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foreword 

Welcome to IWBDA 2014! 
 

The IWBDA 2014 Executive Committee welcomes you to Boston, Massachusetts for the Sixth 
International Workshop on Bio-Design Automation (IWBDA) at Boston University. IWBDA brings 
together researchers from the synthetic biology, systems biology, and design automation 
communities. The focus is on concepts, methodologies and software tools for the computational 
analysis and synthesis of biological systems.  

The field of synthetic biology, still in its early stages, has largely been driven by experimental 
expertise, and much of its success can be attributed to the skill of the researchers in specific 
domains of biology. There has been a concerted effort to assemble repositories of standardized 
components; however, creating and integrating synthetic components remains an ad hoc 
process. Inspired by these challenges, the field has seen a proliferation of efforts to create 
computer-aided design tools addressing synthetic biology's specific design needs, many 
drawing on prior expertise from the electronic design automation (EDA) community. IWBDA 
offers a forum for cross-disciplinary discussion, with the aim of seeding and fostering 
collaboration between the biological and the design automation research communities. 

IWBDA is proudly organized by the non-profit Bio-Design Automation Consortium (BDAC). 
BDAC is an officially recognized 501(c)(3) tax-exempt organization. 

This year, the program consists of 17 contributed talks and 9 poster presentations. Talks are 
organized into six sessions: Tools, Modeling I, Modeling II, Circuit Design, Automation, and 
Algorithms. In addition, we are very pleased to have two distinguished invited speakers: Dr. Orit 
Shaer from Wellesley College and Dr. Tuval Ben-Yehezkel from the Weizmann Institute of 
Science.  

We thank all the participants for contributing to IWBDA; we thank the Program Committee for 
reviewing abstracts; and we thank everyone on the Executive Committee for their time and 
dedication. Finally, we thank Synthetic Biology Engineering Research Center (synberc), 
National Science Foundation, Autodesk, Hudson Robotics, Twist Bioscience, ACS Synthetic 
Biology, Raytheon BBN Technologies, and Minres Technologies for their support. 
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Synthetic Biology: 
from Start… to Finish.

Complete Automation of the Entire 

Synthetic Biology Process:

Gene Design and Assembly:

www.HudsonRobotics.com

• Oligo Synthesis
• Deprotection and

Purification
• Normalization
• Pooling
• Gene Assembly

Gene Design and Assembly Workcell

• Ligation
• Transcription
• Transformation
• Colony Picking
• Colony to qPCR
• Mini Preps

Protein Expression:

Visit us at
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iwbda 2014 program 
Wednesday, June 11th 
 
8:00 - 9:00 Breakfast and Registration 
9:00 - 9:15 Opening Remarks 
   Talk Session I: Tools 
9:15 - 9:40 DIVA: More Science, Less DNA construction 

Joanna Chen, Hector Plahar, Nina Stawski, Garima Goyal, Jay Keasling and Nathan Hillson 
9:40 - 10:05 GenomeCarver: harvesting genetic parts from genomes to support biological design 

automation 
Emily Scher, Yisha Luo, Aaron Berliner, Jackie Quinn, Carlos Olguin and Yizhi Cai 

10:05 - 10:30 Automated Selection Finder (ASF) For Directed Evolution 
Neda Hassanpour, Brad Gaynor, Mona Yousofshahi, Nikhil Nair, and Soha Hassoun 
 

10:30 - 11:00 Coffee Break 
   Discussion Session I 
11:00 - 12:00 Topic 
   Poster Session I 
12:00 - 12:30 Lunch 
12:30 - 13:30 Poster Session 
   Keynote 
13:30 - 14:30 Tuval Ben-Yehezkel Advanced DNA Editing Platforms. 
   Talk Session II: Modeling I 
14:30 - 14:55 Metabolic Constraint-Based Refinement of Transcriptional Regulatory Networks 

Sriram Chandrasekaran and Nathan Price 
14:55 - 15:20 Integration of Circuit Design Automation and Genome-scale Modeling 

Linh Huynh, Minseung Kim and Ilias Tagkopoulos 
15:20 - 15:45 Configurable Linear Control of Biochemical Systems 

Tai-Yin Chiu, Ruei-Yang Huang, Hui-Ju Katherine Chiang, Jie-Hong Roland Jiang and 
Francois Fages 
 

15:45 - 16:15 Coffee Break 
   Talk Session III: Modeling II 
16:15 - 16:40 A hybrid of multi-omics FBA and Bayesian factor modeling to identify pathway crosstalks 

Claudio Angione, Naruemon Pratanwanich and Pietro Lio 
16:40 - 17:05 Delay modeling in cell signaling and gene regulatory networks 

Natasa Miskov-Zivanov, Chang Sheng Clement Loh, Peter Wei and James Faeder 
   Evening Activities  
18:00 - 19:00 Fenway Park Tour 
19:00 - 21:00 Dinner 
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iwbda 2014 program 
Thursday, June 12th 
 
8:00 - 9:00 Breakfast and Registration 
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Jacob Beal, Tyler Wagner, Tasuku Kitada, Andrey Krivoy, Odisse Azizgolshani, Jordan 
Moberg Parker, Douglas Densmore and Ron Weiss 

9:25 - 9:50 Modular design and implementation of eukaryotic synthetic gene circuits 
Mario Andrea Marchisio 

9:50 - 10:15 Automatic Enumeration and Discrimination of Model Phenotypes With Application to 
Synthetic Gene Oscillators 
Jason Lomnitz and Michael Savageau 

10:15 - 10:45 Coffee Break 
  

 Discussion Session II 
10:45 - 11:45 Topic 
  

 
Poster Session II 
11:45 - 12:15 Lunch 
12:15 - 13:15 Poster Session 
  

 Keynote 
13:15 - 14:15 Orit Shaer Reality-Based Interaction for Bio- Design. 
  

 
Talk Session V: Automation 
14:15 - 14:40 Better Scheduling Software and User Interface for Liquid-Handling Robots 

Benjamin Schreck, Jonathan Babb and Ron Weiss 
14:40 - 15:05 SMT-based Strategies for Biodesign Automation 

Boyan Yordanov and Andrew Phillips 
15:05 - 15:30 Exploration of Design Principles and an End-to-End Workflow for Synthetic Biology using a 

Combinational Logic Circuit Library 
Swati Carr, Calin Belta and Douglas Densmore 
 

15:30 - 16:00 Coffee Break 
  

 
Talk Session VI: Algorithms 
16:00 - 16:25 Nonlinear Biochemical Signal Processing via Noise Propagation 

Kyung Kim, Hong Qian and Hebert Sauro 
16:25 - 16:50 An Aspect Oriented Design and Modelling Framework for Synthetic Biology 

Philipp Boeing, Darren Nesbeth, Anthony Finkelstein and Chris Barnes 
16:50 - 17:15 Towards Rule-based Knowledge-Based Systems for Synthetic Biology 

Ernst Oberortner, Audrey Lewis and Douglas Densmore 
  

 Closing remarks 
17:15 - 17:30 Closing remarks 
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keynote presentation 

Tuval Ben-Yehezkel 
Advanced DNA Editing Platforms 

 
Our ability to engineer biological systems depends, to a large extent, on our ability to physically 
write the DNA code that programs them. In this talk I will outline recent developments in 
biochemistry and automation technologies that advance our ability to deliver designer DNA 
libraries for advanced synthetic biology projects. 

Dr Tuval Ben-Yehezkel performed his PhD and post doc work at the Weizmann institute of 
science in Israel under the supervision of Prof. Ehud Shapiro in the field of synthetic biology. 
Specifically, he focused on developing methods for rapid writing of genetic material through the 
implementation of innovative biochemistry and automation technology and applying them to 
various biological problems. He is now a visiting scientist at the Weizmann institute of science 
and has recently founded a start-up company focused on applying synthetic biology technology 
for the rational design and construction of synthetic viruses aimed to function as live-attenuated 
vaccines. 
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keynote presentation 

Orit Shaer 
Reality-Based Interaction for Bio-Design 

 
Synthetic biology requires a multidisciplinary, collaborative design environment in order to 
engineer the complex biological systems of the future.  Applying advances in Human Computer 
Interaction to bio-design tools could potentially enhance innovation and discovery in synthetic 
biology. 

Over the past two decades, Human-Computer Interaction (HCI) research has generated a broad 
range of interaction styles that move beyond the desktop into new physical and social contexts. 
Key areas of innovation in this respect include tabletop, tangible, and embodied user interfaces. 
These interaction styles leverage users’ existing knowledge and skills of interaction with the real 
non-digital world, thus are often referred to as Reality-Based Interfaces. By drawing upon 
existing skills, reality-based interfaces offer the promise of a natural, intuitive, and often, 
collaborative form of interaction. 

In this talk I will present a collection of software tools for bio design, which, utilize reality-based 
interaction techniques.  We developed theses software tools to address specific technical 
synthetic biology challenges while simultaneously advancing the way in which users interact 
with computing environments. Through these case studies, I will highlight what design factors 
are important for developing reality-based interfaces for bio design that enhance discovery and 
innovation. 

Orit Schaer is the Clare Boothe Luce Assistant Professor of Computer Science and Media Arts 
and Sciences at Wellesley College. She directs the Wellesley College HCI Lab. Her research in 
Human-Computer Interaction (HCI) focuses on 3D, tangible, tabletop, and mobile interaction. a 
user interface for genomic research, and the development of computational tools for enhancing 
innovation in bio-design. Dr Shaer is a recipient of several National Science Foundation and 
industry awards including the prestigious NSF CAREER Award, Agilent Technologies Research 
Award, and Google App Engine Education Award. She received her PhD and MSc in Computer 
Science from Tufts University. She has been a research fellow in the Design Machine Group at 
the University of Washington and in the University College London Interaction Center. 
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ABSTRACT 
DNA construction is vital to a broad range of biological research, 
yet   it   is   predominantly  an   inefficient  diversion   from  researchers’  
core research goals and expertise. We have developed a Design, 
Implementation, and Verification Automation (DIVA) platform to 
liberate researchers from building DNA, enabling them to instead 
focus on designing and testing their experiments of interest. 
DIVA’s   web   interface   allows   researchers   to   design   DNA  
constructs using visual biological computer-aided design tools 
(such as DeviceEditor [1]) and existing parts from ICE registries 
[2], submit their designs to a central construction queue, track 
DNA construction as it progresses, and then (in a few weeks) 
receive notice that their sequence-verified constructs have been 
completed. A small number of dedicated DIVA staff, who are 
responsible for DNA construction, use the DIVA web interface to 
evaluate submitted designs for feasibility, and design assembly 
protocols using DNA assembly design automation software (such 
as j5 [3]), and will be able to manage physical samples throughout 
the construction process with sample tracking software, and 
capture success and failure rates and pipeline performance 
metrics. With DNA construction occurring in a centralized 
location, DIVA staff can aggregate multiple independent 
construction tasks into the same multi-well plates to take 
advantage of laboratory automation devices and tools such as PR-
PR [4], as well as leverage DNA synthesis and high-throughput 
next-gen sequencing capabilities. An initial version of the DIVA 
platform is currently being used at the Joint BioEnergy Institute 
(JBEI) and is under continued development. We are also working 
closely with the Joint Genome Institute (JGI) towards deploying 
DIVA to better serve their user community.  

Categories and Subject Descriptors 
J.6 [Computer-Aided Engineering]: computer-aided design.  

General Terms 
Design, Verification. 

Keywords 
BioCAD, DNA construction automation.  

 

1. INTRODUCTION 
A number of software tools have been developed to aid 
researchers design and build DNA constructs. The DIVA platform 
seeks to integrate these tools into a seamless and useful workflow 
to further save researchers time and effort. 

2. THE DIVA WEB INTERFACE 
Upon logging in, researchers see a dashboard displaying designs 
that require their attention, as well as their other recent designs 
and projects. The right column displays DIVA performance trends 
and a recent activity feed. The header provides access to all design 
and project listings.  

 
Figure 1. DIVA interface - dashboard. 

 

Clicking   the  “New  design”  button opens DeviceEditor in DIVA, 
where researchers can visually design their DNA constructs. 
Researchers can copy annotated sequences from ICE via 
VectorEditor and paste them into DeviceEditor. Researchers can 
also run j5 from DeviceEditor to check that their designs will 
produce the desired construct(s). Once researchers are satisfied 
with their designs, they will submit them to the DIVA team for 
technical feasibility review.  

The DIVA team then runs j5 to design the assembly protocol for 
constructing the DNA designs specified by the researchers. The 
DIVA team assesses the designs to see if they can be build subject 
to resource or size constraints. Designs may be approved for 
construction or sent back to the researchers for revision.  
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Once designs have been approved by the DIVA team, researchers 
can submit them into the DIVA queue for construction. Since 
many researchers submit designs to the same queue, the DIVA 
team may aggregate several designs into one construction process 
to take full advantage of laboratory automation. The DIVA team 
may use j5 to condense multiple designs into one assembly 
protocol and generate a PR-PR script to run the reactions using 
multi-well plates on a liquid handling robot. While designs are 
being constructed, researchers can to track the status of their 
constructs through the DIVA interface.  

PIs have additional capabilities to manage projects, such as 
adding and removing project members and approving designs for 
construction.  
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Len Pennacchio, Jan-Fang Cheng, Sam Deutsch, Sarah 
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Program user community.  
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ABSTRACT
Concept

The advance of genome sequencing and annotation has pro-
vided a“gold mine”of genetic parts, which all synthetic biol-
ogists wish to include in their toolbox of parts with which to
build synthetic biological systems. The currently available
computer assisted design systems (CADs) focus heavily, if
not exclusively, on composing biological systems using ge-
netic parts [3][7][9], however, how a user obtains parts in
the first place remains an open question. To make matters
worse, there are a few dozen part standards being proposed
and used in the synthetic biology community (104 RFCs on
part standard as of today). Even though one can extract a
few parts from the genome manually, there is no software
to ensure the standard compatibility of parts, and it is also
very di�cult to scale up the design of parts.

With these problems in mind, we present GenomeCarver, a
computational tool for the harvesting and packaging of bio-
logical parts from model genomes. GenomeCarver interfaces
with various genomes, identifies regions of interest according
to user specification (e.g., promoters, open reading frames
and terminators) and extraction rules (e.g., a promoter is
defined as 500bp upstream of the ATG start codon or last
gene boundary, which comes shorter), extracts correspond-
ing DNA sequences from the genome feature files (GFFs),
checks the sequence’s compatibility with the selected stan-
dard (e.g., whether the given sequence includes the forbid-
den restriction sites of certain parts standards), and finally
outputs optimized primer sequences to amplify the parts
from genomic DNA, adding necessary flanking sequences to
standardize the parts.

Through its compatibility with multiple genomes and mul-
tiple parts standards, GenomeCarver bridges the fields of
systems biology and synthetic biology, and greatly enriches
synthetic biologists’ design toolbox. It complements many
parts-based design tools which currently exist by supporting
the Synthetic Biology Open Language standard [6].

Implementation

GenomeCarver can be accessed as an application built on

⇤These authors contributed equally to this work.
†Corresponding author. E-mail:yizhi.cai@ed.ac.uk

Autodesk’s Project Cyborg (http://autodeskresearch.com/
projects/cyborg). Project Cyborg is a cloud-based plat-
form for computational tools in the life sciences and pro-
grammable matter space, supporting design and engineering
across domains and scales. Cyborg enables elastic comput-
ing through a node framework that natively provides sup-
port for simulation, optimization, and visualization. Being
built on Cyborg, GenomeCarver is comprised of nodes for
each step of the workflow connected to form a cohesive user
experience that guides the user through the tool.

GenomeCarver currently supports three model organisms:
yeast Saccharomyces cerevisiae, bacterial Escherichia coli,
and plant Arabidopsis thaliana. However, GenomeCarver
is flexible enough to be extended to interface a variety of
organisms, which we plan to do in the near future. Simi-
larly, GenomeCarver currently supports a finite number of
mainstream parts standards such as the BioBrick 1.0[1] and
yeast Golden Gate standards[2], but new standards could
easily be incorporated. In a future implementation, we even
plan to allow users to import their own, custom standards.
While it’s interfacing with multiple genomes and standards
has made GenomeCarver flexible, it’s being built on top of
Cyborg further’s the tool’s flexibility, as GenomeCarver will
be able to be used in conjunction with the other tools cur-
rently being developed on the same platform.

Figure 1 shows the application’s workflow. First, a user
chooses a genome, a category and the loci of the part. For
instance, a user may choose the promoter of Gal loci from
Saccharomyces cerevisiae. Optionally, the user can then de-
fine the preferred promoter and terminator lengths, or spec-
ify that they would like gene boundaries to be ignored. The
default maximum promoter length is 500 base pairs, and
the default maximum terminator length is 200 base pairs.
If the user does not specify that gene boundaries should
be ignored, then GenomeCarver will identify a gene’s pro-
moter as the upstream (5’ to 3’) sequence of a maximum
length of 500 (or the specified maximum length) which does
not overlap another gene. It will identify the terminator as
the following sequence of a maximum length of 200 bases
which does not overlap another gene. GenomeCarver then
returns the specified sequence(s). The user can then as-
sign the sequence(s) to a standard using another drop down
menu. Once selected, the sequence will then be checked
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Figure 1: The workflow of GenomeCarver

for restriction sites, returning a warning if an incompatible
restriction site is found. The part will then be packaged
by adding the appropriate prefix and su�x. GenomeCarver
then allows the packaged parts to be exported in CSV and
SBOL formats [6].

Experimental verification

GenomeCarver has been used extensively in several labs
in the USA, UK and China to systematically design thou-
sands of yeast parts of each category conforming to the yeast
Golden Gate standard. We used the designed primers to am-
plify parts from genomic DNA in a high throughput fashion,
cloning the parts onto Topo vector backbone, and sequence
verifying them all (data not shown in the abstract). We
also demonstrated high e�cient assembly of various genetic
switches using these parts and standard Golden Gate reac-
tion, and transformed these assembled switches into yeast
for functional assays. Most recently, GenomeCarver has
been used to design all the 6000 yeast promoters and 6000
yeast terminators, which demonstrates that we can scale up
the design automation easily.

Future plan

In the next version of GenomeCarver, we are planing to
include additional genomes, such as mammalian ones, as
well as to support user-customized standards. Batch de-
sign functionality will also be developed to support large
projects, such as BioFab (http://biofab.synberc.org/) type
projects for various genomes. We will also develop better
primer design strategies [8] to maximize the parts amplifi-
cation success rate. We are also planning to support codon
optimization for gene parts, so that a user can carve out
a gene from one species and codon optimize it for another
species, and GenomeCarve will output oligonucleotides for
de novo DNA synthesis. Finally, a better integration with
existing parts-based design tools will be needed for a better

user design experience.

Conclusion

GenomeCarver has been built to fill a gap left by existing
Synthetic Biology computational tools. It allows users to
extract parts directly from genomes, and to package them
into standardized formats for parts synthesis. We have used
this tool to design over 12,000 parts, and constructed and
verified several hundred of them. This tool, along with the
parts repository we created using it, will be a useful and
important addition to the synthetic biology community.
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ABSTRACT 
We describe in this paper a computational method, Automated 
Selection Finder (ASF), for constructing a selection pathway from 
a desired enzymatic product to a cellular host. ASF can be 
beneficial for identifying appropriate high throughput selections 
for enzyme engineering purposes.   

 

1. INTRODUCTION 
Directed evolution, sometimes described as premeditated 
synthetic evolution, has been used to engineer potent therapeutic 
agents, novel vaccines, potent antibodies, and enzymes that 
produce novel bioactive compounds and fine chemicals (see [1] 
for a recent review).  Directed evolution of enzymes consists of an 
iterative process of creating mutant libraries and choosing desired 
phenotypes through screening or selection until the enzymatic 
activity reaches the desired goal. The biggest challenge in directed 
enzyme evolution is to identify an appropriate high-throughput 
screen or selection to isolate the variant(s) with the desired 
property.  Traditionally, screening is accomplished through 
colorimetric or fluorometric assays, which have low to medium 
throughput.  Selection, however, is more desirable because it 
offers far higher throughput capabilities. One example is selection 
for engineered xylose reductases (XR) enzyme, which leads to the 
overproduction of xylitol through enzymatic reduction of D-
xylose.  The selective pressure enriches for strains that can 
overproduce this chemical via an engineered a pathway in the host 
E. coli that forces xylitol to become an essential carbon source 
[2]. There are currently no known techniques for identifying 
appropriate high throughput selections for enzyme engineering 
purposes.  That is, given an enzymatic reaction, the challenge is to 
automatically identify a consumption pathway, from the desired 
product to a metabolite within the host cell. Developing 
automated techniques to identify selection mechanisms can 

significantly expedite experimental practices in directed 
evolution.   
 
We describe in this abstract a computational method, Automated 
Selection Finder (ASF), for constructing a selection pathway from 
a desired enzymatic product to a cellular host.  Additionally, ASF 
identifies knockout targets to ensure that the added pathway 
becomes essential for producing cellular biomass. 
 

2. METHODS 
The ASF algorithm consists of the following four steps. First, we 
identify possible pathways from the desired product to a 
metabolite in the cellular host (blue path in Fig. 1).  For each such 
selection pathway, we also identify supporting pathways (red path 
in Fig. 1) from the host to the reactant-side cofactors along the 
selection pathway.  The supporting pathways ensure the viability 
of the selection pathway. To identify the selection pathways, we 
utilize a modified version of probabilistic pathway construction 
algorithm (ProbPath) [3], which was originally designed to 
identify synthesis pathways by constructing from the KEGG 
database a series of reactions from a metabolite within the host to 
the desired product.  ProbPath was shown effective in identifying 
non-native synthesis pathways for a given product metabolite with 
production yield comparable to that of limited-in-depth exhaustive 
search methods [3]. Second, we identify knockout targets to 
maximize the consumption flux associated with the selection 
pathway.  Third, the flux associated with the desired product is 
computed using Flux Balance Analysis.  Finally, the candidate 
pathways are then scored based on yield, pathway length, and 
number of required knockouts. Higher yielding shorter pathways 
with the smallest number of knockouts are preferable.   
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3. RESULTS 
We have applied ASF to the engineered XR with desired 
enzymatic product xylitol and E. coli as the host.  Using 80 
iterations of ProbPath, and assuming flux bounds of 0 to 1000 
(mol/sec), we identified 16 pathways with varying characteristics.   

  
Out of the identified pathways 80% provided a yield of almost 
1000 (mol/sec) and 20% provided a yield ranging between 500 
and 900 (mol/sec).   The shortest path identified was a single 
reaction from xylitol to D-xylulose with path length one.  On 
average, the selection pathway length was 5.56.  The number of 
knockouts ranged between 1 and 4.  Overall, the best pathway was 
from xylitol to D-xylulose as the shortest path with length 1 and 
maximum yield equal to 1000 (mol/sec). 
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Fig. 1.  Consumption selection pathway (blue) from the desired enzymatic product to a metabolite within the 
host, and supporting pathway (red) from the host to the cofactors on the reactant side of the reactions along 

the selection pathway.  The “x” marks a knockdown within the host.  

19



Metabolic Constraint-Based Refinement of Transcriptional 
Regulatory Networks  

 

Sriram Chandrasekaran 1, 2, ★ & Nathan D. Price 1, 2  

1Institute for Systems Biology, 401 Terry Ave N, Seattle, Washington 
2Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign 

email: chandrasekaran@fas.harvard.edu, nprice@systemsbiology.org  
  

 
 

ABSTRACT 
Cellular networks, such as metabolic and transcriptional 
regulatory networks (TRNs), do not operate independently but 
work together in unison to determine cellular phenotypes. The 
architecture of individual networks constrains the topology of 
other networks. Hence, it is critical to study network 
components and interactions in the context of the entire 
cell. Current efforts to reconstruct TRNs focus primarily on 
proximal data such as gene co-expression and transcription 
factor binding. While such approaches enable rapid 
reconstruction of TRNs, the overwhelming combinatorics of 
possible networks limits identification of mechanistic regulatory 
interactions. Utilizing growth phenotypes and systems-level 
constraints to inform regulatory network reconstruction is an 
unmet challenge.  

 We present our approach Gene Expression and Metabolism 
Integrated for Network Inference (GEMINI) that links a 
compendium of candidate regulatory interactions with the 
metabolic network to predict their systems-level effect on 
growth phenotypes. We then compare predictions with 
experimental phenotype data to select phenotype-consistent 
regulatory interactions.   

We applied GEMINI to create an integrated metabolic-
regulatory network model for Saccharomyces 
cerevisiae involving 25,000 regulatory interactions controlling 
1597 metabolic reactions. The model quantitatively predicts TF 
knockout phenotypes and revealed condition-specific regulatory 
mechanisms. Understanding how the networks function together 
in a cell will pave the way for synthetic biology and has a wide-
range of applications in biotechnology, drug discovery and 
diagnostics. The algorithm and associated data are available at 
https://sourceforge.net/projects/gemini-data/ 

Keywords 
Systems Biology, Metabolic Networks, Transcriptional 
Regulatory Networks, Synthetic Biology 

 

1. INTRODUCTION 
The inference of transcriptional regulatory networks (TRNs) 
from high-throughput data is a central challenge in systems 

biology. The overwhelming number of possible regulatory 
interactions between thousands of genes and transcriptional 
regulators in a cell—combined with the complex and dynamic 
nature of these interactions—limits the success of current 
approaches to infer TRNs [5].  

 
Figure 1: Process of identifying phenotype-consistent 

interactions using GEMINI A. High-throughput interaction 
data were mapped onto a metabolic network using PROM and 
phenotypic consequences of these interactions were predicted. 
B. Interactions that lead to inconsistencies between model 
predictions and experiments were identified and removed. This 
was achieved by comparing the flux state predicted by PROM 
for the TF knockout with the closest flux state that represented 
the measured growth phenotype. C. The final network that 

★ Present Address: FAS Center for Systems Biology, 
Harvard Society of Fellows, Harvard University 
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matched the phenotype was tested based on its ability to retain 
known interactions and predict growth in new conditions.  
We hypothesized that integrating regulatory interactions with 
metabolic networks would make it possible to more directly 
connect the regulatory interactions with their downstream 
phenotype, and thus allow us to use a broader range of data for 
network curation. The success of this integration would then 
allow the utilization of large-scale phenotypic data, which are 
commonly used to curate metabolic networks, to also refine 
regulatory interactions. To enable the concurrent analysis of 
transcriptional regulation and metabolism, we recently 
developed the Probabilistic Regulation of Metabolism (PROM) 
approach for integrating biochemical networks with TRNs in an 
automated fashion [1]. PROM takes in a genome-scale 
metabolic network model, a regulatory network structure 
consisting of TFs and their targets, and gene expression data 
across different conditions, as inputs to predict the phenotypic 
outcome of transcriptional perturbations. PROM solves the 
forward problem of combining disparate networks to predict 
phenotype (e.g., flux and growth rates).  
In the work described herein, we iteratively use PROM to aid in 
solving the more challenging inverse problem—guiding TRN 
structure prediction using the metabolic network and the 
emergent phenotype measurements. This new approach, Gene 
Expression and Metabolism Integrated for Network Inference 
(GEMINI)[2], produces a regulatory network state that is 
simultaneously consistent with observed gene knockout 
phenotypes, gene expression data, and the corresponding 
metabolic network state. 

2. RESULTS 
The initial integrated network model was formed by compiling 
the yeast regulatory interactions from the Yeastract database [6] 
and was integrated with the yeast metabolic network  (composed 
of 1597 reactions and 901 genes) and gene expression data [3] 
(consisting of 904 expression arrays in 435 conditions) using 
PROM. The integrated model contains 31,075 interactions 
between 179 TFs and 863 metabolic genes. GEMINI performed 
in silico knockouts of each TF in the model and compared the 
predictions (i.e., lethal or viable) to data from growth viability 
assays in glucose minimal media. Running GEMINI on this 
network eliminated over 9,000 phenotype-inconsistent 
interactions and results in a final network containing 22,059 
phenotype-consistent regulatory interactions. In comparison to 
the original Yeastract network, we found the final integrated 
network built using GEMINI to be highly enriched (p-value = 
10-172, hyper-geometric test) for validated gold-standard 
interactions; this result suggests that GEMINI preferentially 
removed low-confidence interactions. These results were robust 
to the chosen growth conditions – glucose, galactose, glycerol 
and ethanol minimal media all led to significant enrichment of 
gold-standard interactions. Similar results were obtained using 
regulatory networks from different sources (binding, motif-
based and expression-based inference), and using different 
metrics to prioritize interactions. GEMINI can also be 
effectively integrated with de-novo network inference 
approaches such as EGRIN to create integrated network models.  

Further, the distribution of inconsistencies in the regulatory 
network was exponential suggesting that a few TFs led to most 
of the inconsistencies. In contrast, no such biases were found in 
the metabolic network architecture. Importantly, we observed 
that the refined network had a greater consistency with growth 

phenotype data in new conditions than the original network. 
Thus, by learning only on glucose minimal medium, the network 
model had greater correlation with growth rate measurements in 
galactose minimal medium (correlation of 0.47, p-value = 10-7 
vs. a correlation of 0.2, p-value = 0.04 for the original unrefined 
Yeastract model) and in urea minimal medium (correlation of 
0.62, p-value = 10-14 vs. a correlation of 0.22, p-value = 0.02; 
data from Fendt et al. [4]). 

 
Figure 2: Iterative Approach for Network Refinement 

and Phenotype Prediction. By using an iterative approach, we 
increased the comprehensiveness of the integrated network 
model by adding new interactions and iteratively refining the 
model using GEMINI. This process enriched the fraction of 
validated interactions in the network (shown in red) and 
improved the predictive ability of the integrated network model.  
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1. INTRODUCTION
The design of a functional component that is part of a

larger, interconnected ensemble, requires the following fun-
damental principles: First, the availability of characterized
fundamental blocks, may it be transistors and capacitors for
electronic design or promoters and coding regions for biolog-
ical engineering, that can be assembled together into a func-
tional entity. Second, the development of predictive models
that are accurate enough to capture the dynamic behav-
ior of the design component and its e↵ect at a systems-level.
Third, access to optimization tools that can provide optimal
solutions, given user-defined constraints and objective func-
tions, by utilizing the former (parts and model predictions)
as its inputs. In this abstract, we present our work towards
an e�cient circuit optimization strategy and a data-driven,
genome-scale host model that can be integrated to any cir-
cuit design platform. The resulting framework accounts for
host-related and secondary e↵ects, which are generally ig-
nored but can have substantial e↵ect on the host and circuit
behavior.

2. METHODS AND RESULTS

2.1 An efficient optimization method with op-
timality guaranty

The carriers of information in gene circuits are chemical
molecules within the cell (broadcast) instead of electrons
within an isolated wire (unicast) as it is the case in electrical
circuits. This adds two more necessary constraints for gene
circuit design, namely the absence of cross-talk e↵ects and
connection compatibility between sub-circuits (i.e. the out-
put molecules of a sub-circuit match the input molecules of
all connected downstream sub-circuits). These constraints
make the problem of selecting parts/modules to build a cir-
cuit become very di�cult. Recently, an exact approach [1]
was introduced to complement previous heuristic e↵orts [2]
for that selection problem. This approach is based on a dy-
namic programming paradigm to explore the solution space
by enumerating all sub-solutions, albeit at a large compu-
tational cost that can be prohibiting, in very large part
database and circuit sizes. To address this, we devised a
branch-and-bound method that estimated the bound of the
solution cost (i.e. the bound on the number of parts and
modules used in a solution) by relaxing the constraints of
cross-talk absence and connection compatibility. With this
bound information, we repeat the search for a complete so-
lution (i.e. a solution that satisfies both the constraints)
of a cost value from the lower bound to the upper bound

Running time (seconds)

Design DP BB

2-cascade 1.8e-1 2.0e-2
3-cascade 2.1e-1 2.0e-2
4-cascade 2.5e-1 4.0e-2
band-detector 3.4e-1 8.0e-2
feed-forward 6.3e-1 7.0e-2
2-not-and 6.4e-1 4.0e-2
3-input-and 2.3 1.2e-1
3-not-and 3.6e1 1.5e-1
2-to-1-mux 1.1e2 1.6e-1
D1 1.2e3 9.8e-1
D2 2.0e3 4.5e-1

Table 1: A comparison between the running time

of the dynamic programming (DP) approach [1] and

the branch and bound (BB) approach.

until such a complete solution is found. By that way, we
can skip the enumeration of all sub-solutions, which results
in significant computational performance improvement. In
a benchmark with 11 circuits that span several functional
domains and a part library with 75 parts and 271 exper-
imentally constructed modules, this method resulted in a
remarkable improvement in running time (see table 1) when
compared to the original approach in [1].

2.2 A multi-layer, genome-scale model for phe-
notypic predictions

The simulation of a host that has been genetically en-
gineered is an important step towards design automation.
For this reason, we developed an integrated genome-scale
model [3] for phenotypic predictions of natural and engi-
neering E. coli strains in several laboratory environments
(Figure 1). We first constructed a normalized dataset that
contains the expression of 4189 genes in 2262 conditions, in-
cluding data for 31 strains and over 15 di↵erent media. We
then created an integrative model that contains three sub-
models that bridge the transcriptional, signal transduction
and metabolic layers. This model covers 3704 regulatory
interactions, 151 instances of signal transduction systems
and 2251 metabolic reactions. Parameters in the transcrip-
tional sub-model were determined by fitting the gene ex-
pression level of 328 transcription factors over four sets of
constraints (phenomenological, capacity, environmental and
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Figure 1: An overview on a computational framework to design and simulate synthetic gene circuits

genetic constraints). The integrated model was evaluated
by performing cross-validation on the various datasets for
growth and gene expression prediction, as well as predicting
de novo experimentally measured data on the growth rate
of 10 single-gene knock-outs for E. coli strains over di↵erent
environments (28 genotype-phenotype combinations in to-
tal). Results show that our model can predict growth rates
with 0.6 to 0.8 pearson correlation coe�cient between the
experimentally measured and computationally-derived pre-
dictions, which is significantly higher than M models and on
par to other ME models so far [4]. Furthermore, the con-
structed model can sense environmental changes and trans-
lated them to changes in gene expression and growth, which
is a significant step forward for bioengineering e↵orts.

2.3 Integration of a computer-aided design op-
timization platform with a genome-scale
simulator

As shown in Figure 1, a list of top-ranked candidate cir-
cuits from the optimization framework, act as inputs to the
genome-scale simulator, in order to predict the dynamic be-
havior within a specific host strain and environmental con-
ditions. All possible triplets of circuit, host strain and envi-
ronmental conditions are considered and their information
is used to update the transcriptional sub-models by modi-
fying the gene regulatory network and signal transduction
sub-models by adding/removing related equations. Addi-
tionally, information about the environmental conditions af-
fects the input of signal transduction and the metabolism
sub-models, by setting the bound of related fluxes and com-
ponents that are implicated in signal transduction pathways.
The resulting benchmark on the triplet information serves as
a decision support for laboratory construction and testing.

3. DISCUSSION

In this abstract, we present our results in an optimization
method for part selection and an approach to integrate a de-
sign workflow and a genome-scale simulator. Although the
incorporation of a genome-scale model to a design pipeline
seems straight-forward, once each of these two frameworks
are in place, there are a number of points to be considered.
First, genome-scale and circuit models use a very di↵erent
approach to modeling, with the former relying in a very
small set of parameters that usually map statistical associ-
ations and not biophysical phenomena. In contrast, circuit
models try to capture, in detail, the biophysical dynamics
and use the appropriate kinetic constants (e.g. dissociation
constants kD, degradation rates kdeg) and modeling frame-
works to do so. Merging these two worlds under a unifying
framework that increases the model’s predictive ability is
quite challenging. As both fields move forward, data avail-
ability and coordinated e↵orts in both disciplines will be
instrumental to close this gap.
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1. INTRODUCTION
The advancements of synthetic biology make biochemical sys-
tems of increasing complexity realizable in living cells. Many
computation and control design examples have been demon-
strated either in vivo or in vitro. In principle, any polyno-
mial ordinary di↵erential equation can be approximated by
chemical reaction networks [1]. When control systems are of
concern, linear control is one of the most widely applied con-
trol methods. Any linear control system can be realized with
three elementary building blocks: integration, gain, and sum-
mation. Realizing linear control with biochemical reactions
has been proposed in [2], where reaction rates of the under-
lying reactions play a key role to achieve the desired building
blocks. Essentially the reaction rates have to be matched ex-
actly, and it imposes serious practicality restriction because
in reality the reaction rates of available reactions are prede-
termined and can be limited. In this paper we devise a mech-
anism to make linear control systems configurable by adding
auxiliary species as control knobs. The concentrations of the
auxiliary species can be adjusted not only to compensate re-
action rate mismatch, but also to reconfigure di↵erent control
systems out of the same control architecture. Hence imple-
menting linear control systems in biochemistry can be made
more practical.

2. METHODS
Following [2], we represent a real variable x by the di↵erence
(x+�x

�) between the concentrations of two molecular species
x

+ and x

�. In the sequel, we shall not distinguish a species
and its concentration.

2.1 Integration Block
An integration block takes an input signal u(t) and outputs
a signal y(t) = ↵

R t

0
u(⌧)d⌧ + y(0) for ↵ 2 R. The integration

block for ↵ � 0 consists of a pair of catalytic reactions (one
with the species of upper signs in superscript and the other
with species of lower signs) in (1) and an annihilation reaction
in (2).

x

± + u

± k±
1! x

± + u

± + y

± (1)

y

+ + y

� ⌘int! � (2)

Auxiliary species x± and input species u± serve as catalysts in
(1). With the definition that k+

1 x
+ = k

�
1 x

� ⌘ ↵, the kinetics
of y is exactly the integration of u as shown below.

ẏ

± = k

±
1 x

±
u

± � ⌘int y

+
y

�

y

0 = ẏ

+ � ẏ

� = k

+
1 x

+
u

+ � k

�
1 x

�
u

� = ↵u

Because the concentrations of x+ and x

� can be controlled
but not k±

1 , in theory it is always possible to design a reaction
network to meet any required ↵. For ↵ < 0, the signs in the
superscript of y in (1) should be swapped to ⌥.

2.2 Gain and Weighted Summation Blocks

A weighted summation block takes a number of input signals
ui(t), i = 1, 2, ..., n and outputs a signal y(t) =

Pn
i=1 ↵iui(t)

for ↵i 2 R. A gain block is a special weighted summation
block with only one input u(t) and producing output y(t) =
↵u(t) for ↵ 2 R. The gain block with ↵ � 0 can be realized
by two pairs of catalytic reactions of (3) and (4), where x

±

and z

± are auxiliary species, and by an annihilation reaction
of (5).

x

± + u

± k±
1! x

± + u

± + y

± (3)

z

± + y

± k±
2! z

± (4)

y

+ + y

� ⌘gs! � (5)

These reactions induce the following equation.

ẏ

± = k

±
1 x

±
u

± � k

±
2 z

±
y

± � ⌘gs y

+
y

�

Let ku ⌘ k

+
1 x

+ = k

�
1 x

� and ky ⌘ k

+
2 z

+ = k

�
2 z

�. The mass
action of y becomes

y

0 = ku(u
+ � u

�)� ky(y
+ � y

�) = kuu� kyy

If ky is large enough compared to |s| = !, Laplace transform
converts the above equation to

G =
Y

U

=
ku

s+ ky
⇡ ku

ky
⌘ ↵ (6)

That is, with properly chosen ky, the value of y at equilib-
rium equals ↵u, which accomplishes the implementation of
the gain block. For ↵ < 0, the superscript of y in (3) should
be swapped.

The weighted summation block can be implemented with
the same reactions as the gain block, except that (3) has to
be changed to

x

±
i + u

±
i

k±
1,i! x

±
i + u

±
i + y

±, i = 1, 2, ..., n (7)

If the scaling factor ↵j < 0, we simply swap the signs in the
superscript of y in the reaction of (7) corresponding to input
uj .

3. CASE STUDY
We perform case study on the mass-spring-damper (MSD)
system as shown in Fig. 1 A. The system can be modeled by
the equation

Mẍ+ bẋ+ kx = F.

With M = 1 kg, b = 10 N s/m, k = 20 N/m, F = 1 N, by
Laplace transform we derive the transfer function

G =
1

s

2 + 10s+ 20
⇡ 0.2236(

1
s+ 2.764

� 1
s+ 7.236

)

The transfer function can be implemented with the block di-
agram shown in Fig. 1 B. The proportional-integral (PI) con-
troller to the MSD system is shown in Fig. 1 C.
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Figure 1: (A) Mass-spring-damper system. (Let F = 1 N, M = 1 kg, b = 10 N s/m, k = 20 N/m.) (B) MSD model, where triangular

blocks denote gain functions with their corresponding weights, rectangular blocks denote integrators, and circle blocks denote mixers for

summation and/or subtraction. (Let A = 2.764, B = 7.236 and C = 0.2236.) (C) PI-controlled MSD model, where G is the plant shown

in (B). (Assume the values of KP and KI are given in Fig. 2 D.)

Figure 2: The blue, green, and red curves represent the responses in ideal, configurable biochemical implementation, and nonconfigurable

biochemical implementation cases, respectively. (A) Step, impulse, and sinusoidal (from left to right) responses of MSD. (B) Step

responses of PI-controlled MSD. (Assume 10% rate mismatch in the MSD system.) (C) Step responses of PI-controlled MSD, where the

MSD undergos parameter change with b = 40 N s/m and k = 60 N/m, respectively, which induces gain change of A = 1.561, B = 38.44

and C = 0.0271. (D) The values of (KP ,KI) in simulation.

The block diagrams are constructed with ky = 10 for
all the summation and gain blocks except those summation
blocks in red and gain blocks A and B with ky = 50. The
values of ku are set to ↵ky where the values of ↵ equal the
weights specified in the corresponding gain blocks. Also we
assume k2’s have the same values as ky’s and k1’s are in 10%
mismatch to ku’s.

Fig. 2 A and B show the responses of the MSD and the PI-
controlled MSD systems. As can be seen, our method achieves
better approximation to the ideal cases than the prior method
[2]. One of the advantages of our method is that we can match
the weight ku/ky by tuning the concentrations of x± and z

±,
whereas in the prior method [2] no tuning is possible to avoid
the inexact gain k1/k2 due to the mismatch of reaction rates
k1 and k2. (Note that the biochemical implementations have
their own optimal KP and KI values, shown in Fig. 2 D, to
approximate the ideal system.)

Suppose that the spring and damper of the above MSD
system are now replaced with new ones for b = 40 N s/m
and k = 60 N/m. Without redesigning the PI-controller,
our method can still adapt the PI-controller to the new MSD
system whereas prior method has no such capability. Since
we can tune the concentrations of x± and z

± in biochemical
implementation, it is possible for us to adapt (KP ,KI) to
optimal values (40, 60) for the new PI-controlled MSD system,
in contrast to the original (15, 20). Fig. 2 C compares the
results with and without such reconfigurability.

4. DISCUSSIONS
The aforementioned linear control systems can possibly be
realized using the DNA strand-displacement technique. How-
ever the rate constants in the displacement reactions are about
six orders of magnitude in 1 M�1 s�1 [3]. If we require
ky = k

±
2 z

± in (6) to be 100 M�1 s�1, then the concentra-
tions of z± will be of five orders of magnitude in nM. Such
a high concentration might be impractical. To alleviate this
high concentration requirement, one may try to increase the
reaction rates. Zhang et al. have constructed and charac-
terized DNA catalytic circuits driven by entropic gains [4].
Based on the entropy e↵ects, a variant, called the tethered
entropy driven catalytic circuits, has been introduced [5] to
shorten the catalytic cycle and thus increase reaction rates.
With these techniques, linear control systems may be e↵ec-
tively realized using DNA displacement reactions.
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1. FLUX OPTIMIZATION AND PATHWAY-
BASED BAYESIAN INFERENCE

The remarkable availability of multi-omics data provides
a highly comprehensive view of cellular processes at related
levels of mRNA, proteins, and metabolites. Under a particu-
lar environmental condition, a bacterium may have a target
of required pathway responses to achieve the desired pheno-
type. Therefore, one can question regarding the underlying
mechanisms of those responses that enable the bacterium to
obtain the desired characteristics under a compendium of
di↵erent conditions.

We propose a hybrid method combining multi-omics FBA
and Bayesian inference, with the aim of investigating the
cellular activities of a bacterium from the transcriptomic,
fluxomic and pathway standpoints under di↵erent environ-
mental conditions. More specifically, we integrate a FBA
model and a Bayesian factor model to determine the degree
of metabolic pathway responsiveness and to detect pathway
crosstalks, starting from gene expression profiles.

To evaluate the e↵ect of environmental changes on a bac-
terium, we adopt a flux balance analysis (FBA) model and
vary the constraints on the metabolic fluxes accordingly.
This approach decodes transcriptomic activities into metabolic
fluxes changing in a cell, using the existing metabolic net-
work as a model of reactions.

To execute dimensionality reduction but maintain infor-
mative outcomes, we conduct a Bayesian factor model on
those reaction fluxes at the level of pathways (defined groups
of functionally related reactions). With this approach, we
indicate the degree of responsiveness of each pathway under
each environmental condition. Simultaneously, we extract
the information of long range interactions between fluxes in
terms of crosstalks between pathways, therefore accounting
for the hidden biological organization underlying the bacte-
rial responses to di↵erent environmental conditions.

By examining comprehensive levels of mRNA, proteins
and metabolites, as well as exploiting the metabolic network
and the definition of pathways, our pipeline provides molecu-
lar insights extracted from bacterial responses to an ensem-
ble of environmental conditions. For instance, extracting
pathways crosstalks from environmental conditions allows
to investigate the relationship of bacteria and plants in my-
corrhizae, or the role played by bacteria in sepsis and health
conditions (e.g., gut microbiota). Furthermore, time-series
gene expression profiles combined with our approach would
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enable further analysis on dynamical pathway crosstalks, un-
veiling the temporal progression of pathway activation.

2. ENVIRONMENTAL CONDITIONS MAP
TO FBA FLUXES

A useful feature of our approach is the possibility to map a
gene expression microarray profile to a bidimensional space
of objective functions (e.g., acetate-biomass). We use a com-
pendium of 466 E. coli A↵ymetrix Antisense2 microarray
expression profiles [1], referred to di↵erent media and di↵er-
ent conditions (e.g., pH changes, heat shock, varying glucose
and oxygen concentrations). We map each condition, which
corresponds to a gene expression profile, to a set of bounds
for the metabolic fluxes of an E. coli model [3].

Since each reaction in the model depends on a gene set
(a group of genes linked by AND and OR Boolean rela-
tions), the gene expression profiles are mapped to gene set
expression profiles x by replacing AND and OR with min

and max respectively. Formally, given the ith flux v

i

of
the metabolic network, we add the constraints V min

i

�(x
i

) 
v

i

 V

max

i

�(x
i

) where x

i

is the expression of the ith gene
set, V min

i

and V

max

i

are the lower and upper bounds. There-
fore, the lower and upper bounds are function of the ex-
pression of the genes responsible for the ith reaction. The
function � is defined as:

�(x) =

(
�(1 + |log(x)|)sgn(x�1)

/�

2
i

if x 2 R+ \ {1}
�/�

2
i

if x = 1
(1)

where sgn(x� 1) = (x� 1)/ |x� 1|, �2
i

is the variance of the
gene set responsible for the ith reaction, and � is a weight
for the variance. The variances �2

i

of the gene sets are com-
puted from the variances of the genes across the conditions
in the dataset, following the same rules defined to map the
gene expressions to the gene set expressions. We make the
assumption that the importance of a gene is inversely pro-
portional to its variance, since a gene whose expression level
is only slightly varied across conditions is assumed to be im-
portant for the bacterium [2]. Thus, we adopt the inverse
of the variance as a multiplicative factor for the lower and
upper bound, indicating the ability of the gene set to change
the reaction fluxes for which it is responsible.

Finally, we define the synthetic and natural objectives (ac-
etate and biomass respectively), while the oxygen and glu-
cose uptake rate are constrained for every gene expression
profile according to the oxygen and glucose of the corre-
sponding experimental condition. We run the model once for
each condition, therefore obtaining 466 flux distributions. In
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Figure 1: Results from multi-omics FBA and Bayesian factor modeling. The 466 gene expression profiles are

mapped to the acetate-biomass objective space after running FBA. Each point consists of 2583 reaction flux

rates projected onto the objective space (a). The color bar shows the glucose uptake rate [mmolh

�1
gDW

�1
].

Interestingly, the E. coli strains grown in conditions with 10 mmolh

�1
gDW

�1
of glucose uptake rate are able

to produce more biomass and acetate than those grown on higher glucose. Then, a pathway-based Bayesian

analysis is performed on the flux rates in the four conditions based on the two criteria of oxygen and glucose.

The average degree of responsiveness across aerobic and anaerobic conditions of high and low glucose is

plotted (b), and the most responsive pathways are shown (c). PID:5 is the most responsive pathway in

anaerobic conditions with low glucose, while PID:17 and PID:25 play a key role in aerobic conditions with

high glucose, highlighting a pathway crosstalk between them (d).

Figure 1a, we plot the 466 flux distributions projected onto
the acetate-biomass objective space.

3. BAYESIAN FACTOR MODELING
Here we perform pathway analysis on the reaction flux

profiles obtained from the FBA analysis. Having regarded
pathways as the latent factors underlying bacterial flux re-
sponses, we decompose the flux data matrix X 2 RR⇥C

into a product of two matrices: X ⇠ BS. The first ma-
trix B 2 RR⇥P denotes the membership strength of reac-
tions in each pathway. The second matrix S 2 RP⇥C corre-
sponds to the degree of pathway responsiveness specific to
each condition. Note that R,C, and P are the number of re-
actions, conditions, and pathways respectively. We use the
prior knowledge of pre-defined reaction-pathway member-
ships matrix K 2 {0, 1}R⇥P from [1] to guide the clustering
reactions into pathways in B.

Based on our assumption of pathway crosstalks, we model
pathway dependencies by assuming a Gaussian distribution
on S with a zero mean and a precision (inverse covariance)
matrix � 2 RP⇥P from which we compute the correlations
between pathways. Finally, we make inference on S, B and
�, where S and � indicate respectively the degree of path-
way responsiveness to each condition and the crosstalks be-
tween pathways [4].

4. RESULTS AND DISCUSSION
FBA modeling was first applied to map 466 gene expres-

sion data into 2583 reaction flux rates of the E. colimetabolic
network, subject to the maximization of acetate and biomass
production. Next, Bayesian factor modeling was performed
on those reaction fluxes by taking pre-defined reaction-pathway
memberships as prior knowledge to infer the responsiveness
of 37 pathways (covering all the 2583 reactions of the E. coli
model) to each experimental condition (Figure 1b), and to

detect crosstalks between pathways (Figure 1c).
The definitions of gene expression and the analysis of

metabolic pathways in FBA models provide a pipeline to
integrate and investigate data representing heterogeneous
’omic levels, with the aim of reconstructing complex multi-
dimensional interactions. When the objective to maximize
consists of both biomass and acetate production (Figure 1a),
the E. coli strains grown in conditions with 10 mmolh�1gDW�1

of glucose uptake rate produce more biomass and acetate
than the strains on higher glucose. Thus, we are interested
in investigating the underlying mechanisms in di↵erent oxy-
gen conditions and glucose uptake rates (high/low glucose
with the threshold of 10 mmolh�1gDW�1).

Table 1d shows the average of responsiveness degrees of
the most responsive pathways to di↵erent oxygen and glu-
cose conditions. PID:5 was important in anaerobic condi-
tions on low glucose, while PID:17 and PID:25 both exhibit
a key role in aerobic conditions on high glucose, highlight-
ing a pathway crosstalk between them (1c). A recent re-
view of amino acids and their functions shows that alanine
is the primary amino acid gluconeogenesis, and valine di-
rectly synthesizes glutamine and alanine [5], suggesting that
the crosstalk between them deserves closer attention.
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ABSTRACT 
In this paper, we describe methods for defining delays in discrete 
logical models of cell signaling and gene regulatory networks. We 
define here three methods and outline their main characteristics. We 
applied these methods in several models that we have been developing. 
The results that we obtained by simulating these models emphasize the 
fact that the selection of approach in modeling delays can have both 
qualitative and quantitative effects on the model’s behavior and its 
steady state.    

1. INTRODUCTION 
When designing models of biological systems, natural or 

engineered, one often needs to take into account information about the 
timing in the system. In models of cell signaling and gene regulation 
this usually means defining rates of reactions, and either solving ODEs 
or simulating models using the SSA (stochastic simulation algorithm). 
However, it is often the case that element regulations are not well 
understood, and even when they are, rates of reactions are not known. 
Still, to better understand how the overall system works, it is critical to 
model the system using the available information. We present in the 
following the methods that can be used to implement timing 
information into discrete logical models. 

2. BACKGROUND 
Logical models do not require quantitative parameters, but rather 

enable the development of complex qualitative networks. When 
developing discrete logical models we first define key elements in the 
system to include in the model. The next step is to define element 
regulatory sets, as well as the number of values that are necessary to 
describe each element. In Figure 1(a)(top), we show an example of an 
element (ROS) and its regulators (In1,In2,AOX). In1 and In2 are 
implemented with Boolean variables, while ROS and AOX are 
implemented with discrete variables that can have three different 
values, 0,1, and 2. These variables are encoded with two Boolean 
variables each (ROSHI, ROSLO and AOXHI, AOXLO). The next step in 
model design is to define update rules for all model variables. We use 
the approach described in [1] to create model rules. 

Once the model is built, we perform simulations with the 
BooleanNet tool [2]. Logical rules are updated in each simulation 
round using a random asynchronous approach, where in each step 
within the round, only one variable is chosen and the rule associated 
with that variable is evaluated to obtain a new value for the variable. 
The choice of rule to be evaluated next can follow different algorithms. 
In BooleanNet, in each update round, all rules are accessed and 
evaluated once, but the order in which this is done is random. 
Therefore, for a specified scenario (input values and initial variable 
states), a number of independent simulations can be conducted and an 
average behavior for each variable and the overall system can be 
computed.  

3. APPROACH 
Here we describe three types of delays that we account for when 

developing discrete logical models, and we show how these delays can 
be modeled. We use as an example the small regulatory network in 
Figure 1(a)(top) to describe different delay types. 

3.1 Delay model I 
We show in Figure 1(a)(middle) inputs and the output for the 

example network. The table in Figure 1(a)(bottom) shows 
combinations of inputs and the resulting output value. For example, the 
combination (ROS,AOX,In1,In2) = (0,1,0,1) results in ROS switching 
to value 1, but with two rounds of delay, which is accounted for by two 
‘d’s in the table entry (‘1dd’). Such table entry indicates that when the 
model is simulated, the input condition (ROS,AOX,In1,In2) = (0,1,0,1) 
needs to be satisfied in three consecutive rounds, and only in the third 
round ROS will actually switch from 0 to 1. We outline in Figure 1(b) 
a general implementation method and all the variables necessary for 
implementing these different cases of value switching with delays 
when the random order asynchronous simulation approach is used. To 
simplify the representation, the figure includes only up to three 
consecutive rounds and delay variables relevant for the ROSHI variable 
rule, while longer delays can be defined and equivalent delay variables 
exist for the ROSLO variable rule. 

In this delay model, all conditions that satisfy the requirement for 
the same transition will be lumped into a single function and whenever 
the overall function is evaluated to 1 for specified number of 
consecutive rounds, the transition will occur. In other words, this 
allows for transients to occur even when the actual conditions change. 
Therefore, a smaller number of variables (in most cases) can be 
defined, since it is only necessary to check the value of the ‘flags’ 
(e.g., ROSHI,D1, ROSHI,D2, ROSHI,D3, ROSHI,I,D1, ROSHI,I,D2, ROSHI,I,D3) 
from the previous round when evaluating the function in the current 
round. In addition, this approach allows for minimizing logic functions 
of delay variables, since multiple table entries can be lumped into a 
single function.  

3.2 Delay model II 
In contrast to the previous approach, in some cases it is important 

to make sure that the exact condition leading to the value switch is the 
same while accounting for delay. If the condition changes before the 
required number of rounds has passed, and if the resulting output is 
still the same for the new conditions, the counting may need to be reset 
and the new condition needs to be satisfied for the specified number of 
consecutive rounds. For example, when switching from 
(ROS,AOX,In1,In2) = (0,1,0,1) to (ROS,AOX,In1,In2) = (0,1,1,0), the 
output is same, ‘1dd’, but the conditions (input values) are different.  

If this approach is used, one either needs to keep ‘flags’ for each 
specific condition from all previous rounds (as many rounds as delay 
length specified in the table), or to keep input values from previous 
rounds. Since the latter number of values is smaller, we use this 
approach, and this is shown in Figure 1(c) (In=(In1,In2), 
ROS=(ROSHI,ROSLO), AOX=(AOXHI,AOXLO)). Values from one 
round are propagated to the next round, and variable indices (-1,-2,-3) 
indicate from which previous round the values are propagated.  

3.3 Delay model III 
The simplest delay model is shown in Figure 1(d). In this case, the 

delay is implemented in the form of ‘buffers’ that add steps to the 
pathway, thus delaying the propagation of the new value of an element 
(e.g., AOX) to some or all of its downstream elements (e.g., ROS). 
This approach can be used when modeling pathway sections without 
crosstalk or when only indirect causal relationships are known, while 
the overall timing of the pathway still needs to match the timing of 

28
IWBDA 2014, June 11–12, 2014, Boston, Massachusetts, USA. 

Copyright is held by the owner/author(s). Publication rights licensed to BDAC.



other pathways in the network. In the example in Figure 1(d), ROSnext 
is a function of AOXDD. Depending on the simulator setup, this delay 
may be fixed such that it always takes exactly two additional rounds 
for the new AOX value to propagate to ROS, or two rounds is the 
upper bound to what this delay adds to propagating the signal from 
AOX to ROS. In the former case, the rules for variables AOXD and 
AOXDD have lower ranks than rules for AOX and ROSnext such that 
AOXDD is always updated before AOXD, taking the value of AOXD 
from the previous round, and similarly, AOXD always takes the value 
of AOX from the previous round. 

4. RESULTS 
We used the described modeling approaches during the 

development of two different models, T cell differentiation model [3] 
and immune crosstalk in malaria infection in mosquitoes [4,5]. We 
analyzed the application of the delay modeling approach III in [3], and 
showed that different delays can affect transient behavior of elements 
by shifting their response curves left or right and by increasing the 
magnitude of transients. However, this doesn’t seem to affect the 
qualitative behavior and steady state values. On the other hand, 
applying the delay modeling approach I can affect the results 

qualitatively as well as quantitatively, which we observed in the model 
of immune crosstalk in malaria [5].  

5. DISCUSSION   
We described here the delay modeling approaches that can be used 

in developing discrete models of cell signaling and gene regulation. In 
addition, we have recently created a simulator that can account for a 
variety of synchronous and asynchronous, as well as stochastic and 
deterministic rule combinations. This new simulator can handle the 
rules that are defined with the delay modeling approach II. Our next 
step is to implement and simulate our models using this new modeling 
and simulation approach, and to study qualitative and quantitative 
differences arising from different delay models. 
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Figure 1. Delay models. (a) Example from the Malaria signaling network model [4]: positive regulation of reactive oxygen species (ROS) by Toll-like (In1) and 
Insulin receptor (In2) signals, and negative regulation by antioxidant (AOX) (top); black-box representation of inputs (including current value of ROS) and outputs 
of the fROS circuit (middle); input combinations and output values, which include indicators of the number of delay steps used in the first delay model shown in (b) 
(bottom). (b) Delay modeling method I. (c) Delay modeling method II. (d) Delay modeling method III. 
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1. MOTIVATION
RNA replicons are an emerging platform of increasing in-

terest, particularly for vaccination and therapeutic appli-
cations [3]. A replicon is based on a virus, but replaces the
infective capsid proteins with engineered“payload”genes [5].
Here we focus on replicons derived from alphavirus, a positive-
strand RNA virus, with architecture and lifecycle shown in
Figure 1: the replicon RNA begins with a complex of non-
structural proteins (NSPs) that create“viral factories”where
it replicates [4]. A subgenomic promoter next induces pro-
duction of shorter mRNAs containing engineered payload
genes, which are translated to produce the proteins encoded
by the payload sequences. Finally, both mRNA and proteins
are removed by normal processes of dilution and decay.

Replicons provide distinct advantages as a platform for
synthetic biology: as they are based on RNA, there is no
direct path to a↵ect cellular DNA, which reduces safety is-
sues for medical applications. Unlike ordinary mRNA, they
self-amplify, producing much stronger gene expression and
over a longer time period, but can trigger a cell’s immune
response, thereby curtailing expression. For a full and ref-
erenced discussion of the background of this work, see [1].

In order to enable rapid engineering of replicon-based sys-
tems, we have characterized the expression dynamics of Sind-
bis replicons in baby hamster kidney BHK-21 cells with con-
stitutively expressed payloads. From this characterization,
we construct a quantitative model that predicts expression
in three-replicon systems with better than 2-fold accuracy.
This predictive model can then be inverted to produce an
algorithm for designing transfection mixtures to produce ei-
ther desired expression ratios or absolute expression levels.

2. QUANTITATIVE EXPRESSION MODEL
To characterize the expression dynamics for Sindbis repli-

cons in BHK-21 cells, we carried out two experiments: a
logarithmic dose-response test of a single species of repli-
con over a 50-hour timespan, and a linear titration of pairs
of co-transfected replicons expressing di↵erent fluorescent
proteins. Both experiments use the TASBE characteriza-
tion method [2] to obtain calibrated flow cytometry data in
absolute units; in particular, Molecules of Equivalent FLu-
orescein (MEFL). Full details of this characterization and
modeling are given in [1]; for this abstract we merely sum-
marize the key results and the model derived.

IWBDA 2014 Boston, Massachusetts, USA
This work was sponsored by DARPA DSO under grant W911NF-11-054;
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Figure 1: General architecture of RNA replicon de-
sign and expression dynamics.

Based on these experiments, we construct the following
model: following a short initial delay of �E = 4.02 hours as
the replicons amplify, fluorescence converges exponentially
with half-life �E = 5.86 hours towards a dose-independent
translation-limited mean saturation level of S = 5.44e7 MEFL.
This saturation level is modulated by a log-normal distribu-
tion of cell variance V = 10N (0,�), where the standard de-
viation � = 0.365. The initial transient also appears dose-
dependent, but cannot be quantified from these experiments.

Not all cells are transfected, and those that are trans-
fected receive varying initial dosages of plasmids, which af-
fects the final ratio of fluorescence. Cells are transfected
with a Poisson distribution dependent on cell variance, re-
ceiving an initial “founder population” of each replicon of
fi = Pois(↵ · V · di), where ↵ = 0.0127 and di is the initial
dose of replicon i. This initial dose is then amplified by a
Polya Urn process (modeling the transition, as the number
of replicons grows, from high sensitivity to stochastic e↵ects
to a stable ratio), giving an expected ith replicon proportion

pi = (1�
X

j<i

pj) ·Beta(fi,
X

j>i

fj)

where Beta(x, y) is the beta distribution (the ratio limit of
a Polya Urn process). Transfected cells are thus predicted
to have a distribution of expressions for the ith replicon at
time t of:

E(t, i) = V · pi ·max(0, S(1� 2
�

E

�t

�

E ))

Finally, as replicon expression rises, the growth of trans-
fected cells drops relative to untransfected. The fraction of
expressing cells for total dose d at time t is thus:

F (d, 0) = ⌧ · P (Pois(↵ · d) > 0)

F (d, t) =
F (d, 0)

F (d, 0) + (1� F (d, 0)) ·max(1, 2
�

F

�t

�

F )
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Figure 2: The quantitative expression model gives
high precision predictions across a wide range of
expression levels both for Sindbis/BHK (left) and
VEE/C2C12 (right).

Where ⌧ = 0.977 is the maximum transfection e�ciency,
�F = 21.5 hours is the time before significant impairment
of transfected cells, and �F = 8.89 hours is the relative
doubling time for untransfected cells after that point.

We have validated this model with a collection of three-
replicon mixtures, chosen to test the model with dosage ra-
tios ranging across two orders of magnitude and expression
levels ranging across three. Measured at various time points
up to 50 hours post-transfection, we find this model provides
precise predictions of the mean expression (Figure 2), with a
mean prediction error of only 1.7-fold. Model generality was
tested by transfer to VEE replicon in C2C12 myoblasts, de-
riving parameters from a new set of experiments and adding
an immune response term, to produce similar accuracy.

3. EXPRESSION DESIGN ALGORITHM
Given this forward model of expression, we can derive

an algorithm for designing replicon mixtures with a desired
combination of expression levels. In particular, we will de-
sign for the peak level of mean expression and peak fraction
of cells expressing all elements in the mixture. Precise per-
cell control of stoichiometry is, unfortunately, not an option
given the degree of cell-to-cell variation, but as we will see
the peak mean expression can be accurately designed.

We begin with an assumption that �E , �E , �F , and �F are
such that cells reach near-peak expression before there is an
significant shift in the ratio of expressing to non-expressing
cells. This is the time we target, designing for a relative
expression of Ri for the ith replicon and for a yield of Y

fraction of cells expressing all replicons. The yield for the
specified ratio, at a given minimum dosage dm is:

Y = ⌧ ·
Y

i

(1�
Z

e

�↵d
m

R

i

min{R
i

} 10�x

�0,�(x)dx)

where the integral computes the expected fraction of cells
not receiving the ith replicon (e�� for a Poisson of parameter
�) with respect to the log-normal distribution of per-cell
variation (�0,� being the probability density function for a
normal distribution with mean 0 and standard deviation �).
Although complicated, this function is monotonic in dm, so
it is easy to solve numerically for a dosage dm to produce
the specified yield Y . The full set of dosages then proceeds
directly from the ratio: di = dm · R

i

min{R
i

} .
With this algorithm for designing ratios, we can also de-

rive an algorithm for designing absolute expression levels.

Specification Designed Simulation

Peak Expression Yield Dosages (ng) Peak Mean MEFL Yield

1:1 Ratio 0.95 766, 766 2.21e7, 2.21e7 0.950

3:1 Ratio 0.50 212, 71 4.18e7, 1.60e7 0.537

5:2:1 Ratio 0.75 892, 357, 178 3.34e7, 1.21e7, 5.86e6 0.775

3e6 MEFL 0.80 171, 2920 2.50e6 0.799

1e6, 1e7 MEFL 0.50 56, 557, 2420 1.29e6, 1.11e7 0.520

2e7, 1e7 MEFL 0.95 1250, 627, 1530 1.66e7, 7.73e6 0.953

Figure 3: Examples of applying design algorithm,
comparing specification with simulated behavior for
design (ballast dose last in MEFL designs).

Given a set of desired peak mean expressions Ei, we com-
pute a required “ballast” expression:

Eb = S �
X

i

Ei

and design for the ratios of the set of Ei and Eb.
Figure 3 shows examples of applying this design algo-

rithm, comparing the specification to a simulation of the
designed dosages on a population of 100,000 cells at 20 hours
post-transfection using the stochastic model in the prior sec-
tion. The simulation matches the specification closely, with
a maximum expression error of 1.3-fold and a maximum
yield error of 4%. Obviously, this could be further improved
with additional tuning of the design algorithm, but the need
is not urgent since these accuracies are significantly better
than the accuracy of simulation for predicting experimental
observations.

4. CONTRIBUTIONS AND FUTURE WORK
We have developed a replicon expression model that ac-

curately predicts the behavior of multiple replicon/cell-line
combinations, and from this model an algorithm for forward
design of expression ratios or levels. Experimental results
indicate that this model may be broadly applicable. Future
work aims to extend to therapeutically relevant cell lines
and in vivo systems, as well as regulatory interactions, thus
enabling rapid precision engineering of medical applications.
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Bacterial synthetic gene circuits are designed in a modular,
drag-and-drop fashion within the framework of composable
Parts and Pools [5]. DNA Parts exchange fluxes of common
signal carriers, such as RNA polymerases and ribosomes [2],
that are stored into Pools. Prokaryotic Parts do not show
a high degree of complexity and a detailed model based on
mass-action kinetics can be derived rather easily. Eukaryotic
Parts, in contrast, gather a considerable number of species
and reactions. Promoters, for instance, can host many pro-
tein binding sites; RNA interference (RNAi), a widespread
translation regulation mechanism, involves several proteins
such as the Dicer and the RISC complex; mRNA get spliced
in the nucleus and, then, it is transported into the cyto-
plasm to be translated by the ribosomes. Therefore, cell
compartments have to be taken into account in order to
model eukaryotic cells properly (see Figure 1).

A precise description of even fairly simple eukaryotic gene
circuits demands a high number of species. They give rise
to a dense network of reactions. Rule-based modeling is a
way to cope with the combinatorial explosion in the inter-
action number. Software such as BioNetGen [1] calculates
all the species and reactions involved in a biological system
upon specification of seed species (the molecules present be-
fore that any interaction takes place), their initial concen-
trations, and rules that explain how di↵erent species inter-
act. However, rule-based modelling is non-modular, thus
not suitable per se for composable Parts and Pools. The
Model Definition Language (MDL)–utilized by the software
ProMoT [7]–is, in contrast, highly modular. Biological cir-
cuit components are represented by specifying the species
and the reactions they contain together with an interface
where fluxes of molecules (biological currents such as PoPS–
Polymerase Per Second) are calculated and exchanged. In
graphic terms, an interface is made of terminals on the com-
ponent’s icon: corresponding terminals on di↵erent Parts

and Pools are connected with wires on the ProMoT graphic
user interface.

The software we developed [4] gives a faithful description of
eukaryotic Parts and Pools by using both BNGL (BioNet-
Gen Language) and MDL. The user has to specify, into an
input text file, the Part (or Pool) structure together with the
kinetic parameters values associated with the reactions that
take place inside the Part. For instance, a promoter requires
to indicate the number and the kind of transcription factors
acting on it, their possible activation or inhibition by chem-
icals, the number of operators corresponding to each repres-
sor and activator, and the presence of cooperativity behav-
ior. Moreover, numerical values such as the transcription
factor and RNA polymerase binding and unbinding rates,
the transcription initiation rate, and the promoter leakage
have to be provided. The knowledge of many parameter val-
ues, not always easy to measure, is the main drawback of a
precise model based on mass-action kinetics. The input in-
formation is converted into an BNGL file. After processing
it, BioNetGen computes a list of Part species and reactions
that is returned to our software. Our software calculates
the fluxes exchanged by the Part and writes them, together
with the species and reactions received by BioNetGen, into
an MDL file that describes the Part as an independent mod-
ule (see Figure 2). MDL files are loaded into ProMoT and
the corresponding Parts and Pools are wired into synthetic
gene circuits.

Initially, we tested our software on the RNAi logic evaluator
[8] (12 genes, 197 species, and 474 reactions) and on an alter-
native circuit–based on transcription regulation–that gath-
ered 1165 reactions. Results were in good agreement with
published experimental data. Later, we used the software
to re-design and improve basic Boolean gates (YES, NOT,
AND) implemented in yeast [3]. They were based on bi-
partite promoters made by joining a fragment of the VPH1
promoter (up to the TATA box) with the minimal CYC1
promoter (containing the TSS-Transcription Start Site). In
between we placed one or two binding sites for bacterial (or-
thogonal) repressors. A couple of these gates did not work in
their original configuration. According to our previous work
on gene digital circuits [6], such a problem can be solved just
by re-engineering the bipartite promoter. With our software
we showed, quantitatively, that a multiple integration of the
transcription unit containing the bipartite promoter had the
same e↵ect. Experimental measurements (via flow cytome-
try) confirmed that the two strategies were equivalent (see
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Figure 1: Eukaryotic circuit with Parts and Pools.
Green fluorescent protein (GFP) expression is reg-
ulated by a repressor that can be inhibited by a
chemical. Straight lines indicate an exchange of
molecules, dashed arrows transcription or transla-
tion, straight arrows transcription activation, the
bar-ending line transcription repression.

Figure 3). Therefore, our computational tool proved to be
a useful instrument for circuit scheme comparison and per-
formance assessment.
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design synthetic gene circuits.
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with the double integration strategy that permitted
to set a unequivocal 0/1 threshold at 500 arbitrary
units (AU) of fluorescence.

33



Automatic Enumeration and Discrimination  
of Model Phenotypes With Application to  

Synthetic Gene Oscillators 
 

Jason G. Lomnitz 
University of California at Davis 

One Shields Ave. 
Davis, CA 95616 

+1 (530) 754 6682 
jlomn@ucdavis.edu  

Michael A. Savageau 
University of California at Davis 

One Shields Ave. 
Davis, CA 95616 

+1 (530) 754 6682 
masavageau@ucdavis.edu

ABSTRACT 
Synthetic biology integrates multiple disciplines with the aim of 
designing and engineering new systems that carry out specific 
functions. However, the task of integrating systems of biological 
components involves interactions of nonlinear processes with 
emergent behaviors that we do not fully understand. There is a 
need for mathematical and computational tools that aid in the 
automatic design of new biological systems. Here, we show a 
design strategy that provides a global perspective of the 
phenotypic potential of mechanistic models of biological 
phenomena. This strategy is largely independent of specific 
parameter values, and allows for designs to be discriminated 
based on their potential to exhibit specific phenotypes and 
ensembles of phenotypes. As an example of our strategy, we 
apply it to a general class of circuit designs exhibiting oscillatory 
behavior and bi-stability.  

Categories and Subject Descriptors 
J.3 [Computer Applications]: Biology and genetics;  
I.6.5 [Computing Methodologies] Model Development–
modeling methodologies 

General Terms 
Design, Theory 

Keywords 
System design space, automated design, dynamic phenotypes, 
circuit architecture, mode of transcription control.  

1. INTRODUCTION 
Biological systems are proving useful as platforms where well-
known biological components may be combined into integrated 
systems that perform specific functions. Some examples include 
constructs that can compute binary logic [2, 4], produce 
metabolites useful in industry and medicine [8, 10], or provide 
insight into the operation of more complex natural circuitry [1, 5, 
9, 12].  However, it is a challenge to identify the repertoire of 
potential behaviors that are latent in any particular circuit design 
and thus, the design of such systems and its analysis is typically 
treated in an ad hoc fashion. We have previously developed a 
system design space methodology for deconstructing intractable 
nonlinear models into a series of simpler models that can be 
readily analyzed and the results efficiently reassembled to 
characterize the global repertoire of the original system [3, 6, 11]. 
We have also applied this method to elucidate the design of a 

number of natural systems.  

In this work we present a new strategy to assist in the design of 
novel synthetic systems, as well as to elucidate the design 
principles of natural biological systems. It enables the automatic 
enumeration of qualitatively distinct phenotypes of nonlinear 
models in a manner that is independent of parameter values. Once 
enumerated, we are able to obtain parameter sets for any given 
phenotype of the system. The same can be applied to identify 
parameter sets for desired ensembles of phenotypes. The local 
behaviors can be analyzed in detail, and computational efforts can 
be directed to test specific predictions. Taken together, this 
strategy can be applied in the design cycle to guide the realization 
of systems with desired behaviors.  

2. METHODS AND RESULTS 
We describe a strategy that provides a global perspective on 
system behavior. It involves first formulating mechanistic models 
consisting of nonlinear ordinary differential equations that capture 
the architectural features of a system without specifying numerical 
values for the parameters. The system design space methodology 
is then used to enumerate the set of qualitatively distinct 
phenotypes by deconstructing the complex system into nonlinear 
sub-systems, based on mathematically defined phenotypes [6, 11]. 
The result is the automatic enumeration of the complete set of 
valid phenotypes that defines the phenotypic repertoire of the 
system.  

Assuming the complete phenotypic repertoire of a system has 
been enumerated, how does one obtain meaningful sets of 
parameters for the phenotypes of a system? A naive approach 
would be to sample parameter space until the desired phenotype is 
found. However, there are severe limitations to this approach: 
First, the number and nature of the behaviors is highly dependent 
on the sample size. If we were to look for qualitatively distinct 
phenotypes by sampling 4 points for each parameter in a model 
with n parameters, we would need to sample 4n points. Even with 
a small number of parameters the number of samples is large. 
Second, there is no guarantee that all phenotypes will have been 
sampled, and the likelihood of missing behaviors altogether is 
high.  

Our design tool provides a powerful means to obtain unique 
parameter sets for any valid phenotype of the system. By virtue of 
the mathematically defined boundaries of a phenotype, we may 
efficiently obtain a unique parameter set within the feasible region 
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of any qualitatively distinct phenotype by means of linear 
programming techniques. We are able to extend this approach and 
identify ensembles of phenotypes that are co-localized within 
some lower-dimensional slice of parameter space.     

The ability to automatically identify parameters for phenotypes 
that are co-located within a slice of parameter space allows us to 
determine the maximum number of qualitatively distinct 
phenotypes that are co-located within a slice of parameter space 
that is of particular interest.    
This has applications to synthetic biology, where a particular 
design is engineered to exhibit specific behaviors under specific 
operating conditions. In complex nonlinear systems, these 
behaviors are typically generated from ensembles of distinct 
phenotypes that are observed as the input signals change. The task 
of designing a biological system that behaves according to the 
desired ensemble of phenotypes can be challenging, again due to 
the complex nonlinearity of biological mechanisms.  Our strategy 
enables us to identify groups of qualitatively distinct phenotypes 
with desired behaviors that are co-located within some slice of 
parameter space, and the parameter values associated with the 
slice can be obtained.  

As an application of our strategy, we revisit a class of seven two-
gene circuits involving an activator and a repressor that are able to 
exhibit oscillatory behaviors. We have previously compared the 
members of this class with respect to the robustness of their 
oscillatory potential using mathematically controlled comparisons 
[7]. Here, we show that new insight is gained by applying our 
automated strategy to obtain a global perspective of their 
phenotypic potential. We also extend the analysis to a larger class 
of two-gene circuits that includes 9 additional designs that had not 
been found to oscillate under the controlled comparisons. Our 
automated approach is able to identify two new designs that 
exhibit sustained oscillations, one with an architecture that can be 
reduced to one of the pervious 7 and one that is entirely new. 

3. CONCLUSIONS 
The integration of phenotypes into a system design space allows 
the qualitatively distinct phenotypes to be identified, enumerated, 
characterized and compared.  The system design space provides 
an efficient means to characterize system behavior over a broad 
range of parameter values, and the landmarks in this space 
represent particular constellations of parameters that define 
relevant design principles [7].  

Here, we present a new strategy that can be used as a tool to assist 
in the design of novel biological circuits by allowing global 
properties of system behavior to be identified through the 
automatic enumeration of phenotypes. Once enumerated, we can 
very efficiently obtain parameter sets that correspond to each of 
the phenotypes in the complete phenotypic repertoire of the 
system. We have also shown that this strategy allows specific 
ensembles of behaviors to be found within a desired slice through 
parameter space. Again, parameter sets for such ensembles can 
efficiently be obtained, if they exist.  

In the current application to synthetic oscillators, we identify new 
designs within a general class of two-gene circuits that are capable 

of exhibiting oscillatory behaviors. For many of the designs we 
have identified multiple phenotypes that are capable of exhibiting 
oscillatory behaviors. Our tool allows us to find a slice through 
parameter space where multiple distinct oscillatory phenotypes 
are co-located.  

It should be stressed that the parameter sets we obtain may not 
correspond to the most biologically relevant values. However, 
parameter values can be bounded and even fixed by specific 
constraints, and once constrained, the analysis can be repeated to 
guarantee that relevant requirements are met. This is particularly 
useful in the context of synthetic biology, where a catalog of parts 
with characterized parameters and specific ranges of operation can 
inform the search for phenotypes and ensembles of phenotypes. 
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ABSTRACT
This paper outlines the design of a software system that
enhances the workflow e�ciency and usability of a liquid-
handling robot for executing wet lab protocols, with a focus
on synthetic biology. The system we propose builds on the
BioCAD software suite[1] that includes an object-oriented
suite of Python tools to interact with a liquid-handling robot
through its API. Our extension to this suite breaks up proto-
cols into distinct, atomic steps, and schedules them by inter-
leaving these steps to reduce waiting time where the robot
would ordinarily do nothing while, for instance, a reaction
occurs. A remote web interface has been implemented that
allows researchers to easily define and submit jobs to be per-
formed on the robot. When fully implemented, this system
promises to remove much of the repetitive, manual labor so
common in life science research by lowering the barrier to
entry to robotic automation. Even though it is designed
for a particular robot in a particular synthetic biology lab,
it generalizes to many flavors of robot and fields of wet-lab
research.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management; I.2.9
[Artificial Intelligence]: Robotics; J.3 [Computer Ap-
plications]: Life and Medical Sciences

Keywords
automation, synthetic biology, scheduling, user interface

1. PREVIOUS WORK
The BioCAD software suite was originally designed as a

sub-component of the larger TASBE system[1], which had
the goal of automating the entire synthetic biology workflow,
from circuit specification to in-vivo assembly. TASBE[1]
demonstrated that it was possible to automatically build
a functional genetic circuit only specifying the highest-level
abstraction of its operation (such as a NOT-gate with a set of
specific gene-promoter sequence inputs and outputs). Bio-
CAD is in charge of the final stage of converting a set of
synthetic biology protocols that would ordinarily be per-
formed by hand, into a format that is readable by a liquid-
handling robot. For a concise description of the synthetic
biology workflow and the challenges facing synthetic biol-
ogy researchers, see Douglas Densmore and Soha Hassoun’s
article on bio-design automation[3].

2. ARCHITECTURE
Our proposed system consists of a user-facing front-end

web interface, a back-end server to handle requests from
this web interface and convert them into jobs to be sent
to a queue, a scheduler that maps job requests from the
queue into defined robot protocols, and the modified Bio-
CAD software suite[1]. The web interface is a Ruby on
Rails site, located on a Heroku server in the cloud. This
remote server also acts as a client to a server running on
the computer connected to the robot, in that it can send job
requests to the robot computer to be scheduled. Everything
on the robot computer is written in Python as an extension
to BioCAD[1].

2.1 Web Interface
The basic functionality of the Ruby on Rails web interface

has been implemented. An administrative user can define
protocols on the site that correspond to the same protocols
implemented in BioCAD. These protocols are all presented
to a user (synthetic biology researcher), who can tweak the
specific parameters associated with them to fit his or her
current experiment. For instance, a parameter might be the
type or quantity of reagent or cell line to be used. The user
can then save this modification in the database for future
use. What remains to be implemented is a way to submit
jobs to be scheduled, an interface for presenting the current
state of a scheduled job (e.g. what sub-task is currently be-
ing run or how much longer will the protocol take to finish),
debugging tools, and a collaboration/reward system.

2.2 Scheduling Algorithm

Overview.
Each job consists of n individual ordered tasks, each of

which can be thought of as an atomic instruction, and de-
mand the full attention of the robot. A task might be
“Transfer 5µL of sample X to the working wells and shake
for 5 minutes”. A job also contains n � 1 individual wait-
ing periods, which are interleaved between each of the tasks.
These waiting periods may contain a minimum and a maxi-
mum wait time, and correspond to a wait time for a reaction
for instance, or cell incubation. However, the system also
defines wait periods between tasks, which may be scheduled
with any arbitrary space between them. These waiting peri-
ods have their minimum time set to zero and their maximum
time set to infinity. In general, this is a hard problem be-
cause even though the first task of a job may fit into a wait
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1 queue = SchedulerQueue()

2 function Schedule(queue):

3 scheduler = Scheduler()

4 # select() finds the job with the highest score

5 # and removes it from the queue

6 # score depends on complexity (number of constraints)

7 # and length. Eventually will take into account

8 # resource allocation

9 job = queue.select()

10 serialSchedule = scheduler.makeSchedule(job)

11 scheduler.setScheduler(serialSchedule)

12 waitStartIndex = 0

13 while (not queue.isEmpty()):

14 # findNextWait() finds the next wait

15 # period in the job with a minimum time

16 wait = scheduler.findNextWait(waitStartIndex)

17 if wait != None:

18 waitStartIndex = wait + 1

19 removedJobs = list()

20 while (not queue.isEmpty()):

21 jobToInterleave = queue.select()

22 # check if job can be scheduled

23 # on top of existing schedule

24 valid, schedule = scheduler.interleave(wait,

25 jobToInterleave)

26 if valid == True:

27 scheduler.setSchedule(schedule)

28 queue.add(removed_jobs)

29 wait=scheduler.findNextWait(waitStartIndex)

30 else:

31 # keep record of jobs removed

32 # from the queue

33 removedJobs.append(jobToInterleave)

34 queue.addJobs(removedJobs)

35 return scheduler.schedule

Figure 1: Scheduler Pseudocode

period of another, they may still be subsequently impossible
to schedule. A brute force optimal solution is combinatorial
in nature, requiring something along the lines of a back-
tracking search strategy.

We have implemented a simple scheduler, with the inten-
tion of improving it in the future, potentially using an itera-
tive repair technique like that used in the Gerry scheduling
system[4]. An initial algorithm has been designed in the
pseudocode in Figure 1.

Performance.
This algorithm has complexity O(W ⇤ N), where W is

the total number of wait periods in all the jobs, and N is
the total number of discrete tasks that need to be sched-
uled. While not necessarily optimal, it will at least find a
sequential scheduling. Figure 2 shows the percent total time
reduction of the scheduler for di↵erent numbers of scheduler
protocols.

3. FUTURE WORK
In the next few weeks, we plan on adding resource con-

straints to the scheduler (e.g. which protocols are using
which plates at what times), testing it out on the robot, fin-
ishing the implementation of the entire system, and testing
it out with researchers for usability and e�ciency. We also
plan on testing it against the scheduling software that comes
with the Tecan Freedom Evo robot: Tecan EvoWare Plus,
and explore ways of integrating our approach with the cur-
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Figure 2: Percentage total time reduced by schedul-
ing various numbers of Miniprep Protocols in paral-
lel

rent vendor scheduling software from Tecan. We can com-
pare the schedulers simply by timing how long it takes each
one to schedule some set of protocols. After establishing a
working scheduler in the complete system, we will imple-
ment an iterative repair scheduler like that used in Gerry[4]
to improve our throughput even further.

4. CONCLUSIONS
By providing an extensible, remote, and simple user in-

terface, this system aims to empower biologists to automate
the time-intensive, mechanical aspects of their experiments,
which should increase their own research e�ciency, reduce
the amount of tedious low-level tasks required to execute
an experiment, and enhance the repeatability of their ex-
periments. The scheduling software on the robot allows for
real-time queuing of jobs, so that researchers can issue a job
to be run, and keep track of its status remotely until notified
that it is done or that a manual step is required. The design
proposed here and partially implemented in the lab promises
to increase workflow e�ciency of standard synthetic biology
protocols here in the Weiss Lab, and in the future any other
synthetic biology lab with access to a liquid-handling robot.
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1. INTRODUCTION
Synthetic biology holds the promise of addressing many so-
cietal problems through the application of engineering prin-
ciples to the design of biological systems. However, despite
recent theoretical and experimental advances, the construc-
tion of biological devices that behave “as required” remains
challenging. Biodesign automation (BDA) tools [3, 2] aim to
decrease the cost and improve the robustness of biological
circuits but the development of scalable methods allowing
the high-level specification of circuits and their intended dy-
namical behavior is still an active research area.

Here, we present a new direction towards the development
of biodesign automation tools through Satisfiability Mod-
ulo Theories (SMT) based methods. We consider the prob-
lem of automatically generating designs realizable from a
database of biological parts for circuits that satisfy specifica-
tions of dynamical and logical component interaction prop-
erties. Instead of developing dedicated technology-mapping
algorithms, we focus on a framework that is extensible and
can handle more general instances of the computationally
challenging problems arising as part of circuit design [6].
To ensure the scalability of the approach while supporting
expressive specification languages we formalize and encode
the design of circuits as an SMT problem, and use powerful
solvers such as Z3 [1], which have been successfully applied
to hardware and software design and verification.

Our method builds on techniques from [9] where SMT-based
methods were used for the construction of systems from de-
vices but allows reasoning about biological parts and the
functions they implement. While our approach is quite gen-
eral and potentially useful for other BDA tools, it is cur-
rently implemented in GEC [4], where the existing function-
ality is extended by allowing the design of circuits with ab-
stracted topology from large parts databases using logical
and dynamical specifications. In the following, we briefly
introduce the formalization of the approach and illustrate it
using preliminary results from several case studies.

2. SMT-BASED ENCODING
We consider a database as the tuple (S, P,R) of species
S, parts P and reactions R. Various types of parts and
the properties they allow are described in [4]. We repre-
sent a biological circuit constructed from this database as
(S0✓S, P

0✓P, R

0✓R) (i.e. only species, parts and reactions
from the database are used). We assume that the database
contains a finite number of parts represented by a unique

numerical identifier and encode such a database using the
SMT theory of bit-vectors, which is handled e�ciently by
Z3 [1]. S, P and R are represented by the set of bit-vectors
of appropriate size and each species s 2 S, part p 2 P and
reaction r 2 R is a unique bit-vector from that set (cir-
cuits are encoded similarly). We use the maps ŝ : S0 ! S,
p̂ : P 0 ! P and r̂ : R0 ! R to relate the components of a
circuit to their corresponding database entries and, in the
following, use ŝ, p̂, r̂ to represent the database entry cor-
responding to circuit species s, part p or reaction r. We
use nextTo : P 0 ! P

0 to capture the sequence of parts in a
circuit (i.e. nextTo(p, p0) signifies that part p

0 follows p in
the DNA sequence implementing the circuit). The ŝ, p̂, r̂
and nextTo maps are initially unknown but are constructed
automatically as part of the circuit design generation in a
way that guarantees the satisfaction of certain additional
constraints described below.

Database Properties. We encode the properties of parts
using f : P 0 ! B for f 2 {prom, pcr, rbs, ter}, which hold
true only for promoters, protein coding regions, ribosome
binding sites, and terminators parts (i.e. prom(p) i↵ p̂ is
a promoter in the database). Similarly, we use f

0 : P

0 ⇥
S

0 ! B for f 0 2 {pos, neg, codes} to capture the regulation
and expression interactions between parts and species (e.g.
pos(p, s) i↵ ŝ activates p̂, while codes(p, s) i↵ p̂ codes for ŝ).
Finally, we encode reactions using functions f 00 : R0⇥S

0 ! B
for f

00 2 {prod, reac, cat}, where prod(r, s), reac(r, s) and
cat(r, s) i↵ ŝ is a product, reactant or catalyst for r̂.

Topology Abstraction. While a number of constraints
can be defined using the basic properties outlined above, in
the following we focus only on a small subset su�cient to
illustrate the approach. We define

expresses(p, s) $ 9p0, p1, p2 . [codes(p1, s)^
nextTo(p, p0) ^ nextTo(p0, p1) ^ nextTo(p1, p2)^

prom(p) ^ rbs(p0) ^ pcr(p1) ^ ter(p2)]

to capture the expression of proteins (i.e. a protein species
s 2 S

0 is expressed when a transcriptional cassette is formed
that codes for s). To reason about species’ regulation inter-
actions, we define poss(s, s

0) i↵ 9p. pos(s, p)^expresses(p, s0)
and negs(s, s

0) i↵ 9p. neg(s, p)^expresses(p, s0). We extend
these properties to allow more complex regulation topologies
involving intermediate species: neg1s(s, s

0) i↵ negs(s, s
0) _

9s00.([poss(s, s
00) ^ negs(s

00
, s)] _ [negs(s, s

00) ^ poss(s
00
, s)])

and pos1s(s, s
0) i↵ poss(s, s

0)_9s00.([poss(s, s
00)^poss(s

00
, s)]_

[negs(s, s
00) ^ negs(s

00
, s)]) for one intermediate.

Dynamical constraints. Currently, we capture the dy-
namics of circuits using a Boolean encoding where we rep-
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(A) Topology abstraction (B) Dynamical constraints (C) Scalability

neg1s(A,A) pos1s(A,A) A[0] ^ ¬A[1] ^A[2]
negs(A,B) ^ negs(B,A) (“toggle switch”)

negs(A,B) ^ negs(B,C) ^ negs(C,A) (“repressilator”)

Figure 1: (A) Some of the circuit topologies generated using di↵erent logical specifications. (B) A circuit

design generated using dynamical specifications capturing a cycle of oscillations (i.e. species A is enabled at

steps 0 and 2 but is disabled at step 1) and a stochastic simulation of the circuit from GEC. (C) Scalability of

the method on the design of two types of circuits from random databases (* indicate that no solutions were

found). For each experiment, the specifications used are listed in the second row of the table.

resent a state of the system as a bit-vector x 2 S

0, which
signifies whether each species is available or not. Transitions
between states x and x

0 are captured by requiring that, in
the next state x

0, a species s is available i↵ there exists a
reaction producing s that is enabled (all its reactants and
catalysts are available in x) or there exists a part that is
enabled (all its positive and none of its negative regulators
are available in x) and expresses s. This allows us to de-
fine the symbolic transition relation T (x, x0) as in [9] but
capturing the properties of parts and reactions, and to rea-
son about dynamical properties of circuits using predicates
such as A[k], denoting that species A is available at step k.
Arbitrary combinations of logical and dynamical constraints
(including stability and oscillations as described in [8]) are
defined using the operators {_,^,!,$,¬} and can be gen-
eralized using additional SMT operators such as quantifiers.

3. CASE STUDIES
In Fig. 1, we illustrate the approach by generating circuit
designs from a number of the constraints defined in Sec.
2. Using logical constraints, we identified circuits of dif-
ferent topologies that implement the same abstract interac-
tion between components, e.g. self activation or repression,
(Fig. 1-A). We then used dynamical constraints to encode
an oscillation cycle and identify a design that resembles a
Goodwin oscillator [5] (Fig. 1-B). Note that in this example
the dynamical constraint from Fig. 1-B only requires that if
species A is initially available, its state changes to not avail-
able and back in three successive steps, which is consistent
with the Boolean dynamics of the identified circuit. More
restrictive constraints such as sustained oscillations can be
expressed as described in [8]. Detailed models of designs gen-
erated using this procedure can be studied further using the
(stochastic) simulation functionality of GEC [4] (Fig. 1-B)
but, currently, the formal guarantees do not extend directly
to these representations. Finally, we illustrate the scalability
of the approach on randomly generated databases with up to
thousands of parts, where the number of promoters and pcr
parts (m) is the same, as is the number of rbs and ter parts
(n), each promoter is randomly assigned between 0 and 2
positive or negative regulators, the total number of parts is
2m + 2n, and the database size is denoted by (m,n). Our
method still leads to the identification of“toggle-switch”and
“repressilator”-type circuits as shown in Fig. 1-C, where the

time required for the identification of the first valid design
(or showing that no such design exists) is reported.

4. CONCLUSION
In this abstract, we presented an SMT-based approach to the
automated design of biological circuits, which allowed the
specification of logical constraints defining abstract interac-
tion topologies, as well as dynamical constraints of required
circuit behavior, and could handle databases with thousands
of parts. The approach is currently implemented within
GEC but could also contribute to other biodesign automation
tools. Here, we only considered reachability properties over
Boolean circuit dynamics but additional SMT theories such
as non-linear arithmetic and floating point numbers could al-
low dynamical constraints over more detailed models, for ex-
ample by exploiting characterization data collected as in [7].
We only illustrated the SMT encoding of select properties,
which can be extended to capture more detailed expression
and regulation mechanisms. Finally, our current implemen-
tation only generates a single candidate design, which can be
refined through additional specifications, but the approach
is also capable of enumerating multiple designs.
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ABSTRACT 
In principle, the combined behavior of parts within a synthetic 
genetic circuit can be predicted from the independently 
characterized component parts. In practice, however, circuit 
function is not predictable; circuit assembly involves tedious trial 
and error and ad hoc tuning [6; 8; 10]. Synthetic biology is 
missing a set of design principles for its toolkit of genetic parts 
that will provide guidelines to get from parts to desired function 
faster. We are designing, building and testing a large set of NOT-
gates (inverters) with two goals: (1) mining for patterns based on 
design and circuit expression, and (2) establishing a streamlined 
flow integrating automation and computer-aided tools wherever 
possible.  

Keywords 
Synthetic biology, logic gates, combinatorial logic. 

1. INTRODUCTION 
In principle, the combined behavior of genetic parts can be 
predicted from the independent characterization of each 
individual part or smaller units of genetic expression within a 
larger combinational genetic circuit [6; 8; 10]. However, in 
practice, we are currently unable to predict the functions of even 
the simplest combinational circuits. Synthetic circuits are either 
assembled ad-hoc and then tested and modified, or many 
iterations of the same circuit are built and testing in an effort to 
find the one that functions as expected [1; 7]. More importantly, 
since the behavior of a part changes when the context is changed, 
each already characterized part needs to be re-characterized in its 
final context [8]. The functions of genes are affected by their 
genetic, cellular and environmental contexts [2].  
 
A possible approach to reducing the context-dependence is by 
using insulator elements that buffer synthetic circuits from genetic 
context [8]. While this method works very well in circuit designs 
in which genetic context varies in only one location, this approach 
may not be practical when synthesizing circuits that are large and 
have multiple points at which context-dependent variations may 
manifest. Another approach is to develop mathematical models 
based on experimental data from synthetic circuits that will allow 
us to accurately predict expression variations due to genetic 
context and guide us in choosing genetic parts accordingly.   

2. CIRCUIT DESIGN 

We have selected a four transcriptional unit (TU) design for our 
inverter circuits. The first transcriptional unit is a double 
inversion module driving the expression of the repressor inverting 
the signal. The final output is the RFP gene downstream of the 
repressor’s  cognate  repressible  promoter.  GFP  indirectly  measures 
the level of repressor expressed by the circuit. We have removed 
all cis-regulation from our inverter designs. 
 
With 4 TUs, 10 possible inducer-repressor combinations and 5 
RBSes, the design space for our inverter library is very large. To 
avoid errors and omissions, and to make the task of designing and 
planning the assembly of our circuit library faster, we used the 
BioCAD tools Eugene, Raven (paper submitted) and Pigeon.  

 

3. DEVELOPING A STREAMLINED 
SYNTHETIC BIOLOGY WORKFLOW 
As the size and number of genetic circuits being built in tandem 
by synthetic biologists grows in number, it will become 
challenging to design and build them with intuition alone [9]. The 
end goal is to have an end-to-end workflow that is automated in 
all the key steps of design, build, and test in high-throughput 
volumes.  
 
We provided Eugene the abstract circuit design and the list of 
parts. Eugene rules were used to create constraints to eliminate 
biologically nonsensical or non-orthogonal designs. Eugene 
designs were used in the assembly planner tool RavenCAD to 
generate an assembly plan including required oligos and effective 
use of intermediate parts already available. The Raven assembly 

Figure 1: New Four Transcriptional unit (monocistronic) 
inverter. 5 RBSes allow for 5 expression level variants of each 
transcriptional unit, allowing for 625 variants of each inverter.  
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plan forms the template for Puppeteer, which generates the 
command for assembly of the circuits in a liquid handling robot.  
 
A subset of the inverters were built in the lab and tested by flow 
cytometry in the lab. The results were analyzed using the tools 
developed by BBN Technologies [4] and data sheets will be 
generated using the data sheet generator, Owl. The expression 
data from the inverters will be used for pattern mining and the 
development of mathematical verification of designs [3; 5]. All 
parts, designs and intermediates will be stored on the CoSBi ICE 
Registry. 

The goal is to have a process wherein a mathematical verification 
model is in place that can reject designs from a design space 
before assembly based on data models developed during our 
current work.  
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ABSTRACT
We describe an intuitive, yet fully quantitative method for
analyzing how biological noise affects cellular phenotypes
based on identifying a system’s nonlinearity and the signal
propagation. We observe that noise can simultaneously en-
hance sensitivities in one behavioral region while reducing
sensitivities in another. Using this effect we design and an-
alyze various signal processing modules in gene regulatory
networks and to verify the theory we construct synthetic ge-
netic circuits in E. coli. The method developed here allows
one to understand and engineer nonlinear biochemical signal
processors based on noise-induced phenotypes.

Keywords
noise propagation, nonlinear signal processing, stochasticity,
bistability, noise induced phenotype, linearizer

1. INTRODUCTION
Single-cell studies often show significant phenotypic variabil-
ity due to the stochastic nature of intra-cellular biochemical
reactions. When the numbers of molecules, e.g., transcrip-
tion factors and regulatory enzymes, are in low abundance,
fluctuations in biochemical activities become significant and
such fluctuations âĂŞ noise âĂŞ can propagate through reg-
ulatory cascades, resulting in certain cellular phenotypes.
Examples include cellular differentiation and lytic-lysogeny
decision of virus infected cells. Noise-related phenotypes are
often closely related to âĂŸnonlinearâĂŹ signal processing,
but most studies on this subject have taken either computa-
tional or mathematical approaches that often lack system-
atic understanding of underlying mechanisms. Here, we pro-
vide a manageable and systematic approach in relation to
noise-induced phenotypes.

2. RESULTS AND DISCUSSION
When a signal is processed nonlinearly, the signal shape can
be deformed significantly; for example, an input signal that

fluctuates in a sine wave can be transformed to a signal that
fluctuates asymmetrically. This makes the mean level of the
output different from the case without fluctuations, resulting
in different input-output response curves at the average level
for different strength of the signal fluctuations. When signals
are noisy, a similar effect appears [1, 3]. We observe a typical
pattern of the input-output response curve change: Noise
can simultaneously enhance sensitivities in one behavioral
region while reducing sensitivities in another. We name this
phenomenon “stochastic focusing compensation” (SFC) [2].
SFC can be intuitively understood as a geometric effect of
the reaction rate [2]. Mathematically, it is closely related to
the Jensen’s inequality.

We applied SFC to three signal processing modules. (1)
We considered an incoherent feed-forward network that can
function as a concentration detector. We enhanced the de-
tection amplitude and sensitivity significantly by exploiting
noise (Figure 1a, b). Here, the sensitivity refers to the rela-
tive change of steady-state response to parameter variation.
(2) We investigated a mutual inhibition network that can-
not show bistability without noise. SFC was used to induce
bistability (Figure 1c, d). (3) We achieved linear amplifica-
tion in simple cascade networks of various types of activation
patterns without resort to any feedback (Figure 1e, f).

To verify the theories, synthetic genetic networks have been
constructed in E. coli (MG1655Z1). Our preliminary exper-
iments show that the strength of noise in gene expression
levels can be controlled by using a library of ribosome bind-
ing sites, inducible promoters, and different copy-number
plasmids (Figure 2). By applying this noise control mecha-
nism, SFC is currently in the verification process.

3. CONCLUSIONS
Our quantitative approach for studying noise propagation
showed that noise can increase or decrease the sensitivity
(Hill coefficient) of transcription factor regulation. Our anal-
ysis method were applied to various gene regulatory net-
works to design noise-induced phenotypes. These examples
illustrate how our sensitivity-based approach can be used to
design, analyze, and optimize the functionalities of stochas-
tic reaction networks by exploiting noise.

4. ACKNOWLEDGMENTS
The authors acknowledge the support from the National Sci-
ence Foundation (NSF) (Molecular and Cellular Biosciences

42
IWBDA 2014, June 11–12, 2014, Boston, Massachusetts, USA. 

Copyright is held by the owner/author(s). Publication rights licensed to BDAC.



Figure 1: Stochastic focusing compensation: (a,b)
noise-enhanced concentration detector, (c,d) noise-
induced bimodality, and (e,f) noise-induced lin-
earizer.
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Figure 2: Mean vs. noise levels of GFP (BioBrick
part, E0040)-expression under the lac-promoter
(R0010) from plasmids of different copy-numbers
in E. coli MG1655Z1 that constitutively expresses
LacI. The noise and mean levels are inversely related
(the lines of slope −0.5 were drawn for comparison).
The noise level increases with the copy number of
plasmids (weak RBS cases) and with transcription
strength.
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ABSTRACT
Up until this point, work on synthetic biology has largely
used a component-based metaphor for system construction.
Here we present a design framework that steps away from
this paradigm by utilising aspect oriented software engineer-
ing concepts. Though our approach does not rest upon this,
we think that the notion of concerns is a powerful and biolog-
ically credible way of thinking about systems synthesis. By
casting the design question in terms of concerns, our frame-
work incorporates and builds upon many features of existing
tools. This framework is written in Python which facilitates
the adoption of standard software engineering tools and the
interaction with existing biological modelling systems. The
benefits of our approach are numerous and include improved
conceptualisation of synthetic biological systems and a de-
sign workflow that iteratively adds complexity by adding
more aspects to the design. We demonstrate the e↵ective-
ness of this framework by creating an oscillator system based
around the repressilator.

1. INTRODUCTION
Synthetic biology aims to create a biological engineering field
based on principles such as modularisation and abstraction.
Until now, it has predominantly used a component-based
metaphor inspired by electronic circuits: a genetic part en-
capsulates a specific sequence of DNA associated with a par-
ticular function, and parts are the basic building blocks of
genetic circuits. As the ambition and scale of synthetic bi-
ology projects grows, better techniques for managing com-
plexity are becoming increasingly necessary. Here we intro-
duce a framework based on the principles of aspect oriented
engineering which incorporates and builds upon many fea-
tures of existing design tools. These include the constrained

construction of biologically valid devices [4, 9], combinato-
rial design through abstract gene regulatory networks [3,
1] and allows for hierarchical, modular and interchangeable
modelling of biological systems [8, 5, 7]. This framework is
implemented in Python and supports the export of models
in both SBOL and SBML.

2. ASPECT ORIENTED SOFTWARE ENGI-
NEERING

AOSE relates to the modularization of concerns, defined as
“specific requirements or considerations that must be ad-
dressed in order to satisfy an overall system goal.” (AspectJ
in Action). There are generally two categories of concerns:
core concerns and cross-cutting concerns. Core concerns
embody the main functionality of the system and in syn-
thetic biology could refer to the gene network under con-
struction. Cross-cutting concerns are often “system-level,
peripheral requirements that cross multiple modules”, (e.g.
placing of terminators or interaction with a chassis system).
Whereas OOP (Object Oriented Programming) is a suit-
able paradigm to modularize core concerns, it can not mod-
ularize cross-cutting concerns. Instead, code dealing with
cross-cutting concerns gets tangled up in implementation of
core concerns. AOP (Aspect Oriented Programming), the
programming paradigm derived from AOSE, introduces new
abstractions that achieve the modularization of all concerns,
including cross-cutting concerns. AOP is generally imple-
mented as an extension of OOP, although this is not strictly
necessary.

3. THE PYTHON WEAVER FRAMEWORK
To achieve a modularization of core and cross-cutting con-
cerns, we loosely follow the AOP model of AspectJ, an as-
pect oriented extension of the Java programming language,
and introduce the following new constructs, on top of es-
tablished concepts such as classes, interfaces and methods:
Join Points and Point Cuts and Advice. A Join Point is
an “identifiable point in the execution of a program”. Tra-
ditionally, this refers to a method call, object instantiation,
etc. In our synthetic biology specific framework, we consider
a genetic circuit made of parts as a sequence of execution
steps, with join points between them (Figure 1). A Point
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Figure 1: Possible join points in synthetic biology

applications

Cut is a construct that selects particular Join Points. Then,
an Advice can be used to define code that will be injected at
particular Point Cuts. Point Cuts and Advice are bundled
into class-like structures called Aspects. We have developed
a “Weaver”, implemented as a Python class, that weaves in
the Advice code at the Join Points in the execution flow
selected by the Point Cuts (Figure 2).

Figure 2: Conceptual model of the Python Weaver

4. REPRESSILATOR EXAMPLE
We demonstrate the utility of our novel framework on the
design of a switchable oscillator system based around the
repressilator [6]. We consider the following concerns:

• Oscillation abstract gene regulatory network (using ab-
stract, non-determined transcription factors);

• Terminator and RBS design rules;

• Instantiation of abstract molecules;

• Two output versions: a standard GFP reporter, or al-
ternatively, a GFP reporter dependent on an external
inducer (that is, an additional on-switch).

The design starts with the two GFP coding concerns; one
constitutively expressed GFP and another with a GFP down-
stream of an inducible promoter. An aspect is created that
can weave the oscillation concern into either of the two out-
put circuits. The aspect is able to change the promoter of
the output circuit to make the output dependent on oscil-
lation. If the promoter is unregulated, it must be replaced
by one that is regulated by the oscillation output. However,
if the promoter is already regulated, we need to insert an
additional AND gate, based on the design by Wang et. al.

[10], to preserve the original input. Lastly, we implement

an aspect that can instantiate abstract molecules. Figure 3
shows a visualisation of weaving the aspects with the reg-
ulated GFP circuit. It was generated using an additional
Weaver Output Advice, which generates a Pigeon visualisa-
tion specification for the design [2].

Figure 3: Visualisation of the repressilator example.
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A prominent subset KBS are so-called Expert Systems, in
which the knowledge — either facts or rules — stems from
domain experts, such as synthetic biologists. Usually expert
systems also provide additional interfaces for the domain
experts.

Depending on the requirements and application, a KBS
consists of additional components. For example, an “Ex-
planation” component can describe how certain conclusions
were deduced or why certain actions were performed.

3. CASE STUDY
Now, we demonstrate the applicability of a KBS on a

case study designing a genetic AND gate [1]. Currently,
we develop Sparrow, a rule-based KBS for synthetic biol-
ogy offering, at the time of this writing, a primitive set of
interfaces that can be accessed programmatically. Sparrow
is build upon the JBoss Drools rule engine1, enabling rapid
prototyping of synthetic biology designs and their associated
rules.

First, we manually specify a library of 13 parts in Eu-
gene [3] and insert them as facts into the Sparrow KB. We
also specify relationships among four orthogonal repressor-
promoter pairs as presented in [7]. For example, the AmeR

repressor gene is orthogonal to the pAmeR promoter.
Next, we select appropriate parts from the library. For

example, the Sparrow query type==“promoter” returns
all promoter parts. According to [7], an AND gate consists of
17 parts arranged in a specific order. We specify appropriate
positioning constraints in Eugene. Based on the number
of parts in the library, Eugene returns 12, 288 AND gates,
which we store as facts into the Sparrow KB.

However, most of the 12, 288 AND gates contain common
failure modes of genetic circuits [4]. Hence, we engineered
knowledge from [4], formulated two common failure modes
as rules, and stored them into the Sparrow KB. We have cho-
sen the “Orthogonality” and “Recombination” failure modes
since both encapsulate knowledge to support the Selection
and Arrangement decision making in designing genetic cir-
cuits. We formulate the rules as follows:

IF R1 is not orthogonal to pR1 ∧

R2 is not orthogonal to pR2 ∧

R3 is not orthogonal to pR4 ∧

R1 is not equal to R2 ∧

R2 is not equal to R3 ∧

R3 is not equal to R1
THEN The design is valid

The first three conditions formulate the “Orthogonality”
failure mode and the last three conditions specify the “Re-
combination” failure mode. All conditions are composed us-
ing the logical AND (∧) operator. In this case study, we
conclude that an AND gate design is valid if it complies
with those five specified conditions. Based on the specified
rule, the IE of the Sparrow KBS finds 144 rule-compliant
AND gate designs.

As demonstrated, six conditions — engineered from the
literature [4] — prune the 12, 288 AND gates to 144 AND
gates, also enabling to computationally exchange, commu-
nicate, and share the formulated rule.

1https://www.jboss.org/drools/

4. CONCLUSION
Galdzicki et al. [6] utilize semantic web technologies to

develop a KB of standard biological parts, enabling efficient
querying of biological parts based on characteristics, such as
type, DNA sequence, or orientation.

One drawback of a KBS for synthetic biology lies in the
development and maintenance costs, such as the initial inser-
tion of biological knowledge. Furthermore, the probability
that a KBS will provide wrong answers because of faulty
inferences and reasons will never disappear. A KBS is most
powerful when its KB, IE, and interfaces are tailored for a
very specific application domain or biological organisms in
synthetic biology. Here, we demonstrated how to engineer
rules from the literature. However, knowledge must be engi-
neered, represented, and specified in close collaboration with
domain experts.

Benefits of a synthetic biology KBS lie in a standardized,
automated knowledge transfer of how and why synthetic bi-
ological systems work or fail under a specific set of condi-
tions. A KBS can then be further utilized to explain how
and when synthetic biological systems function and behave
as programmed. Explanations can then be further utilized to
learn common design principles to design and build robust,
reliable, and secure synthetic biological systems. Learned
design principles can then then be further utilized for educa-
tion. We believe that Knowledge-based Systems are crucial
in engineering functioning, reliable, and secure synthetic bi-
ological systems, will help to save time and money, and will
enable the automate and standardize synthetic biology en-
gineering processes.
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INTRODUCTION 
Synthetic Biology as a discipline is witnessing the emergence of 
numerous repositories of biological “Parts” [1]. Organizations 
hosting such services include the International Genetically 
Engineered Machine Competition (iGEM) (partsregistry.org), the 
Joint BioEnergy Institute (JBEI) (public-registry.jbei.org), the 
Joint Genome Institute (JGI) (jgi.doe.gov), the Synthetic Biology 
Engineering Research Center (SynBERC) (registry.synberc.org), 
and Cambridge University (plantfab.org). As a result, a “web of 
registries” concept has emerged which would allow locally 
curated registries to be “linked” so that information exchange is 
facilitated more easily and standards are established. Moreover 
this would send a strong message to the community that 
interacting registries based around similar technologies represent 
not only a means to quickly deploying registries but more 
importantly a step in the unification of the space. 

We present our deployment of a repository based on the Inventory 
of Composable Elements (ICE) [2] architecture here at the Boston 
University Center of Synthetic Biology (CoSBi ICE). CoSBi ICE 
will serve as the outward facing parts repository for the core 
faculty of CoSBi (Jim Collins, Douglas Densmore, Ahmad Khalil, 
and Wilson Wong) as well as many of the numerous affiliated 
faculty members in bioinformatics, physics, and molecular cell 
biology and biochemistry. It will be used by over 50 
undergraduate, graduate, and postdoctoral researchers and in 
projects funded by the National Science Foundation (NSF), Office 
of Naval Research (ONR), and the Defense Advanced Research 
Projects Agency (DARPA). 

Specifically CoSBi ICE will have a number of attributes that 
make it a unique entry amongst ICE based registries: 

 CIDAR MoClo library - this is a collection of over 154 
MoClo [3] Parts publically available electronically 
through the registry and physically via Addgene 
plasmid numbers directly integrated into the repository. 

 Integration with Eugene [4] web services to create Part 
and Device permutations based on constraints which are 
electronically stored. This provides a built in design 
space exploration mechanism. 

 Integration path with Benchling (benchling.com) to 
serve as a workflow to connect a working commercial 
design suite to an open source parts repository. This 
will build upon community data exchange standards 
such as SBOL (sbolstandard.org) [5]. 

 Integration with Clotho 3.0 to exchange data with 
numerous Clotho apps including Raven (ravencad.org) 
[6] and Puppeteer via a lightweight Javascript API. 

 

CoSBi ICE enhancements will be provided directly to the larger 
ICE community so that future instances of ICE will also be able 
to use these features as future official ICE releases.   
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Figure 1: Screenshot of the CoSBi ICE initial deployment.  It uses the basic ICE architecture while also including backend 
extensions to make it work with a number of bio-design automation initiatives at Boston University. The registry is located at 
https://cidar.bu.edu/cosbi-registry/ 
 
 

49



A Distributed and Interconnected Biological Part Registry 
 

Hector A. Plahar 
Joint BioEnergy Institute 

Emeryville, CA 
haplahar@lbl.gov 

 
Zinovii Dmytriv 

Joint BioEnergy Institute 
Emeryville, CA 

 
Joanna Chen 

Joint BioEnergy Institute 
Emeryville, CA 

joannachen@lbl.gov 
 

Jay D. Keasling 
Joint BioEnergy Institute 

Emeryville, CA 
jdkeasling@lbl.gov 

 
Timothy S. Ham 

Joint BioEnergy Institute 
Emeryville, CA  

 
Nathan J. Hillson 

Joint BioEnergy Institute 
Emeryville, CA 

njhillson@lbl.gov 
 
 

ABSTRACT 
In this article, we describe the Inventory of Composable Elements 
(ICE)[1], a biological part registry that features a web based 
infrastructure that enables interaction with other registries.  

Keywords 
Synthetic Biology, DNA, Part Registry, Distributed Services 

1. INTRODUCTION 
Advances in synthetic biology research and genetic engineering, 
along with the availability of rapid and reliable DNA sequencing 
has resulted in a steady increase in the number of complex 
engineered biological devices. Maintaining information about the 
constituent parts of these devices, along with the ability to share 
them with other members in the synthetic biology community as 
well characterized components with the goal of reusability and 
interoperability, is a challenge that is not fully addressed by 
existing registry software platforms. 

2. ICE REGISTRY PLATFORM 
The Inventory of Composable Elements (ICE) is an open source 
registry platform for storing and managing information about 
biological parts. It provides a feature rich and extensible web 
based application platform with support for storing generic 
biological parts in addition to plasmids, microbial strains and 
Arabidopsis seeds. 

A major aim of ICE is to provide the Synthetic Biology 
community with a registry platform that provides robust data 
storage for DNA components, integrated tools for part 
characterizing and verification, as well as simple mechanisms for 
secure access and information sharing with other users and 
software tools. The source code for the platform is made available 
on Github at https://github.com/JBEI/ice. It is released under the 
Berkeley Software Distribution (BSD) license, which is a 
permissive free software license that imposes minimal restrictions 
on how the software can be used or redistributed. A public 
instance of ICE is also made available at https://public-
registry.jbei.org to the Synthetic Biology community for easy 
evaluation of the software and also to enable biological parts to be 
uploaded and made publicly available. 

 

2.1 Features 
The ICE platform incorporates an increasingly growing list of 
features that aid in managing, organizing and sharing biological 
part information. It provides support for uploading sequence 
information using GenBank, FASTA or the Synthetic Biology 
Open Language (SBOL) [2] format, with seamless inter-
conversion between formats. 
 
A collections management feature allows users to organize parts 
into ad-hoc or logical collections for ease of access. There are also 
options available for adding, removing and moving parts between 
collections. Access permission can be provided to individual parts 
or collections on a per user or group basis to provide detailed 
sharing capabilities. This feature ensures that the user has fine-
grained control over who is allowed to see or edit their data.  
 
Advanced full text and BLAST+ search capabilities enable ease of 
parts discovery.  
 
ICE also includes a bulk import feature that enables users to 
upload information about several parts at once, using either the 
available interface (see Figure 1) or uploading a file in the comma 
separated value (CSV) format. 
 

 
 

Figure 1: ICE Registry bulk import interface. 
 

Another important feature that is incorporated in ICE is the 
sample tracking system. It allows the physical location of the 
biological parts to be associated with the records in the registry.  

Users are able to request additional features on the project’s 
Github page. 
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2.2 Integrated Tools 
Graphical applications and other tools are integrated into the ICE 
platform to aid in sequence design, annotation and verification.  

2.2.1 VectorEditor 
VectorEditor (see Figure 2) is the largest and most complex 
integrated tool. It is capable of real time DNA editing with live 
vector map display, restriction site visualization, sophisticated 
feature annotation and annealing temperature calculation. Vector 
editor can import and export GenBank and SBOL files for data 
exchange with other sequence manipulation programs. Like ICE, 
VectorEditor is also open source software that is made freely 
available to the community at 
https://github.com/JBEI/vectoreditor.   

 

Figure 2: VectorEditor  

2.2.2 SequenceChecker 
Sequence Checker is also another integrated tool, which enables 
sequencing trace files in the form of .ab1, or FASTA files to be 
aligned onto a target sequence for DNA construct verification (see 
Figure 3). It overlays multiple trace files onto a plasmid vector 
map and visually highlights any mismatches. 

Figure 3: SequenceChecker 

 

2.2.3 Pigeon 
ICE also incorporates Pigeon [3], which is a web based tool 
developed at Boston University to programmatically generate 
synthetic biology design visualizations. Design visualizations are 
useful in encouraging sequence characterization and pointing out 
when the wrong feature types are used. 

2.3 Web of Registries 
One distinguishing feature of ICE is the inclusion of a distributed 
software platform to enable efficient sharing of biological 
elements across labs (see Figure 4) in the synthetic biology 
research community, thus expanding the search space of 
biological constructs. It offers community collaboration 
capabilities, referred to as “Web of Registries” which enables 
scientist to publish and share their datasets across multiple ICE 
installations in potentially difference geographic locations. 

 
Figure 4: Current and anticipated research labs and 

institutions participating in web of registries 
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1. INTRODUCTION
As the Synthetic Biology Open Language (SBOL) [1] is

extended to exchange data on the intended function as well
as structure of genetic designs, care must be taken to avoid
duplicating existing standards that may be leveraged to rep-
resent genetic function, such as the Systems Biology Markup
Language (SBML) [3]. Recently, a new data model for the
next version of SBOL has been proposed. Instead of directly
representing the quantitative function of a genetic design,
this data model refers to mathematical models written in
other standards and merely represents the qualitative func-
tion of the design in order to inform the creation of these
models. In this way, the proposed SBOL data model can
serve as a means of loosely coupling qualitative and quan-
titative data on the function of a genetic design, thereby
enabling synthetic biologists with di↵erent areas of exper-
tise to work on di↵erent functional aspects of the same ex-
changeable design.

In order to facilitate interdisciplinary collaboration and
tighter connections between qualitative and quantitative data
on genetic function, genetic design automation (GDA) tools
are needed to help automate the process of creating quan-
titative models based on qualitative models. Accordingly,
this abstract presents a methodology for generating SBML
models from the proposed SBOL data model and uses the
SBML and SBOL for a LacI inverter (one half of the genetic
toggle switch [2]) as an example.

2. SBOL FOR LACI INVERTER
Under the proposed SBOL data model, the qualitative

function of the LacI inverter can be described using a module
that (1) instantiates the DNA, protein, and small molecule
components of the LacI inverter as signals and (2) asserts
the regulatory and gene expression interactions occurring
between these signals. Fig. 1 is a Unified Modeling Lan-
guage (UML) diagram that depicts a SBOL module con-
taining three interactions and six signals. Each interac-
tion has a type derived from the Systems Biology Ontol-
ogy (SBO) [5], a controlled vocabulary for systems biology
terms, and refers to its participating signals indirectly via
participations. Each participation has a role that is also de-
rived from a SBO term and indicates what a signal does or
has done to it in an interaction.

3. SBML FOR LACI INVERTER
Under the data model for Level 3 Version 1 of SBML, the

quantitative function of the LacI inverter can be described

Figure 1: A UML diagram of the LacI inverter un-
der the proposed data model for the next version of
SBOL.

using a model that (1) captures the chemical species of the
LacI inverter and the reactions that produce/consume them
and (2) supplies the rate laws for these reactions to facili-
tate simulation and mathematical analysis. Fig. 2 is a UML
diagram that shows a SBML model containing a list of two
reactions that together reference a total of five species. Each
reaction has one or more lists of species references that iden-
tify which species are its reactants, products, and modifiers.
Furthermore, each reaction and species reference can include
a SBO term to more concretely specify its type or role in a
biochemical or genetic context.

4. MODEL GENERATION
During model generation, a SBOL module describing a

genetic circuit is translated to a SBML model using a partic-
ular mapping function. The rules for applying this mapping
function are as follows:

1. For each protein signal, small molecule signal, and
complex signal in a SBOL module, add a species and
a degradation reaction with a mass-action rate law to
a SBML model.

2. For each promoter signal in the SBOL module, add a
promoter species to the SBML model.

52
IWBDA 2014, June 11–12, 2014, Boston, Massachusetts, USA. 

Copyright is held by the owner/author(s). Publication rights licensed to BDAC.



Figure 2: A UML diagram of the LacI inverter under
Level 3 Version 1 of the SBML data model.

3. For each genetic production interaction in the SBOL
module, add a genetic production reaction to the SBML
model with a Hill function rate law.

4. For each promoter signal in the SBOL module that
participates as a modifier in a genetic production in-
teraction, add a promoter species reference to the list
of modifiers for the corresponding genetic production
reaction in the SBML model.

5. For each promoter signal in the SBOL module that is
activated/repressed in an activation/repression inter-
action and participates as a promoter in a genetic pro-
duction interaction, add N activator/repressor species
references to the list of modifiers for the corresponding
genetic production reaction in the SBML model, where
N is the number of transcription factor signals in the
SBOL module that participate as activators/repressors
in the activation/repression interaction.

6. For each protein signal in the SBOL module that par-
ticipates as a product in a genetic production interac-
tion, add a species reference to the list of products for
the corresponding genetic production reaction in the
SBML model.

7. For each non-covalent binding interaction in the SBOL
module, add a non-covalent binding reaction to the
SBML model with a mass-action rate law.

8. For each protein signal, small molecule signal, and
complex signal in the SBOL module that participates
as a reactant or product in a non-covalent binding in-
teraction, add a species reference to the list of reac-
tants or products for the corresponding non-covalent
binding reaction.

5. CONCLUSIONS
As implemented in our GDA software iBioSim [4], this

methodology enables users to generate a quantitative SBML
model from a qualitative SBOL module that documents the
molecular interactions of a genetic circuit. The SBML model
can then be annotated with its corresponding SBOL using a
previously developed annotation methodology [7] to tightly
couple these quantitative and qualitative descriptions of ge-
netic function. Note that the mapping function used in this
approach is only one of many possible mappings from SBOL
to SBML, or from SBOL to another modeling standard. In
the future, other mappings will be developed for di↵erent
modeling tasks, much in the same way that di↵erent fonts
exist for the same set of alphanumeric characters.

Because the proposed SBOL data model is not capable
of encoding quantitative parameters, the SBML rate laws
generated by this methodology are populated with default
parameters that must be customized by the user. A more
detailed description of these rate laws and their parameters
can be found in [6]. In the near future, the SBOL data model
might be extended with the capacity to store data on quan-
titative parameters and measurements, thereby providing a
firmer foundation for GDA tools to generate di↵erent math-
ematical models for di↵erent design tasks that nevertheless
conform to the same basic data set.
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ABSTRACT
The ability to accurately predict the behavior of a complex
system from that of the composing modules has been instru-
mental to the development of engineering systems. Here, we
present a framework accounting for loading e↵ects among
biological components which carries substantial conceptual
analogy with the theory of electrical systems. Within this
framework, the description of each component includes quan-
tities similar to impedance. Accounting for these impedance-
like quantities facilitates the reliable and modular design of
large-scale biocircuits as part of an automated workflow.

Keywords
gene networks, impedance, modularity, retroactivity

1. INTRODUCTION
It was proposed that biology can be understood, just like
engineering, in a modular fashion [7]. If biological parts and
modules behaved the same way in isolation as when part of
a larger network, the design of complex biocircuits would
be simpler. Unfortunately, a module’s behavior is often af-
fected by its context [1]. One source of context-dependence
is retroactivity [2], a phenomenon in which a downstream
component changes the behavior of an upstream component
as a result of sequestering chemical species. For instance,
the frequency and amplitude of a clock’s oscillations can be
largely a↵ected by a load [3].

In a bottom-up approach to engineer biological systems, sim-
ple modules are combined to create larger ones [9]. Among
other factors [1], retroactivity makes it necessary to re-design
modules through a lengthy and ad hoc process every time
they are inserted into a di↵erent context [10]. Therefore, to
design biocircuits in an automated and modular fashion, we
must account for retroactivity during the design phase to
ensure the reliable functioning of the implemented systems.

This paper addresses this issue by incorporating retroactiv-
ity into the description of promoters, and by further com-
bining these retroactivities to predict how the behavior of
modules change upon interconnection in the context of bio-
design automation, e.g., in the framework presented in [6].

2. MAIN RESULT
Take the reaction ;

⇠(t)��*
)��

�

x from [2] describing the production

and degradation of transcription factor (TF) x, yielding

ẋ = ⇠(t)� �x. (1)

Next, consider the addition of DNA load to x (e.g., a logic
gate using x as input), modeled by the reversible binding

reaction x + p
k+��*
)��
k�

c, where p and c are the empty and x-

bound promoters by having x bound to the promoter p. As
a result, the dynamics of x change from (1) to

ẋ =
1

1 +R(x)
[⇠(t)� �x] , (2)

where R(x) = ⌘/kd
(1+x/kd)2

is the retroactivity of the promoter

with k

d

= k�/k+ being the dissociation constant of x to the
promoter, and ⌘ = p + c is the total concentration of the
promoter [2]. The higher the DNA copy number ⌘ and the
lower the dissociation constant k

d

, the greater the retroac-
tivity R(x). Comparing (1) with (2), greater R(x) causes
more substantial changes in the dynamics of x, that is, the
e↵ect of the downstream component on the behavior of the
upstream component increases with R(x) [2].

For the promoter of gene i, the retroactivity R

i

introduced
in [5] captures the retroactive e↵ects arising from the bind-
ing of the regulators of gene i changing the dynamics of
the regulators, as shown in (2) for the regulator x. In [5]
the formula for computing R

i

is given as a function of mea-
surable biochemical parameters: the DNA copy number of
the promoter and the dissociation constants of the regula-
tors are required. Combinatorial regulation (when multiple
transcription factors regulate the expression of a gene) and
multimerization (when multiple molecules of the same tran-
scription factor first need to form a complex which then can
regulate the expression of a gene) are both considered in [5].

Modules are (small) networks of interconnected genes with
specific functions, such as toggle switches and oscillators.
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The loading e↵ects inside a module are described by the
internal retroactivity R of a module [5], which can be cal-
culated considering the retroactivity R

i

of each promoter
and the topology of the module (i.e., which gene regulates
which). Neglecting R can lead, for instance, to the design of
non-functional clocks [5]. This could happen, for example, in
the framework presented in [6] for the automated design of
biocircuits. However, this limitation can be easily overcome
by simply incorporating the retroactivity terms when eval-
uating circuit performance, which is straightforward once
retroactivity is part of the description of a promoter, as pro-
posed here.

The behavior of modules is a↵ected by retroactivity arising
due to intermodular connections upon interconnection. For
instance, in the case of the toggle switch [4], adding loads
to either repressor sequesters molecules from the repression
of the other repressor in the toggle switch, yielding slower
switching characteristics compared to the isolated case [5].
These e↵ects can be described by the scaling retroactivity
S and mixing retroactivity M of a module [5], which can
be computed similarly to the internal retroactivity R, by
considering the retroactivity R

i

of each promoter and the
network topology (for details, see [5]). In particular, let the
dynamics of module A and B given by ẋ

A = f

A(xA

, x

B

, ẋ

B)
and ẋ

B = f

B(xB

, x

A

, ẋ

A), respectively, where x

A and x

B

are the concentration vectors of TFs in module A and B [5],
so that when the modules are not interconnected, we have

✓
ẋ

A

ẋ

B

◆
=

✓
f

A(xA

, x

B

, ẋ

B)
f

B(xB

, x

A

, ẋ

A)

◆
. (3)

Upon interconnection, the dynamics of the modules become
coupled as the matrix


I + (I +R

A)�1
S

B (I +R

A)�1
M

B

(I +R

B)�1
M

A

I + (I +R

B)�1
S

A

��1

(4)

pre-multiplies the right-hand side of (3), see [5] for details
(RX , SX andM

X are the internal, scaling and mixing retroac-
tivity of module X, respectively, for X 2 {A,B}).

3. CONCLUSIONS
The above presented results can be integrated into an au-
tomated design workflow, such as [6], as follows (Figure 1).
First, when selecting promoters, their description should in-
clude their retroactivity R

i

, similarly to the impedance of an
electrical component. Then, when combining parts to form
functional modules, the specification of a module should in-
corporate its internal, scaling and mixing retroactivity (R,
S and M , respectively). These quantities are similar to the
input impedance of electrical modules. Once these retroac-
tivities are incorporated into the description of the modules,
the parameters of the modules can be optimized so that the
input-output behaviors of modules do not change apprecia-
bly upon interconnection (“retroactivity-matching”, see [5]).
Incorporating retroctivity into the description of promoters
and modules as detailed in [5] thus takes us one step closer
to the modular and predictable design of complex biocircuits
in an automated fashion.
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ABSTRACT 
We describe in this paper using Simulated Annealing the 
identification of gene expression fold changes to enhance yield.  
We evaluated this approach to identify interventions needed to 
maximize antibody production in the Chinese Hamster Ovary 
(CHO) cell.   

 

1. INTRODUCTION 
Engineering biological systems promise to enhance the production 
of beneficial products such as therapeutics, drugs and biofuels. 
One challenge in engineering biological systems is identifying 
cellular interventions that maximize the flux (rate) of producing 
desired products. Cellular optimization problems are formulated 
in terms of two kinds of variables: flux variables and control 
(decision) variables that correspond to the presence or absence of 
up- or down-regulation for each possible reaction. The overall 
objective of the optimization procedure is to tune these variables 
optimally to maximize the production of a target metabolite. 
Mathematically, the solution must satisfy several constraints 
including: steady state constraints on the metabolic network, a 
minimum biomass production above a given threshold, and uptake 
values for some select fluxes. One example optimization tool is 
OptKnock, which uses a bilevel optimization framework to 
identify gene knockouts (deletions) while optimizing the coupled 
objectives of metabolite overproduction and biomass 
formation[1].  OptReg utilizes a similar mathematical formulation 
to identify sets of genes that should be jointly up- or down-
regulated[2].  CCOpt utilizes chance-constrained programming, 
where constraints are met with some probabilistic guarantees, to 
identify genes that must be modified[3]. While previous 
approaches focused on identifying genes that must be modified, 
there are experimental benefits in additionally identifying minimal 
enzyme fold changes for the selected gene set.   

 

2. METHODS 
We apply in this paper Simulated Annealing (SA) to find the gene 
set that must be up-regulated and the relevant minimal fold 
changes needed to maximize the desired flux.  SA is a 
probabilistic metaheuristic used to find a good approximate 

solution of a global optimum for a problem with a large feasible 
solution space. Each solution specifies a gene set that must be 
modified and the relevant fold changes.  Each fold change can be 
one of three values, 2x, 5x, or 10x, compared to a 1x non-
regulated fold change.  SA begins by selecting a solution at 
random. The goodness of a solution is evaluated by the SA fitness 
function, which computes the maximum yield given steady-state, 
thermodynamic and uptake constraints.  The fold changes modify 
the constraints by imposing new (increased) upper bounds on 
fluxes.  The fitness calculation considers the total fold changes by 
favoring a solution with smaller fold changes in enzyme activities 
over another when the two solutions have the same production 
rate.  
 
A new solution is generated by permuting an existing one.  The 
extent of permutations is correlated with the cooling schedule.  At 
the beginning of the simulation and at high temperatures, both the 
gene set and the fold changes are permuted.   As the temperature 
cools, the permutation is more likely to involve only one fold 
change.   We utilized a geometric method for the cooling 
schedule. To speed SA and for practical considerations, the 
number of possible modifications was restricted.  
 

3. RESULTS 
We evaluated our computational framework by identifying 
interventions needed to maximize antibody production in the 
Chinese Hamster Ovary (CHO) cell [4].  The CHO cell model 
consists of 24 metabolites and 34 reactions. Due to the small 
model size, we restricted the number of interventions to 4. SA 
identifies four up-regulation targets, with three fold change values 
of 10 and one fold change of 2.  The resulting antibody yield was 
3861 nmol/106cells/day compared to the original antibody 
production of 525 nmol/106cells/day.  SA identified two other 
inferior solutions, with 5 and 10 fold changes instead of 2, with 
the same yield.   
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1. MOTIVATION
As the field of synthetic biology grows, the number of

synthetic genetic components used by the community ex-
pands. Each genetic part is studied by individual groups,
but is often poorly documented and communicated to the
rest of the community. Furthermore, when this information
is conveyed, it is often in variable formats and can be time
consuming to communicate if many parts are under study.

Given this already large and rapidly growing body of infor-
mation, a number of ‘genetic parts registries’ have emerged.
Registries of synthetic genetic parts such as BioBricks, JBEI,
JGI, SynBERC and BIOFAB, have approached the question
of how to best share and store data in recent years. It has be-
come apparent that the synthetic biology community should
form a concerted e↵ort to share data on genetic parts and
other biological components in a standardized way[1]. To ad-
dress this need, we have created an online tool for datasheet
generation, called Owl (owlcad.org), to help users generate
datasheets with a common formats and iconography[2].

2. WHAT IS OWL?
Owl is a bio-design automation tool that generates elec-

tronic datasheets for synthetic biological parts. Owl datasheets
describe parts using a common format for ease of use for
interacting with other tools and for sharing with other re-
searchers. Data can be retrieved automatically from existing
repositories and be changed and added to in the Owl UI. Owl
uses the data to generate an HTML page with a standard
layout that can be saved locally. Here we present the Owl
software tool, its current UI, a description of current input
data for generating a datasheet, and an example datasheet.

3. REQUIRED AND OPTIONAL FIELDS
Owl datasheets have required fields for each datasheet

(Fig. 1). This information is meant to represent the mini-
mum information required to define a part with which data
can be experimentally associated. This would change based
upon the input data model. Here we require that a part
physically exists to have a datasheet. All other fields are
optional.

4. AUTOMATED DATA POPULATION
When generating a new datasheet from an existing Reg-

istry page, Owl parses and extracts information for a specific
part to populate fields on the datasheet, namely: Part Name
(ex: BBa B0034), Part Description, Part Type (ex: RBS),
Date entered, Part Author, and Sequence. The user can

Figure 1: An example Owl datasheet

then go through each section manually and add more infor-
mation to the datasheet such as experiments they have run
with the part of interest.

5. FUTURE WORK
While the Owl tool only currently parses the BioBricks

Registry, it will be expanded to parse additional registries.
In anticipation of additional data models, we will allow users
to upload a configuration file to govern what fields and types
of inputs should be included in the datasheet. To accommo-
date for di↵erent desired formats, future versions will allow
users to upload a file to specify a layout configuration file.
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Synthetic Biology Open Language Designer 
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The Synthetic Biology Open Language (SBOL) Designer is a synthetic biology design 
tool for visualizing and creating designs expressed using SBOL. SBOL is an open-
source data exchange standard for descriptions of genetic parts, devices, modules, and 
systems. SBOL defines both a serialization format based on RDF/XML and a set of 
visual icons to graphically depict functional information encoded by nucleic acid 
sequences. The SBOL Designer has been integrated with the Biomatters’ Geneious R7 
sequence analysis/alignment/assembly platform. The SBOL Designer can be used to 
visualize the sequences created in Geneious using SBOL visual icons, edit the design 
using the SBOL view, and see the results immediately inside Geneious R7. The SBOL 
Designer allows users to create designs using SBOL visual icons, edit SBOL designs in 
Geneious R7, save designs in an SBOL RDF/XML file, and import DNA components 
from an SBOL parts registry. The SBOL designer uses Standard Biological Parts 
Knowledgebase (SBPkb) to import DNA components from the Registry of Standard 
Biological Parts at MIT. Other SPARQL Protocol and RDF Query Language (SPARQL) 
endpoints can be defined in the tool to use components from a different source. This is 
useful for accessing parts databases and provides tools for collaboration by allowing 
synthetic biologists and genetic engineers to electronically exchange designs across 
multiple sites. This poster will cover the features and benefits of the SBOL designer and 
will provide insight on the latest Synthetic Biology tools. 
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1 Introduction

One of the ultimate goals of synthetic biology is the engi-
neering of dedicated cell behavior, by introducing completely
new sequences of DNA (called the genetic circuit) into the
DNA of the cell. A genetic circuit represents a gene regula-
tor network which is triggered by a combination of external
signals, such as chemicals, proteins, light or temperature, to
emit signals to control gene expression or metabolic path-
ways accordingly.

Today, new genetic circuits are to a large extent formed
in an experimental bottom-up approach, where the genetic
circuit is assembled from a standard library of well-defined
genetic circuits or parts of such (e.g., the BioBricks library),
to match an intended behavior. This approach resembles the
early days of microelectronics circuit design. However, when
the complexity of the genetic circuits grows, there will be a
strong need for a top-down approach, where the dedicated
cell behavior is expressed in a high-level language and then
synthesized into the most e�cient genetic regulator network.

We present a top-down genetic circuit synthesis frame-
work, which synthesizes a new e�cient genetic circuit from
a high-level logical description. Our approach is based on
3 phases; 1) genetic logic optimization, 2) genetic circuit
mapping, and 3) quantitative genetic circuit analysis.

2 Genetic circuit synthesis

The genetic circuit synthesis process (illustrated in Fig. 1)
is highly inspired by the techniques developed for the syn-
thesis of electronic circuits. However, logic high and low
are defined by the concentration of molecules, e.g., proteins,
and there are some very important di↵erences to electronic
synthesis, which challenges the synthesis of genetic circuits,

Compatibility: In electronic circuits the output from an
arbitrary circuit can always be used as input to an-
other circuit. In genetic circuit synthesis the ”wiring”
is established through di↵usion of particular proteins,
hence, compatibility between input- and output-proteins
of the library parts must be ensured.

Orthogonality: Cross-talk can have devastating e↵ects in
genetic circuits, so circuits or parts with the same in-
termediate proteins are not allowed in the genetic cir-
cuit. This further implies that library parts cannot be
reused, except for amplification of protein concentra-
tions.

Size: The synthesized genetic circuits should fit into a sin-
gle cell. Currently only 20 orthogonal promoters have
been identified, [2], which e↵ectively defines an up-
per limit of the complexity of a genetic circuit. As
our knowledge and models get better, this limit will

Figure 1: Genetic circuit synthesis framework.

most likely increase, and if translational regulation us-
ing sRNA is considered, the upper limit may be ex-
tended already today, as promoters are not influenced
by sRNA.

Stochastic nature: The stochastic nature of gene expres-
sion, makes analytical assessment of models of genetic
circuits very di�cult, if not impossible, and simula-
tions have to be carried out to give good assessments
of the quality.

In the following, we present the 3 phases of our genetic
circuit synthesis framework in more details.

2.1 Genetic logic optimization

The first phase converts the logical input description of the
desired cell behaviour into a logic expression. To ensure
low circuit complexity of the synthesized circuit, the logic
expression is minimized to a minimal Boolean expression
using e.g. the Quine-McClusky algorithm. In the following,
we will use the minimized expression

CI = (GFP’) + (IPTG lacI)

to illustrate the phases of the genetic circuit synthesis.

2.2 Genetic circuit mapping

The minimized expression is given to a genetic circuit map-

per that finds di↵erent coverings of the logic expression by
library circuits that makes up possible candidate solutions.
The mapping algorithm uses an And-Inverter Graph (AIG)1,
and performs an explorative top-down pattern matching us-
ing all the library circuits. If the entire graph can be fully
covered while ensuring the aforementioned constraints, a de-
sign candidate has been found. In Fig. 2b and c, two possi-
ble solutions are shown.

1A Directed Acyclic Graph using only ”and” and ”not” op-
erators.
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Figure 2: Possible coverings of a simple logic expres-
sion. a) The AIG representation of the expression.
b) Design candidate 1. c) Design candidate 2.

Fig. 2a shows the AIG representation of the minimized
expression of the motivating example. Assuming the sim-
ple library of the following 4 genetic circuits CI = (GFP’)
+ (Ara) (green), Ara = (IPTG lacI) (red), CI = (aTc) +
(Ara) (purple) and aTc = GFP’ (yellow), the genetic circuit
mapper finds two solutions, b) and c) in Fig. 2.

The genetic circuit mapper makes a first ranking of the
solutions based on an objective function, adapted from [1],
which defines as the cost C:

C = 2NR + 2NA +NIMP

Here NR, NA and NIMP are the total number of repressor
promoters, activator promoters and intermediate proteins
respectively. The cost C represents the complexity or the
realisability of the circuit, not the quality, thus a low cost
means a lower realisation complexity.

With better understanding of the complexity of realising
the genetic circuits in the laboratory (indicated as wet-lab in
Fig. 1), the objective function can be updated accordingly.
The cost is dependant on the number of intermediate pro-
teins thus design candidates composed of few library circuits
or parts are automatically favored, as there will be fewer in-
ternal protein interactions, thus less internal complexity.

2.3 Quantitative genetic circuit analysis

Due to the highly stochastic e↵ects as well as the coarse
assumption of considering genetic behaviour as just logi-
cal highs and lows, the solutions cannot be guaranteed to
perform as the logical expression dictates, hence validation
through simulation is necessary. If the simulations show ac-
ceptable behavior, a wet-lab experiment should be carried
out and only if this results in an acceptable behavior, the
new genetic circuit is accepted and saved as a part in the li-
brary for later use. Our framework does not yet include the
wet-lab validation, but genetic circuit models are specified in
SBML , transformed to stochastic petri nets internally and
are stochastic simulated using Gillespie’s direct method . As
estimating parameters of models (such as rate parameters)
is still a huge problem, we assume the modelling technique
and simulation work correctly, if the correct parameters are
applied, hence, we are currently providing parameters to the
models that make the models behave as intended.

Based on the ranking of the solutions proposed by the
genetic circuit mapper, each solution is validated through
stochastic simulation of all combinations of input protein
concentration levels, i.e. high and low. The evaluation starts
with the lowest cost C solution. As an example, Fig. 3 shows
the concentration level of CI over time for the two candi-

date solutions, in the case where all inputs are kept low. On
the basis of this simulation, we reject design candidate 2 as
it does not perform as predicted, i.e. it does not reach a
steady state. A closer examination, which can be performed
in the framework, reveals that the output concentration of
the intermediate aTc protein from yellow is not high enough
to fully activate the input of purple. An automatic eval-
uation step could possibly detect this issue and duplicate
yellow until satisfactory levels are reached, this automatic
adjustment is not part of the current framework, but is part
of our future work.
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(a) Design candidate 1.
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(b) Design candidate 2.
Figure 3: Simulations of design candidates 1 and 2
from Fig. 2, blue is CI, red is aTc. Here simulated
for absence of all input proteins.

Further simulations of design candidate 1 with all possible
input combinations reveal that the solution will work (given
the library and parameters). It further identifies concentra-
tion levels that can be considered high and low respectively
for the new genetic circuit.

3 Discussion and summary

The details of the simulation of design candidate 2 should
be used by the genetic circuit mapper to modify the genetic
circuit in order to possibly obtaining a circuit that should
not be rejected by simulation. Thus assessments of solutions
can be used to decide if the logical behaviour is satisfied and
to adjust design candidates if not.

The assessment is a time-consuming step of the tool flow,
which is why automising this step and incorporating results
into the genetic circuit mapper is very important.

We have briefly presented our top-down genetic circuit
synthesis framework that covers the initial steps: logical be-
haviour can be specified as a logic expression, which can be
minimised. The minimised expression is then input to a ge-
netic circuit mapper using AIG as internal representation of
logic behaviour. The output of the genetic circuit mapper
is one or more design candidates specified as models repre-
sented as SPNs. These models can be stochastic simulated
and the logical behaviour obtained from these simulations
can be (currently manually) verified against the initial in-
put behavior.
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ABSTRACT
Pathway analysis has played an important role in systems
biology to understand, modify and optimize cellular behav-
ior. Elementary flux mode (EFM) analysis is one of the
widely used pathway analysis approaches to engineer micro-
organisms. EFM analysis identifies all independent, thermo-
dynamically feasible pathways in a metabolic network oper-
ating at steady-state. EFMs analysis is a computationally
challenging task and improvements in existing algorithms is
required to reduce runtime. We propose Method of Types
to reduce runtime of EFM analysis. The results of this new
method on di↵erent test cases have shown that the num-
ber of comparisons can be reduced upto 78% compared to
existing approaches.

1. INTRODUCTION
EFM analysis is equivalent to identification of extreme rays
of a convex polyhedral. Mathematically, the feasible steady-
state flux space of a network withm internal metabolites and
n reactions can be represented as a pointed convex polyhe-
dral if all the reactions are irreversible:

P = {v 2 Rn : S · v = 0 and v � 0} (1)

where S is an m ⇥ n stoichiometric matrix of the network,
v represents a steady-state flux and v represents fluxes in
v. The double description method [2] creates an alternative
representation of the flux space by transforming the repre-
sentative matrix of the network A to an equivalent repre-
sentative matrix R. Given A, the steady-state flux space
can be described as:

P = {v = R · � 8 � � 0} (2)

where R represents the set of EFMs.

Any steady-state flux distribution can be represented as a
non-negative linear combination of EFMs. For the double-
description method, each row of matrix A represents a con-

straint. Each column in R represents a ray of the convex
cone. The constraints are iteratively satisfied to generate ex-
treme rays (EFMs), which are new columns in R. In each it-
eration, rays in R are divided into the following three groups
based on the current constraint: positive rays J+, negative
rays J� and zero rays J0. The constraint is satisfied by
combining rays from J+ and J�. Extreme rays (indepen-
dent vectors) are generated by performing an adjacency test
on the rays to be combined. If the rays are adjacent, a
new extreme ray is generated using Gaussian Combination
by satisfying the current constraint. After processing the
current constraint, matrix R is updated.

2. METHODS
In the double-description method, adjacency testing is the
most computationally challenging step. To check the adja-
cency of two rays, a newly generated ray is compared with
existing rays. A ray r can be represented as a set of re-
actions P participating in the pathway represented by the
ray. Consider a new ray rn generated by combining rays r1
and r2. The set of reactions Pn corresponding to rn can be
represented as:

Pn = P1 [ P2 (3)

Rays r1 and r2 are non-adjacent if for a ray ri in R the
following holds:

Pi * Pn 8 ri 6= r1, r2 (4)

The above condition is tested for all the possible combina-
tions of rays from J+ and J� against the existing rays in
J+, J� and J0. Terzer and Stelling proposed bitpattern
trees to reduce the number of comparisons [4]. Bitpattern
trees are considered to be state of the art data structure for
e�cient adjacency testing. We propose Method of Types [1]
to further reduce the number of comparisons. Let |Pn| rep-
resents the cardinality of the set Pn. Equation 4 holds i↵
the following is true:

|Pi|  |Pn| (5)

Based on equation 5, any newly generated ray rn should
only be compared with existing rays having cardinality less
than that of the newly generated ray. We define cardinality
to be a type of rays and group of existing rays based on their
types. A group of type n will contain rays with cardinality
less than or equal to n. In our approach, a newly generated
ray with cardinality n will only be compared to the rays with
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type n rays. Bitpattern trees can be used to implement each
ray type.

3. RESULTS
We have applied this new method on test cases of various
sizes including Chinese Hamster Ovarian cell [3], Escherichia
coli [6], and Helicobacter pylori [5]. We have implemented
the Method of Types on an existing tool for EFM computa-
tion gEFM [7]. The results of this new method on the test
cases have shown that the number of comparisons can be
reduced upto 78% compared to that of gEFM.

4. CONCLUSION
The Method of Types provides an improvement over the ex-
isting approaches by reducing the number of comparisons
performed during adjacency testing. The reduction in num-
ber of comparisons is dependent on many factors such as
network topology and constraint ordering. In worst case,
the number of comparisons performed in Method of Types
would be equal to the existing approaches.
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