the parts of the MTR pathway that are 
responsible for the formation of particles of specific sizes and 
shapes. Developing a model, based on empirical results, describing 
the biosynthesis of the particles is also a goal of the project. 

2. SOME INITIAL FINDINGS 
Figure 2 contains the peaks of the normalized wavelength scan 

readings, obtained via spectrophotometry, of S. oneidensis wild-
type (WT) and some of the mutants tested. The scans were 
normalized to obtain a comparison of the surface plasmon bands 
generated. The values correspond to the differences between the 
measurements taken after 48h of incubation in gold solution and 
the measurements taken at time zero. 

 
Figure 2: Wavelength scan measurements of S. oneidensis WT 
and mutants during incubation in gold solution for 48h. The 
results are the peaks of the normalized spectra. The numbers 
on top of the bars correspond to the wavelengths of the peaks. 
Error bars indicate the standard deviation of three replicates. 

Figure 2 shows clearly that the deletion of genes that 
contribute to extracelullar respiration impacts on the biosynthesis 
of AuNPs. The differences in the peaks were statistically significant 
in some cases. These results mean that some gene products favor 
the production of nanoparticles in such a way that the plasmon band 
formed is bigger or smaller than others. Various factors influence 
plasmon band intensity, such as size and shape of the particles, as 
well as the amount of nanoparticles made, among other things. 
Several different analyses can be carried out to better determine the 
factors that were influenced by the mutations. One of them, 
transmission electron microscopy (TEM), was used in this study for 
the same strains. The results can be found in Figure 3. 

The TEM results in Figure 3 also show differences in the 
nanoparticles synthesized by the strains. For instance, it is clear that 
the AuNPs made by the �mtrC mutant are, in general, much smaller 
than those made by the other strains. At the same time, it can be 
seen that the peak for this mutant in Figure 2 is also smaller in 
comparison to the other strains. In the case of the �omcA mutant, 
the particles made were bigger than the ones made by the other 
strains. This result also correlates to Figure 2, where this mutant 
had an overall high peak. The mutant containing deletions in the 
mtrC and omcA genes had the highest plasmon band peak, but 
didn’t present the largest particles in Figure 3. However, it can be 
seen that this strain had a higher amount of particles in comparison 
to WT and �omcA mutant. 

Figure 3: Sample TEM pictures of S. oneidensis (WT and 
mutants) with the biosynthesized AuNPs. a) WT, b) ��omcA 
mutant, c) ��mtrC mutant, d) ��omcA/��mtrC mutant. 

These results combined show that both particle size and 
quantity made influenced the peaks. More importantly, it is clear 
that certain genes have a direct influence on the size of the particles. 
That is the case, for instance, of omcA. The particles with size under 
10 nm were made only when this cytochrome was present. It can 
be argued that omcA is also contained in the WT strain, but it should 
be noted that mtrC is the preferential paralog for OMCs [4]. 

These are only some of the results obtained in this project, 
much more findings were achieved and we look forward to present 
them at IWBDA. 
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1. INTRODUCTION
DNA-based circuits relying on predictable thermodynam-

ics and kinetics of DNA strand interactions impart flexibility
in synthesizing synthetic biological constructs and in cou-
pling these circuits to in vivo processes [1, 2, 6, 7]. Here, we
focus on the synthetic Kim-Winfree oscillator network, illus-
trated in Fig. 1(i), which is a simple but effective coupled
oscillator system in which two DNA switches SW1 and SW2
are coupled through activator and inhibitor blocks realized
by RNA signals and auxiliary DNA species (see [3]). A typ-
ical experimental realization is closed in the sense that once
the operation starts, we do not either add any chemicals, es-
pecially NTP fuel, externally into the wet-lab apparatus or
remove any chemicals, especially waste products, from the
apparatus. Within the closed system, the oscillations are
bound to die out sooner or later — diminishing NTP fuel
eventually stops supporting the production of RNA signals
and accumulating waste products clog down the toeholds
and, as a result, adversely affect the signal propagation. Fur-
thermore, the oxidation effects and the pH variations tend to
deactivate the enzymes. Loading poses an additional chal-
lenge since it increases the order and the uncertainty of the
system — indeed, these oscillators have recently been used
in [8] to drive conformational changes of a DNA nanome-
chanical device called DNA tweezers. As Fig. 1(ii) shows,
the oscillator performance degrades sharply under loading.
We propose to improve the loading capacity of such tran-
scriptional devices by adopting a partially open architecture
and by using a discrete-time in silico controller, a block dia-
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gram of which is illustrated in Fig. 2, which is to be coupled
to the wet-lab apparatus.
A light switching in silico controller, implementing a com-

bination of a Kalman filter and a model predictive controller,
was recently reported in [10]. In [4], a continuous-time L1

adaptive controller was proposed to use a DNA/RNA strand
based actuation that faciliates a much greater control chan-
nel bandwidth than the one provided by a light-based actua-
tion. In the L1 adaptive control architecture, the estimation
loop is decoupled from the control law. This decoupling
allows for the use of fast estimation rates, leading to uni-
form performance bounds and guaranteed robustness in the
presence of bounded nonlinearities and system uncertain-
ties. Hence, the closed-loop system converges to a reference
system with partial compensation of uncertainties, which is
linear, and hence has a scalable, repeatable, and predictable
response. Our discrete-time L1 adaptive controller builds on
the theory developed in [5] which ensures stability for any
sampling time. This controller is optimized using a numeri-
cally efficient convex optimization method and is well suited
for many such bioengineering applications since the frequen-
cies of the reference inputs encountered are slow enough, the
biological processes evolve slowly enough, and the wet-lab
measurements are at discrete time intervals.

2. MAIN RESULTS
We adopt a partially open architecture analogous to a mi-

crochemostat (see [9]) so as to inject control inputs without
increasing the reaction volume. In this continuous flow re-
actor, DNA species, enzymes, and NTP fuel flow in at a low
rate, while the outflow removes a portion of reaction mix-
ture, keeping the accumulation of waste products in check.
We choose the switch outputs of the main reaction chamber
to be the state variables that are to track the desired periodic
waveforms. The DNA switches are tagged with fluorophores
and the auxiliary DNA activators, A1 and A2, are tagged
by quenchers such that the binding of an activator to its
target switch reduces fluorescence signal. The two switches,
SW1 and SW2, have different fluorophores, allowing for a
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Figure 1: (i) The Kim-Winfree oscillator network
comprises two switches (SW1 and SW2) connected
through an activator rA1 and an inhibitor rI2 block.
In [8], it is used to drive DNA tweezers. Due to
the loading effects and a closed-system design, this
network is unable to drive even moderate loads: the
plot (ii), taken from [8], illustrates the loss of oscil-
lations as the load increases from 0 nM to 400 nM.
This highlights the need for more sophisticated con-
trollers and for a more open design.

Figure 2: Our discrete-time L1 adaptive controller.
This controller is implemented in silico in a com-
puter outside the wet-lab apparatus and the inter-
faced with the apparatus.

real-time measurement of the switch outputs as fluorescence
signals. The target waveforms are generated internally as
the reference signals in an in silico controller implemented
inside a computer — the commands of in silico controller
controls, in discrete-time, the concentration of inhibitor and
activator strands to track the reference signals. We charac-
terize the expected disturbance and modeling uncertainty,
obtain a discrete-time model of the overall system to be
controlled, and then synthesize a discrete-time L1 adaptive
feedback controller to achieve the desired performance. As
Fig. 3 illustrates, a significant improvement in the tunabil-
ity and loading capacity of oscillator is obtained. This ap-
proach can easily be adopted to improve the robustness and
the loading capacity of a wide range of wet-lab devices.
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1. INTRODUCTION 
In microelectronics, timing analysis is a very crucial 

requirement for ensuring the correct operation of a logic circuit. 
For the genetic logic circuits, the timing analysis may likely 
become an essential design characteristic. In digital electronics, 
circuits are made up of digital logic gates, which themselves are 
composed of transistors [1]. The transistors, typically used in the 
composition of digital logic gates, have well-defined threshold 
voltage value [1], which categorizes the logic level-0 and 1. To 
date, the timing characteristics, like propagation delay, hold time, 
setup time etc., are all well characterized. This is however not the 
case for genetic logic gates, where each of them are composed of 
different species and promoters, which may result in different 
threshold concentration values. Furthermore, digital logic gates 
have the same physical quantity, i.e., voltage, as their input and 
output. On the contrary, genetic logic gates usually have different 
species, which act as input to control the regulation of other 
specie, which acts as output. Besides this, the signals in electronic 
circuits propagate in separate wires, which does not directly 
interfere with each other. However in genetic circuits, signals are 
molecules, drifting in the same volume of the cell, and hence 
easily merge with the concentration of other compounds, resulting 
in crosstalk with the neighbouring circuit components. These facts 
make the timing analysis of genetic circuits quite challenging. 

Similar challenges were encountered when the field of 
microelectronic circuits design was immature in its early days. 
Today, some of these challenges are solved through the 
enhancement in the fabrication process; others have been 
addressed through the development of advanced electronic design 
automation (EDA) tools. The advancement in the genetic design 
automation (GDA) tools can also help addressing these 
challenges, which may result in the reduction of design 
complexity of genetic logic circuits.  D-VASim (Dynamic Virtual 
Analyzer and Simulator) is one such tool, which is developed for 
the simulation and analysis of genetic logic circuits [2]. A new 
feature of logic and timing analysis has been introduced in D-
VASim. This feature is introduced to help users in verifying the 
logic function of a genetic logic circuit by extracting the observed 
logic function from the simulation data. During the analysis, a  
user may apply all the possible input combinations to find out the 
correct logic behavior of a circuit. The key challenge in 
determining the correct Boolean logic function from the analog 
simulation data is to categorize the input concentrations levels 
into logic-0 and logic-1. As mentioned earlier, this is similar to 
digital electronic circuits in which a certain threshold value of 
input voltage differentiates the logic levels 0 and 1 [1]. The 
threshold value for the concentration of input species must also be 
identified, which significantly effects the concentration of output 
specie of a genetic logic circuit.  

2. METHODOLOGY 
We performed the preliminary timing analysis on the genetic 

logic circuit models developed by Myers [3] using iBioSim [4]. 

Fig. 1 shows the results from running the stochastic simulation of 
the genetic NAND gate, one (Fig. 1(a)) and fifty times (Fig. 1(b) 
and (c)), respectively. The unit of species’ concentration used for 
these models is the “number of molecules” [3]. Fig. 1(a) shows 
that both of the inputs are triggered to 11 molecules, TetR after 
1000 time units (s) and LacI after 2000 time units (s), and that the 
output is highly stochastic, which makes it difficult to determine 
the input threshold value. A smooth output curve is obtained by 
plotting the average of 50 runs, as shown in Fig. 1(b) and (c).  

 
Fig. 1. Preliminary analysis of a threshold value for the genetic NAND 

gate using iBioSim.  

In Fig. 1(b), it can be observed that keeping the input 
concentration to 11 molecules causes the average output 
concentration to cross the level of input concentration. If we 
reduce the input concentration further to 10 molecules, the 
average output concentration stays above the level of input 
concentration, as depicted in Fig. 1(c). We performed the same 
analysis with different concentration levels on different logic 
circuits. Based on this analysis we define the threshold value as 
“the minimum concentration of input species, which causes the 
average production of output specie to cross the level of threshold 
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input concentration”. D-VASim obtains the threshold value of a 
genetic logic circuit iteratively; by automating this process of 
gradually increasing the level of input concentrations to a next 
user-defined level and observe if it effects the concentration of 
output specie. Another important parameter in obtaining the 
correct logic function of a genetic circuit is the input-output 
propagation delay. The input-output propagation delay can be 
defined as “the time from when the input concentration reaches its 
threshold value until the time that corresponds to the instant when 
the output concentration crosses the same threshold value”. For 
instance, assume that the initial concentrations of the input 
species, of a two-input genetic AND gate, are zero (logic-0). The 
input-output propagation delay is the time between the instant 
when both of these input species are triggered to a significant 
concentration level (threshold level, logic-1) and the instant when 
the concentration of output specie reaches to the same significant 
level of concentration (threshold level, logic-1). Therefore, for the 
single-gate genetic circuits, the input-output propagation delay 
can also be termed as a gate delay. Similar to electronic circuits, 
where the multiple transitions of inputs go undetected when they 
occur either in one clock cycle or in a time less than the gate 
delay; the genetic circuits may also be expected to have such 
behavior. Hence, in order to obtain the correct behaviour of a 
genetic circuit, all the possible input combinations must be 
applied each after this propagation delay.  The propagation delay 
in Fig. 1(b) is about 400 time units.  

3. EXPERIMENTATION AND RESULTS 
D-VASim requires some user-defined parameters to perform 

threshold value and propagation delay analysis. It begins by 
asking Start at value, which specifies the concentration of input 
specie(s), from which the tool should start its threshold analysis. 
The user is also required to specify Increment of and Stop at 
parameters. Increment of denotes the value with which the input 
concentration is increased for each iteration. Stop at value 
specifies the input concentration at which the algorithm should 
stop the analysis of the threshold value. When D-VASim 
estimates the possible threshold value, it verifies this value by 
iterating the model for the user-defined No. of iterations. During 
this iterative verification process, D-VASim obtains the average 
propagation delay. It also identifies how consistent the average 
output for the estimated threshold value is. 

The algorithm requires an initial assumption of the propagation 
delay value. It is already mentioned earlier that the propagation 
delay value is critical in extracting the correct logic behavior of a 
circuit model. Thus, it is necessary for D-VASim to wait until this 
time value has lapsed before switching on to the next combination 
of inputs while searching for an appropriate threshold level. Since 
the propagation delay value is unknown for the automatic 
analysis, D-VASim begins the analysis with an assumed value and 
later estimates the approximate one. Assuming a higher value 
increases the estimation time but gives a more accurate estimation 
of the threshold value and propagation delay. 

Fig. 2(a) shows the threshold value analysis results obtained by 
D-VASim for the genetic AND gate [3]. D-VASim also estimates 
the standard deviation (enclosed in braces in the Estimated 
Propagation Delay value box) of propagation delay for all 
number of iterations. These results indicate that an input 
concentration value of 15 (default units obtained from SBML 
model) is a threshold value for this model. Any value below is 
considered as logic-0 and above as logic-1. When the 
concentration of both the inputs are kept above 15 units, the 
output specie is supposed to be triggered approximately after 788 
(±121.94) time units. The output consistency specifies that the 
average output, during iterative analysis, remained 100% 

consistent for the estimated threshold value and propagation 
delay.   

 
Fig. 2. Outcomes of D-VASim automated analysis. (a) Results of 

threshold value and propagation delay analysis (b) Behavior of a model in 
terms of Boolean expression. 

 
Fig. 3. Simulation traces for genetic AND gate in D-VASim. 

These results can be verified in the simulation traces shown in 
Fig. 3. It can be observed clearly in this figure that when both the 
inputs, LacI and TetR (see [3] for circuit details) are triggered to 
logic-1 (threshold concentration level � 15 molecules at ~2700 
time units), the output specie (GFP) turns to logic-1 (crosses this 
threshold value) approximately after 856 time units, which lies 
under the standard deviation calculated by D-VASim.  

When all the possible input combinations are applied with an 
estimated propagation delay, a logic verification option can be 
executed. Fig. 2(b) shows the Boolean expression obtained for 
this genetic circuit model from the simulation data. D-VASim also 
calculates the percentage fitness of an obtained Boolean 
expression in the entire simulation data. This tells that the 
extracted Boolean expression of this model satisfy 99.74% of the 
simulation data. The rest 0.26% are those instants where the 
output of an AND gate is low when both of its inputs are high (see 
Fig. 3 after 3500 time units).   

4. SUMMARY 
The capability of timing and logic analysis of genetic circuits 

may help users to characterize the timing constraints of genetic 
components. With D-VASim, it is also possible to perform the 
timing and logic analysis on the intermediate components of 
complex genetic circuits. We will explore this feature further by 
analysing the timings on recently published genetic circuits [5].   
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1. INTRODUCTION
Fluigi [6] is a microfluidic design framework that allows

researchers to realize abstract descriptions of liquid flow rela-
tionships automatically as physical devices and correspond-
ing control software. Its goal is to provide synthetic biology
researchers with the tools to use microfluidics for novel com-
putation, discovery, and test applications. A critical compo-
nent of this work-flow is MINT, a format for describing the
microfluidic components and the connectivity of the control
and flow layers in the microfluidic device. This work de-
scribes MINT and where it falls in the larger Fluigi software
flow.

Figure 1 illustrates the two work-flows that are a part of
Fluigi. In particular, it demonstrates how Fluigi generates
designs from both MINT design files and “Functional De-
scriptions” using tools like Cello [8]. The output generated
by Fluigi can be either a photomask drawing for traditional
soft layer photolithography [4] or a vector drawing output
for the Makerfluidics [10] toolchain to fabricate the microflu-
idic devices. Using MINT, designers can share their designs
with the rest of the community and make use of Fluigi to
fabricate their designs.

2. MINT
MINT is based on the microfluidic netlist abstraction in-

troduced in [7]. The microfluidic component descriptions
have been expanded to include additional microfluidic com-
ponents from the scientific and microfluidic literature [6] and
has syntax and semantics extended to create a self contained
Microfluidic Hardware Description Language with the abil-
ity to describe constructs required to perform common mi-
crofluidic operations.

The MINT microfluidic constructs are primarily described
as either Primitives [7] or Modules [6] where the Modules
are a collection of Primitives which are treated as a sin-
gle entity. All of the MINT constructs can be customized
to fit specific design needs by modifying their parameters.
The primitives consist of ’PORT’, ’MIXER’[11], ’CHAN-
NEL’, ’VALVE’[12], ’NET’ and ’CELL TRAP’[9] and are
the fundamental building blocks. The MINT modules cur-
rently supported by Fluigi are ’BANK’, ’MUX’[12], ’TREE’,
’LOGIC ARRAY’, ’GRADIENTGENERATOR’[3], ’DROPLET
GENERATOR’ [11] and ’ROTARY PUMP’[13].

In a MINT device description, the microfluidic constructs
are declared in either the“FLOW”or the“CONTROL” layer
by declaring them within the respective ’LAYER’ blocks. In
addition to the primitives and the standard modules, MINT

also allows the designer to import devices created by the
user and instantiate them. MINT lets designers tag any of
the ’PORT’ components present in their design as a ’TER-
MINAL’. Once tagged the device can be instantiated and
be treated any like modules. By instantiating them before
the layer blocks, the designer can then make connections to
the instance ’TERMINAL’. An example of this importing
capability has been demonstrated in Figure 2. A detailed
documentation and a tutorial of the MINT example shown
in Figure 2 is available in the MINT Wiki [1].

3. INTEGRATION WITH FLUIGI
MINT allows the designer to use Fluigi as and end-to-end

microfluidic design tool. The Fluigi software tool consists
of a parser for the MINT, a place and route layout system
based on [2] and [5] algorithms, a control sequence generator,
and an output generator for drawing photomask and vector
design files of the device layout. It can use the MINT design
files to place and route the device layouts. It is also capable
of importing and instantiating designs to generate complex
hierarchical designs as shown in Figure 2. In addition, it
is also capable of generating microfluidic devices for genetic
circuits and their corresponding control sequences [7].

4. CONCLUSION
Using MINT designers can now share their microfluidic

designs and create complex Lab on Chip (LoC) or Microflu-
idic Large Scale Integration (MLSI) systems utilizing the
“sandbox” created by the combination of MINT, Fluigi and
Makerfluidics.

The integration of synthetic biology, novel microfluidic
fabrication techniques, and embedded electronics has the
potential to transform the landscape of engineering biolog-
ical systems. Since applications in cell-based therapeutics
and biosensors expand on the idea of distributed biological
computation, they could be greatly benefited with advances
in CAD tools that not only automate the design process for
Flow Microfluidics but also take advantage of novel fabrica-
tion techniques.
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Figure 1: Fluigi Work-flows. Shown is how a MINT Description or a Functional Description of a biological
circuit can be synthesized into a microfluidic device. It also shows how the different research projects will
interact with Fluigi to automate entire process in the future.

DEVICE net_test 

LAYER FLOW 
PORT p1, p2 r=100; 
V LONG CELL TRAP ct1 numChambers=10 

chamberWidth=100 chamberLength=100  
chamberSpacing=50 channelWidth=100; 

CHANNEL c1 from p1 3 to ct1 1 w=100; 
CHANNEL c2 from ct1 2 to p2 1 w=100; 

TERMINAL 1 p1; 
TERMINAL 2 p2; 

END LAYER 

LAYER CONTROL 
PORT p3 r=100; 
VALVE v1 on c1 w=300 l=100; 
VALVE v2 on c2 w=300 l=100; 
NET net1 from p3 1 to v1 4, v2 4 
 channelWidth=50; 
END LAYER 

IMPORT net_test 

DEVICE module_test 

net_test nt1,nt2,nt3,nt4; 

LAYER FLOW 

CHANNEL cx1 from nt1 1 to nt2 2 w = 100; 
CHANNEL cx2 from nt2 1 to nt3 2 w = 100; 
CHANNEL cx3 from nt3 1 to nt4 2 w = 100; 

END LAYER 

Figure 2: Importing in MINT. The Figure shows MINT code snippets and their corresponding outputs
generated by Fluigi on their right. The first code snippet describes the device net test and the second describes
module test which imports, instantiates the device net test and makes connections between the instances.
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ABSTRACT 
Genetic circuits have demonstrated their ability to sense 
environmental stimuli both specifically1, and across a wide 
dynamic range2, and researchers have leveraged these systems to 
engineer increasingly complex logic devices into biological 
systems3,4. Coupled with advances in modular DNA assembly 
techniques like Golden Gate, Isothermal Assembly, and MoClo5, 
the high-throughput assembly of these devices allows researchers 
to rationally design, build, and test, a much larger portion of the 
available design space more rapidly. 

However, these genetic circuits are often limited by the availability 
of fully orthogonal parts6, and the requirement for separate genetic 
devices to be spatially constrained in order to relay information. 
Here we demonstrate the integration of genetic circuits with 
electronics in an effort to address these limitations. By using a 
library of modular genetic devices which cause a drop in pH upon 
the sensing of a chemical stimulus, coupled with Raspberry Pi 
computers and Twitter as a signal intermediate, we show that these 
genetic devices can respond to a number of stimuli and have the 
output of this logic actuate processes in a distinct genetic circuit in 
a remote location. This relieves the constraint of orthogonality, 
since genetic devices can be separated into different samples, and 
allows spatial independence through the use of a computer network 
to mediate signal propagation between distinct genetic circuits.   

Keywords 
Synthetic biology; biosensors; MoClo; electronic integration; 
automated assembly 

1. INTRODUCTION 
While a considerable effort has been applied to the mining and 
generation of new orthogonal genetic parts6, segregation of genetic 
circuits into distinct, separate populations is an alternative solution 
which can alleviate the necessity for parts which do not interfere 
with one another. Unfortunately, the propagation of input and 
output signals in these genetic devices, most often biomolecules 
(bacterial quorum sensing molecules, arabinose, etc.), imposes a 
spatial restriction on these devices as well. Genetic elements 
encoding logic layers must either be within the same cell or in 
distinct cells which can move to, or excrete signals for downstream 
cells to receive, limiting how spatially separated these circuits can 
be. By comparison, integration with electronic devices, which are 
not bounded by the same limitations, offers an ideal solution to 
some of the problems facing performing genetic logic in biological 
systems.  

 

 
Figure 1: Integrating genetic circuits with electronics alleviates 
the need for part orthogonality. (A) As the number of inputs 
increases for a genetic circuit, the number of orthogonal signals 
must also increase, however this does not scale due to the lack of a 
large number of orthogonal genetic parts. (B) By comparison, 
integrating genetic circuits with electronics allows part reuse and 
removes the constraint of orthogonality, allowing the same 
biological signal to actuate different responses through electronic 
intermediates.  

2. GENETIC CIRCUIT CONSTRUCTION 
& ELECTRONIC INTEGRATION 
Using Modular Cloning7 (MoClo), we were able to rapidly build a 
library of genetic circuits where the expresVLRQ�RI�ȕ-galactosidase 
is controlled by various inducible promoters. These circuits operate 
as AND logic gates where ȕ-galactosidase expression drives the 
breakdown of lactose in the culture medium, lowering pH only 
when both the correct inducer and lactose are present. We chose pH 
as a measureable output for these circuits due to the ease of 
measurement and integration with inexpensive electronics.  

The pH of cultures are continuously monitored using a standard 
glass electrode pH sensor connected to a Raspberry Pi, which sends 
a tweet to the @TweeColi Twitter page upon sensing the pH drop 
below a predesignated threshold. The tweet serves as an output 
from the first genetic circuit, and verifies that both signals were 
sensed (lactose & inducer molecule to activate genetic circuit). In a 
distinct location a second Raspberry Pi listens for this tweet, and 
once the tweet is registered, a script actuates a syringe pump which 
adds homoserine lactone (HSL) to a bacterial culture. This second 
bacterial culture carries a HSL-responsive genetic circuit which 
produces the fluorescent protein YFP upon addition of HSL. This 
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is a specific example of a more extensible paradigm where biology 
is actuated externally, performs sensing, responds, and the 
electronic measurement of that response actuates new biology 
downstream.  

   
Figure 2: Electronic integration of genetic circuits. (A) An 
inducible promoter drives the expression of beta-galactosidase 
which metabolizes lactose, causing a drop in pH which is measured 
electronically. (B) A modular library of beta-galactosidase 
expressing genetic circuits was rapidly generated via MoClo, using 
a library of inducible promoters and ribosomal binding sites (RBS). 
(C) pH of cultures are monitored continuously, sending out a tweet 
only when the pH drops below a specified value. This sensing is 
then distributed to remote systems via Twitter to actuate changes in 
new genetic circuits. 

3. CHALLENGES 
There are a number of challenges associated with the proposed 
research. This system, while amenable to changes in the types of 
outputs generated by genetic circuits (fluorescence/luminescence 
vs. pH), must still produce outputs that are easily detectable with 
electronics. Genetic circuits must also be tuned to produce outputs 
within the detectable range of the electronics used to sense them. 
Furthermore, genetic circuits, which generally operate on the order 
of minutes to hours, are much slower than electronic devices which 
can respond near instantaneously. Lastly, the application of these 

integrated genetic circuits is limited to the sensing methodology of 
the electronics. For instance, pH modulation and sensing is much 
easier to execute in-vitro as opposed to in-vivo.  

That being said, the integration of genetic circuits with electronics 
combines the strength of biological sensing with the flexibility and 
connectivity of computer systems, allowing for genetic part reuse 
and spatially agnostic connectivity between genetic circuits. 
Leveraging the power of computers also extends beyond direct 
integration with genetic circuits. Genetic part assignments can be 
automated via software, based on performance data, and used to 
tune genetic device outputs to match the measureable dynamic 
range of the electronics used to measure them. Integration with 
electronics, especially computers, also allows for real-time data 
capture and analysis which can serve as the basis for automated and 
dynamic control of biological systems.   
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1. INTRODUCTION
Synthetic biology aims to extend classical genetic engineer-
ing by applying principles such as modularity, standardiza-
tion and abstraction to design complex biological systems
and even entire genomes. This process is challenging: bio-
logical systems have very large design spaces. As the com-
plexity of engineered systems increases, computational ap-
proaches become ever more important to identify biologi-
cally feasible solutions. Computational modelling and sim-
ulation is crucial to design and verify genetic circuits in a
efficient manner. The availability of modular and reusable
models is desirable to automate this process. Such mod-
els can be composed to create larger models to specify the
behaviour of genetic circuits in vivo or in vitro.

We previously developed an approach termed Standard Vir-
tual Parts (SVPs) to represent models of DNA-based bio-
logical parts such as promoters, coding sequences (CDSs)
and ribosome binding sites (RBSs) [3]. These models are
reusable and annotated with machine-readable information
to assist in automated composition. Models are currently
implemented using a reaction-based formalism where much
of the information required for composition is tightly cou-
pled. Rule-based formalisms on the other hand offer inher-
ent modularity and allow decoupling part models. This ap-
proach was previously demonstrated in the Kappa Bio-Brick
Framework (KBBF) [4], which helps in the creation of rule-
based models of genetic circuits. This framework provides
rules that describe the transcription and translation of DNA
parts and a modeller provides rules for the interactions of
gene products such as transcription factors (TFs). A series
of parameters is also provided by the modeller.

Here, we present our work based on SVPs and KBBF aimed
at automating the design of genetic circuits using rule-based
models (RBMs). Extending KBBF, we have defined ab-
stract templates that can be used to instantiate rules as-
sociated with cis and trans interactions. We then sketch
how to annotate rule-based models, using an annotation
framework [2] previously developed, in order to automate

∗These authors contributed equally to this work
†To whom correspondance should be addressed

composition for RBMs and produce executable composite
rule-based models. We also outline protocols to incorporate
model repositories into the design process. The overall de-
scribed workflow bridges together well studied topics and
suggests, in this way, a feasible protocol (currently, under
development by the authors) for the modular design and
composition of synthetic circuits.

2. RULE-BASED MODEL TEMPLATES
Templates were created by extending those from KBBF
based on a general (and abstract) notion of sliding, docking
(binding) and fall off [4]. Instantiating such a template
yields specific rules modelling transcriptional and transla-
tional processes. For instance, templates can be then used
to instantiate rules for:

• Binding: RNA polymerases (RNAPs) to promoter, ribo-
somes to RBSs and TFs to DNA.

• Sliding: RNAPs moving on DNA (transcription) and ri-
bosomes moving on RNA (translation).

• Fall off: RNAPs or TFs from DNA, or ribosomes from
RNA.

Although a single template can be used to instantiate multi-
ple rules, their rates need not be uniform and can depend on
the DNA parts present in the instance. For example, lower
rates of a fall off instance can be used to model leakiness of
stop codons or terminators.

Templates include the possibility to instantiate rules for
modelling gene fusion. In fact, when stop codons are not
included, ribosomes can keep sliding (Fig. 1) and produce
protein chains (for simplicity, we assume that each protein
in a chain retains its interactions). We also explicitly in-
clude the possibility to model the degradation of protein
and of mRNA chains (extending KBBF) with the addition
of templates for the binding of protease to proteins and the
degradation of same. In this way, one can explicitly model
induced degradation by increasing the binding rate of pro-
tease to chaperon proteins in a chain.

Docking templates are defined for arbitrary promoter ar-
chitectures where activator or repressor sites (binding se-
quences) can be placed anywhere in a genetic circuit. These
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Figure 1: A transcriptional sliding rule. The RNAP
starts sliding through DNA (left hand side). As a
result, the mRNA chain is extended by transcrib-
ing the CDS (right hand side). Outer boxes include
agents (rbs1, cds1, rbs1RNA, cds1RNA, RNAP)
and their corresponding sites (us, ds, binding, rna,
dna), and lines represent agent connections.

templates yield rules that take into account complex regu-
latory effects of TFs (e.g., Fig. 2).

Figure 2: A rule showing the binding of a RNAP to a
promoter, when a TF (which may be part of a larger
chain) is bound to an upstream binding sequence.

3. MODEL COMPOSITION
Using these templates, we defined rule-based models of ba-
sic biological parts1. These models can be associated with
quantitative parameters to create particular parts models,
which can then be merged into executable models. This
process can be automated using the information in the mod-
els, either available in the specific rule-based syntax or in
machine-accessible annotations.

The standard templates use the DNA and P agent defini-
tions for all DNA and protein entities respectively. A single
molecule is distinguished from others using a corresponding
identifier for the internal state of a part site. These agent
definitions increase the reusability and modularity of rules.
Models composed of these rules can then be joined together
for given genetic circuits.

The specification for a genetic circuit can be given using
the Synthetic Biology Open Language (SBOL) [1] terms. A

1Available at http://github.com/rbm/composition

ComponentDefinition entity with subcomponents can
be used to specify a particular genetic circuit, or an abstract
definition to represent large solution spaces. Models of parts
ideally come from model repositories such as the Virtual
Parts Repository. To specify custom rules that may not be
in databases — such as for a host — explicit annotated rule-
based models can be used. We devised the following protocol
in order to access models from different model repositories:

• Mapping agents. The bqbiol:is term from the Bio-
Models.net qualifiers is used to specify agents representing
the same biological entity.
#^ :PlacI bqbiol:is db:BBaR0010.

• Identifying the model of a part. The user specifies an
abstraction, or set of templates, a list of parts and a list of
non-part agent identifiers. For each part the client sends
this information to the database which responds with and
annotated Kappa file containing the corresponding rules.

• Communicating with repositories. The simplest option is
just to use the same annotation mechanism and specify a
source within the circuit for each part:
#^ :MyCircuit rbc:sources (
#^ rbc:part ex:prom; rbc:source <...>
#^ ), ...

• Merging mapped agents. The Kappa files are then rewrit-
ten by a union-find operation driven by the bqbiol:is
annotations followed by renaming and then simply con-
catenated and (naively) deduplicated.

4. CONCLUSIONS
We have briefly presented our work in progress based on
SVPs and KBBF to automate the design of biological sys-
tems using RBMs. The proposed workflow is based on the
definition of modular templates that can be used to instan-
tiate rules for basic biological parts. Such rules can be anno-
tated leading to a feasible protocol to automate their com-
position for the scalable modelling of synthetic systems.
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1. INTRODUCTION
Synthetic biology workflows have four major categories

of problem-solving: specification, design, construction, and
testing. These functions utilize forward engineering approaches,
combined with knowledge of Molecular Biology and Bioin-
formatics, to engineer predefined genetic circuits[4]. Under-
lining components for these core functions are data. While
data storage was addressed with a development of Clotho[6]
and data exchange with the Synthetic Biology Open Lan-
guage (SBOL)[3], data analysis, however, has not been ad-
dressed yet.

Owl v1.0.0. uses LATEX typesetting system to produce
PDF datasheets[2]. We are developing Owl v2.0 that aims to
introduce data analytics services (statistics, bioinformatics,
and machine learning), as well as data visualization services,
and provide a user-friendly interface that can be rendered
on any mobile device or modern internet browser.

2. IMPLEMENTATION

2.1 Owl Stack
The new Owl v2.0 ecosystem consists of a more compre-

hensive client-side and server-side architecture (Fig. 1).

2.1.1 Client-side
The client-side (or user web-interface) of Owl is written

in HTML, CSS, and JavaScript and thus provides a cross-
platform electronic workspace.

2.1.2 Server-side
The server-side uses the MEN-stack framework which con-

sists of MongoDB (noSQL database), ExpressJS andNode.js
(a server-side JavaScript environment). To perform real-
time queries, Owl uses Elasticsearch1.

2.2 Integration

2.2.1 Interface
At the highest level, Owl provides users with an electronic

workspace consisting of a dynamic web-interface (Step 1,
1https://www.elastic.co/

Figure 1: The front end and back end of Owl are
build using the most popular web-development tools
and languages.

Fig. 2). This web interface can be rendered on any mobile
device and modern internet browser.

2.2.2 Data Analytics and Visualization
The new version of Owl is extended to provide data ana-

lytics and visualization packages (Step 2). These include:
(i) LATEX typesetting system for PDF datasheet generation,
(ii) JavaScript packages to create dynamic and publishable-
quality static graphs, (iii) statistical packages, (iv) use of
shell scripts, and (v) bioinformatics packages.

2.2.3 Data Storage
The Owl v2.0 ecosystem connects to a MongoDB database

via Clotho (using a websocket API available in Java and
JS), which allows data persistence as well as conversion to
formats that are SBOL-v2.0 compliant (Step 3).

2.2.4 API
External applications can use Owl v2.0 features using a

RESTful API. These APIs will be available in Java, Python
and JavaScript(Step 4) and can be used by tools like Phoenix:
an automated design-build-test-learn tool [1], Cello [4], Dou-
ble Dutch [5], and DNAplotlib2.

2.3 Use-Case Scenario
2https://github.com/VoigtLab/dnaplotlib
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Figure 2: Owl v2.0 ecosystem contains a web application (1) and a persistence database manager Clotho
(2). Data analytics packages are performed on a server-side (3). Owl v2.0 is connected to other software via
RESTful APIs (4).

2.3.1 Authentication
In order to use Owl, a user first has to create a profile

(Step 1, Fig. 2); this profile can be used with any Clotho-
compatible tool. Owl supports OAuth 2.0. secure authen-
tication protocol to login via popular social networks, like
Facebook and Google+.

2.3.2 Create a Project
An authenticated user can create projects in Owl. For

example, the user can search a repository of synthetic parts
(e.g., iGEM), save them for that project in an SBOL 2.0
compliant format (Step 2), and perform optional Basic Lo-
cal Alignment Searches (BLAST, Step 3) on those parts.

2.3.3 Design, Build, and Test
Design-build-test tools are connected to Owl through REST-

ful APIs (Step 4). Through Owl, a user can send project-
associated parts, and other files (if necessary) to perform
various tasks provided by those tools. For example, Phoenix
designs, builds, and tests, while Double Dutch optimizes
gene expression. Some projects may require execution of
shell-scripts, bioinformatic scripts, or statistical analysis mod-
ules, all of which are executed at the server side of Owl (Step
3) using command line execution.

2.3.4 Visualization
Assembled designs are visualized in Owl using DNAplotlib

(Step 4) or Pigeon (not shown). Graphs are generated by
the server-side of Owl using JavaScript libraries for static
and dynamic graphs. Owl can also generate PDF datasheets
(Step 3), documenting timestamps, parts used, project ID,
title, graphs, protocols, and more using pdfLatex.

3. CONTRIBUTIONS
Creation of Owl v2.0 was motivated by the need to effi-

ciently manage the vast amount of data gathered in Syn-
thetic Biology. We are developing an electronic workspace

that allows a user to access design-build-test tools, analyze,
visualize, save, and transfer the data in a standardized way.
Since Owl is connected to Clotho and provides APIs for pro-
grams written in Python, Java, and JavaScript, a user can
access data from any tool that is connected to Owl v2.0 ’s
ecosystem.
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1. INTRODUCTION
Synthetic biology as a field has grown considerably in re-

cent years. With the increasing use of Biodesign automa-
tion(BDA) to augment the process of engineering reliable ge-
netic systems, various research groups have introduced and
developed applications that focus on specific sub-problems
within the main phases of BDA: Specify, Design, Build, Test,
Verify, and Learn. To achieve forward engineering of living
systems to create novel solutions for many of society’s grand
challenges in human health, materials, energy, and environ-
mental remediation, a highly cross-disciplinary team with
varying skill sets and areas of expertise is required. It is
very important to allow members of these cross-disciplinary
teams to communicate across projects, tools and software
environments while maintaining a sense of community. To
facilitate collaboration on a large scale, we have developed
a social networking platform: Phagebook1, which uses the
Clotho 3.0 ecosystem [1] to connect users and synthetic biol-
ogy applications to one another. Phagebook lets users create
a profile, connect with other researchers, and and publica-
tions, and post progress updates for projects, and manage
lab inventory and ordering.

Clotho 3.0 was created as a database management sys-
tem to provide an ecosystem to store data in a standardized
format. The default data model in Clotho 3.0 provides a
community-designed model, incorporates user feedback and
adopts community standards such as SBOL. Clotho 3.0 is
more flexible since programmers can use a Clotho instance as
a service called from their programs, or write apps designed
to run within Clotho. Clotho also provides a convenient
library (in Java and JavaScript) for working directly with
Clotho default model objects, without the need to manually
manage each command. Such an ecosystem would be ideal
to store data for biological parts, features, sequences or any
data that can be stored in a JavaScript Object Notation
(JSON) format.

Phagebook utilizes built-in Clotho features to store and
manage data. Additionally Phagebook exchanges informa-
tion with various Clotho applications. This integration al-
lows users to easily incorporate Phagebook into existing as-
pects of their research as highlighted in Fig 1.

1Phagebook is currently in Alpha testing and can be ac-
cessed at https://phagebook.org

Figure 1: Phagebook ecosystem. Users can have various
roles and can use Phagebook to connect to one another.
Phagebook uses the Clotho ecosystem to connect users to
data stored in Clotho Apps like Cello and Phoenix.

2. FEATURES
Phagebook is mainly divided into 3 main features: Per-

sonal, Project Management, and Lab inventory manage-
ment/Ordering portal.

2.1 Personal
Phagebook uses Clotho 3.0’s authentication and autho-

rization features to create a new user. Users have to enter
their email ids while registering for a new account. Phage-
book then sends an activation link which can activate a user
and let them log in to Phagebook. All user information and
credentials are stored and secured by Clotho 3.0 .

2.1.1 Personal information
Phagebook users can enter relevant personal information

like: first and last name, organization (institution, research
institution or industry) affiliation, department, position and
role (principle investigator(PI), graduate student, post-doctoral
researcher, researcher, etc). This is displayed in the user’s
default home page (Fig 2). Users can also enter status mes-
sages and can tag objects in Clotho 3.0 (provided they have
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read or write access to that object) in their status. For in-
stance, a user can post a status saying that they just created
a new Biological Part and can provide a link to the Part’s
metadata through Clotho.

Figure 2: Profile Page. The profile page lets users search and
add colleagues, add new statuses and publications. Data
security is managed by Clotho 3.0

2.1.2 Adding colleagues
Phagebook uses the query feature in Clotho 3.0 to search

for other Phagebook users based on entries in the database
that belong to the Person schema as well as the first or
last name specified in the query. Once a request to add
a colleague has been submitted, the colleague can go to a
portal to manage requests and choose to accept or decline
the request from the user.

2.1.3 Adding publications
Phagebook uses Pubmed’s ESummary API and the Cross-

ref API to get a user’s publication from a Pubmed id or a
Digital object identifier(DOI) code respectively. Users can
also add custom publications to their list of publications
These publications are stored in Clotho 3.0 and added to
the user’s list of publication. This enables multiple users
who are co-authors on the same publication to be linked to
the same publication.

Figure 3: Project Page. PIs can create projects and add
collaborators for each project. Project members can add
statuses and publications for a project.

2.2 Labs and Project management
Users registered as PIs can create labs, research groups

and projects (Fig. 3) associated with each research group.
Members of a project can invite colleagues from the same
lab or collaborators from other labs, research institutions
or the industry to be a part of the project. Members of a
project can post status updates to a project (and can choose
to send that update out as an email to the entire group or
just post it in the Project’s statuses). Each member is also
granted a lab notebook for each project they are a part of.

2.3 Ordering portal
The ordering portal lets users add Vendors and Products

commonly ordered by a lab, to Clotho. Users can then create
orders which are tied to a specific project. Users can also
specify the maximum number of items that can be placed in
each order as well as the maximum budget for each order.
The ordering portal lets users search and select products,
set the approximate tax to be applied for the entire order as
well as set any special vendor discounts that may apply for
a particular order. Once an order is submitted for approval,
it is sent to the PIs in that project, for approval. Once
any PI approves the order (which appears in the manage
requests portal), the amount in the order is deducted from
the total budget for that order. Users can view all their
current (Fig. 4) and past orders (Submitted orders that
have been approved, orders that were not approved) and can
create customizable order forms that can be downloaded as
comma separated values (CSV) files.

Figure 4: Ordering Portal. Users can add/remove products
to an order. Products can have custom prices. Orders can
specify a budget cap and a limit on the number of products
in a single order
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ABSTRACT 
The Bio/Nano Research Group at Autodesk, in collaboration with 
the Edinburgh Genome Foundry, is releasing an extensible, open 
source, cloud tool to drive biological design and complex DNA 
construction. The current software toolbox for genetic design 
offers solutions that are either relatively good but expensive, or 
low cost but quite limited.  A different approach is necessary as 
more scientists want to design and build higher numbers of 
increasingly complex constructs.  This paper provides an 
overview of our high level biological design and construction tool. 
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1.� INTRODUCTION 
The current software toolbox for genetic design offers solutions 
that are either relatively good but expensive, or low cost but 
relatively limited [1].  A different approach is necessary as more 
scientists want to design and build higher numbers of increasingly 
complex constructs.  

2.� TOWARDS ABSTRACT DESIGN  
2.1� Abstraction of parts from sequence 
Designing at the base pair level is quite useful for small, simple 
genetic programs, but quickly becomes untenable as the length 
and complexity of these programs expands [2]. In order to 

Figure 1.  Abstraction of Parts from Sequence.  DNA Parts for two different designs shown in a graphical representation 
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empower scientists to program organisms with higher efficiency 
and increasing complexity, our application works at higher levels 
of abstraction than current software packages (Figures 1 and 2).  
This tool focuses less on the A/C/T/G letters in DNA code and 
more on high level design. 

2.2� Abstraction of design from parts 
Autodesk is a leader in the space of goal directed design [3]. In 
this emerging design paradigm, a user does not dictate the design 
of a structure, but instead communicates its purpose, or design 
constraints (Figure 3). The design software then generates 
alternatives and determines the fit against the objective. The user 
is then presented with a set of designs and their scores.  

As we continue to standardize and characterize biological parts, 
we move closer to being able to apply the same generative design 
algorithms to the biological space.  

3.� A link with robust manufacturing 
3.1� The gap between academic and industrial 
DNA fabrication technologies 
On the manufacturing side, high throughput, long DNA 
fabrication technologies exist but are locked behind industry 
doors. For example, an industrial DNA fabrication unit can 
produce 2,000 constructs at 20,000 BP/construct with a 
turnaround time of 3-4 weeks. Academic researchers and small 

biotech start-ups, however, cannot take advantage of these 
capabilities. 

This leads to a situation where academic researchers and small 
biotech start-ups are at a disadvantage as they do not have the 
CAD software driving CAM based foundries required to rapidly 
engineer their biology. 

3.2� Integration with the Edinburgh Genome 
Foundry 
In order to empower scientists to program organisms with higher 
efficiency and increasing complexity, our application will 
integrate with DNA Foundries seamlessly to produce those 
designs. This will enable all scientists, regardless of rank or 
privilege, access to academic DNA foundries as they come online.  
For example, the tool will support designing in the application and 
then placing an order with the Edinburgh Genome Foundry. 
Unlike previous tools, which simply send a DNA sequence to a 
fabrication facility, this tool plans to send a bill of materials that 
encompasses more than just a DNA sequence.  Moreover, we 
hope to connect to the specific foundry API to provide real time 
feedback as to whether a design is buildable and track the status of 
the construction process. 

3.3� Open source, free, cloud based and 
extensible 
Unlike other high power tools in this space, our software will be 
open source and freely available to the community.  It is also 
cloud based and built with a plug-in architecture to allow for 
customization and increasing levels of complexity. We encourage 
members of the Synthetic Biology community to write plug-in 
features to keep this as a high powered tool that stays in sync with 
state of the art knowledge.  

In this presentation, we will unveil the tool to the biodesign 
community, showcase some of its capabilities, discuss future 
directions, and illustrate how to interact with the tool from a 
biology and a software development perspective. 
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Figure 2.  Part layout towards a design intent. 

Figure 3.  GUI for rule definition to feed into design specifications. 

90



A Statistical Approach Reveals Designs for the Most
Robust Stochastic Gene Oscillators

[Extended Abstract]

Mae L Woods
Department of Cell and
Developmental Biology

University College London
mae.woods@ucl.ac.uk

Miriam Leon
Department of Cell and
Developmental Biology

University College London
miriam.leon.12@ucl.ac.uk

Ruben Perez-Carrasco
Department of Mathematics
University College London
r.carrasco@ucl.ac.uk

Chris P Barnes
Department of Cell and
Developmental Biology

University College London
christopher.barnes@ucl.ac.uk

ABSTRACT
The engineering of transcriptional networks presents many
challenges due to the inherent uncertainty in the system
structure, changing cellular context, and stochasticity in the
governing dynamics. One approach to address these prob-
lems is to design and build systems that can function across
a range of conditions; that is they are robust to uncertainty
in their constituent components. Here we examine the para-
metric robustness landscape of transcriptional oscillators,
which underlie many important processes such as circadian
rhythms and the cell cycle, plus also serve as a model for
the engineering of complex and emergent phenomena. The
central questions that we address are: Can we build ge-
netic oscillators that are more robust than those already
constructed? Can we make genetic oscillators arbitrarily ro-
bust? These questions are technically challenging due to the
large model and parameter spaces that must be efficiently
explored. Here we use a measure of robustness that coin-
cides with the Bayesian model evidence, combined with an
efficient Monte Carlo method to traverse model space and
concentrate on regions of high robustness, which enables the
accurate evaluation of the relative robustness of gene net-
work models governed by stochastic dynamics. We provide
a number of new design principles for the construction of
robust oscillators.
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1. INTRODUCTION
A major challenge facing the progress of synthetic biology

is the design and implementation of systems that function
in the face of fluctuating cellular environments. While it is
widely accepted within the field that the task of construct-
ing and rewiring pathways is tractable, predicting in silico
how an implemented system will behave in vivo under differ-
ent cellular conditions remains a huge challenge [1]. Robust
systems perform their function over a wide range of param-
eters and external influences. If we could design and build
synthetic systems that are robust, then not only would the
systems have a higher probability of functioning, but we
would also enhance their predictability. Robustness in the
context of biological systems has been intensively studied
for almost two decades [5].

Biological oscillators have been studied extensively as they
form the core of many crucial biological processes such as
circadian rhythms and the cell cycle. Oscillating systems
also serve as a model for the understanding and engineer-
ing of complex and emergent phenomena. Various synthetic
systems have been implemented both in vivo and in vitro.
There has been much theoretical study of biological oscil-
lators (for reviews see refs [4, 7, 6]). Despite this body
of work, a comprehensive study of the robustness of tran-
scriptional oscillators has not been performed because of the
technical challenges it poses. To develop more predictable
design and modelling frameworks that can calculate realis-
tic estimates of system properties - including robustness -
requires approaches that can handle a large number of pa-
rameters, parametric uncertainty and stochastic dynamics.
This can be achieved using sequential Monte Carlo methods
[2]. Here we extend the Monte Carlo framework to include
model space exploration. The novelty in our approach is
that the algorithm spends time in models and parameters
in direct proportion to their robustness, and thus focuses in
on interesting regions of joint model-parameter space. This
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Figure 1: Outline of the method. (A) The objective behaviour is specified through a set of summary statistics
and distances on the summaries. (B) Model space is defined, plus a mapping of a graph to a stochastic model.
(C) Signal processing is used to extract features from simulations. (D) The output of the algorithm is a set
of models that satisfy the objective and maximise robustness.

avoidance of enumeration of all possibilities allows us to ad-
dress more interesting questions and to assess robustness in
a quantitative manner.

2. CONCLUSIONS
We apply our novel framework to investigate the robust-

ness of transcriptional oscillators, an outline of which is given
in Figure 1. We examine two main questions regarding the
robustness of stochastic transcriptional oscillators: Can we
build genetic oscillators that are more robust than those
already constructed? Can we make genetic oscillators ar-
bitrarily robust? We find that the most robust two gene
oscillators that can provide regular oscillations are of a type
already constructed [8]. We also examine the ring oscillator -
the repressilator being the classic synthetic implementation
[3] - and find that different activation reactions, in addition
to positive auto-regulation [9], can increase its robustness.
We also determine the topologies that give rise to the most
robust three gene systems and find that in general they are
more robust than the simple two gene and ring oscillators.
The frequency, amplitude and robustness of all transcrip-
tional oscillators, independent of topology, depends strongly
on the rates of degradation of the species involved. Finally
we find that the number of regulatory interactions increases
oscillator robustness up to a plateau, beyond which there is
no increase in robustness, which has wide implications for
the construction of complex synthetic systems.
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ABSTRACT 
The article addresses the development of SynBIS, an information 
system that empowers the multistage characterisation pipeline of 
biological parts devised by the Centre for Synthetic Biology and 
Innovation at Imperial College and supports the automatic 
generation of datasheets and their dissemination. SynBIS supports 
open data standards and offers direct programmatic access for all 
analysis, simulation and CAD software tools. 
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1. RATIONALE FOR SYNBIS 
Systematic rational design — also known as design-build-test 
cycle — has become central to the transformation of synthetic 
biology into an engineering discipline. Another common concept 
in much of engineering is that systems can be rapidly produced 
from the combination of standardised components. For this to 
happen in synthetic biology, there is a strong need to build large 
catalogues of fully characterised bioparts and make them available 
in public registries, so they can be reused for design [1].  
Ideally, the bioparts should be characterised in a wide range of 
contexts (plasmids, hosts, medium…) to the highest standards - 
using validated protocols ensuring a high level of reproducibility. 
Also, all the data collected and generated during the 
characterisation process, as well as the tools/methods used (e.g 
protocols and computer code) should be made available in widely-
supported machine readable data formats -  as is the case in 
biomedicine (for instance the CDISC initiative [2] for clinical 
studies). Finally, the catalogues must be available online, support 
widespread data standards and offer programmatic access.  

It is important to stress that only by offering a comprehensive 
description of the characterisation of a part, rather than a short 
summary of it, can repositories be tool and application-agnostic.  

Some CAD tools may use the processed data as is, others may use 
the raw data to calibrate their own models and add extra rules to 
the parts. The experimental portion of the data can also be used 
for systems biology projects and by modelling tools. 

 

Although several well-known repositories exist (the iGEM parts 
registry [3], or the virtual parts repository [4] to name a few), we 
are not aware of any repository that meets all those requirements. 
This obvious gap has led to the creation of SynBIS - an 
information system developed at the Centre for Synthetic Biology 
and Innovation (CSynBI) at Imperial College to support its 
multistage characterisation pipeline of biological parts. 

 
 

2. CHARACTERISATION PIPELINES 

 

Figure 1. The CSynBI Characterisation Pipeline 
 

SynBIS is the IT spine designed at CSynBI to enable biopart- 
characterisation efforts on a scale that is difficult-to-impossible 
for human experimentalists to achieve. First developed with 
constitutive promoters, it now supports the characterisation of 
other fundamental bioparts such inducible promoters or RBS.  

SynBIS deals with characterisation in term of pipeline. Human 
intervention is kept to a minimum (curation mainly); automation 
is used when possible (especially during data acquisition and data 
analysis). CSynBI pipelines (see Figure 1) comprise three steps. 

1.  Data acquisition - Acquisition has been automated as per 
[5] – using a set of validated protocols, whose purpose it is to 
improve reproducibility and increase the throughput. Plate 
reader and flow cytometry data are typically acquired. 

2. Data Processing - Experimental data are processed to 
estimate the relationship between the input and output of the 
part. Processing is modularised by using libraries of models. 

3. Dissemination - The information on the biopart is 
summarised into a datasheet, which is then uploaded to 
dedicated website (synbis.bg.ic.ac.uk). The datasheet links to 
all the data related to the characterisation process.  
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3. SynBIS 
3.1 Overview 
All SynBIS characterisation information is available for download 
and use under CC-BY Creative Common license. SynBIS’ web 
interface (synbis.bg.ic.ac.uk) allows users to search the SynBIS 
catalogue by attributes such as part type, name, and its input-
output function (Figure 2-Top), and then access the datasheets of 
the parts of interest to the users.  
Since the influence of the context (chassis, medium, plasmid, 
reporter, assay protocol and experiments settings) on parts 
behaviour is poorly understood, SynBIS will host several 
datasheets (one per context) for the same part. 

 

Figure 2. The SynBIS Web Interface (Top: Search Page / 
Bottom: First Page of the Datasheet of the J23100 Promoter) 
 

3.2 Supporting Popular Data Standards 
SynBIS supports established data standards such as SBOL [6] for 
construct description. To enable the sharing of raw experimental 
data, SynBIS also supports the first data-acquisition standard in 
synthetic biology (DICOM-SB [7]). The development of DICOM-
SB was an important part of the SynBIS project – such a standard 
being needed to not only share experimental data, but more 
widely to support and enable data acquisition at scale. 
Finally, we have developed a flexible datasheet model – based on 
the workflow of a canonical characterisation pipeline and 
serialised in XML – linking a biopart to all the data generated in a 

characterisation experiment: raw data, analysis results (presenting 
qualitative and quantitative information describing the part’s 
behaviour) and the metadata required to ensure reproducibility of 
the experimental and analysis results.  

3.3 Programmatic Access 
SynBIS implements an API to enable programmatic access from 
external applications. This way the power users can not only 
access individual datasheets (and related data) but also run bulk 
queries (see Figure 3). The API comprises two types of RESTful 
web services: 
Inbound: input of new curated datasheet information into SynBIS 
(open to SynBIS partners only) 
Outbound: retrieval of datasheet information.  

� XML interface: provides the complete 
description of a datasheet formatted following the 
SynBIS database structure. 
� SBOL interface: provides the basic 
information which can be encoded with SBOL-Core. 

 

 
Figure 3. Search for All Promoters with an RPU between 0.2 
and 2.8 with the SynBIS API 
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