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Short Abstract — Models of biological networks have been 

studied through simulations using a number of software tools. 
However, the intrinsic disparity between the sequential nature of 
microprocessor architecture used in software-based simulations 
and the highly parallel nature of biological systems often results 
in prohibitively long simulation times for larger networks. In 
this work, we adopt an alternative approach to simulation of 
biological systems using hardware-based emulation. Our results 
on Boolean network models of three case studies show that such 
an approach can provide speedup of five orders of magnitude 
when compared to existing software simulation approaches. 

I. INTRODUCTION 
When tackling important biological and medical problems, 

scientists usually design experiments that are focused on 
particular parts of a system under study, with a specified 
experimental setup and initial conditions. However, only by 
studying the system in a formal and systematic way, one can 
acquire sufficient knowledge about the system, so as to attain 
a comprehensive understanding of a system. In general, one 
can think of the main goals of modeling biological systems as 
following: explaining processes that result in observed 
phenomena; predicting previously unobserved phenomena; 
identifying key generic reactions; guiding experiments by 
suggesting new experiments, avoiding unneeded experiments 
and helping interpret experiments. 

Over the past decade, a number of computational 
approaches have been proposed for the purpose of modeling 
and studying biological systems. However, the complexity of 
these models increases rapidly with the size of the network. 
Moreover, such simulations are computed sequentially on 
general purpose CPUs, which is in contrast to the highly 
parallel nature of information flow within biochemical 
networks. In general, models of biological networks are 
simulated by assuming an initial state (or distribution of 
initial states) as the model input, with dynamical trajectories 
and steady states as the model output. These simulations often 
result in prohibitively long run times. 

The main goal of this work is to develop a hardware design 
methodology for emulating biological network behavior into 
Field Programmable Gate Array (FPGA) platforms, which are 
ideally suited to implement highly parallel architectures. We 
provide a framework for efficient and accurate analysis of 
complex signaling and regulatory networks, since their 
understanding is of great interest in medicine and biology. 
We outline here the contributions of our work when 
compared to both software-based and hardware-based 
approaches to studying signaling networks:  
• In comparison to software-based approaches to simulate 
biological networks, our proposed approach is efficient, 
because hardware-based emulation can give better 
performance than software-based simulation.  
• In comparison to hardware-based approaches to studying 

 
1Department of Computational and Systems Biology, School of Medicine, 
University of Pittsburgh, E-mail: {nam66,faeder}@pitt.edu 
2Electrical and Computer Engineering Department. Carnegie Mellon 
University. E-mail: {abrestic, deepakri, sreesanv, dianam}@ece.cmu.edu. 
 

biological networks, our approach: (i) Implements the logical 
(dynamic) model of the network, while previous approaches 
only implemented the simulation algorithm for ODE models; 
(ii) Improves efficiency through implementation of several 
copies of the model, allowing for simultaneous runs and 
faster comparison of several different implementations of the 
system, or outcomes of different initial conditions and 
different scenarios. 

II. METHODOLOGY 
In this work, we focus on analyzing models that include 

Boolean or integer variables. In the past years, several groups 
have worked on developing Boolean network models for 
different signaling pathways [5] or gene regulatory networks 
[2]. These models are used to study the dynamics of the 
system and its behavior (state transitions) from the initial 
state until reaching a steady state or steady cycle. The model 
is composed of fixed sets of variables and rules.  

Once the logical model is defined, the model is used as an 
input to the hardware design phase. This includes the design 
of a circuit, which usually starts with defining larger blocks. 
The next step in hardware design is to define modules within 
each block and describe them in a Hardware Description 
Language (HDL). The design can be simulated before the 
actual implementation in hardware, using an HDL simulator 
such as ModelSim [4]. Following are the main elements of 
the circuit designed to emulate the biological network model:  
• Inputs - represent external stimuli or environmental effects 
that can occur anytime during circuit simulation (e.g., 
changes in conditions outside of the system, inhibitor 
addition, gene knock-outs, etc.), as well as arrays of initial 
conditions (e.g., element states or molecule counts). 
• Outputs - used to collect the information about the 
behavior of the system as a response to initial conditions and 
changes in inputs.  
• Model Implementation, consists of: (i) Execution Unit, 
which implements the network (elements and rules); (ii) 
Control Unit, which controls the simulation (and timing of 
interactions) of the implemented network. 
• Display - outputs can be directed to a display to visually 
present the outcomes of model simulations. 

When considering the translation of biological network 
models into hardware, one needs to define the time of the 
execution of individual interactions. FPGAs seem very 
suitable for implementing biological network models because 
of their parallel nature and in fact, we intend to develop 
design techniques that can facilitate correct relative timing 
when emulating signaling networks. For example, we 
approach the problem of implementing asynchronous network 
updates using synchronous hardware (that uses a clock signal) 
by designing a system with an embedded pseudo-random 
number generator. 

III. RESULTS 
We applied our approach on following networks:  

1. T cell large granular lymphocyte leukemia (T-LGL) [7]; 
2. Helper T cell differentiation [5]; 
3. Peripheral naïve T cell differentiation [3].  
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These models use discrete variables to represent elements 
of the network and logic update functions to represent 
interactions between elements. We first implemented these 
models in a hardware description language, Verilog. The 
stochasticity that exists in biological networks has been 
introduced through random ordering of updates of all 
elements. To compare hardware emulation results with 
software simulations, we ran simulations of models using 
BooleanNet [1]. After verifying the design through software 
simulation, it was synthesized for implementation on a Xilinx 
FPGA [6].  

In the first example network, the runtime for 200 software 
simulations, with 16 update rounds in each simulation, was 
approximately 60s. Given the clock frequency for the 
implemented systems (50MHz), number of rounds necessary 
to reach the steady state (16), number of steps in each round 
(61), and number of clock cycles per step (approximately 5) 
and number of simulations (200), the estimated time for 
obtaining steady state values for the emulated network is 19.2 
ms. In other words, the speedup from a single model 
implementation was approximately 3100X. Given the fact 
that multiple copies of the model can be implemented on a 
single FPGA and run in parallel, the speedup can scale further 
(possibly, linearly) with the number of model copies on the 
chip. In the case of the FPGA circuit used in the first study, 
five copies were implemented, providing an overall speedup 
of 15,000X when compared to software simulations.  

Similar computations to those done in the first example, 
could be conducted for the second example network, where 
the model consists of 23 elements and therefore, each round 
consists of 23 update steps. 

In the third example, we used a slightly different FPGA 
board that was operating at 1 GHz frequency. In a round, all 
54 nodes are updated once and only once in a random order. 
We implemented six instances of the network on a Spartan 3 
FPGA board simultaneously and executed them in parallel. 
The speedup of a single instance implementation when 
compared to software simulations in BooleanNet is 
approximately 60,000X, which in turn indicates six times 

60,000X overall speedup for six instances.  

IV. CONCLUSION 
In this work, we proposed a methodology to implement 

logical models of signaling networks using FPGAs, in order 
to efficiently study these networks. We have shown that the 
speedup that an FPGA simulation provides over the classic 
simulation-based approach can be as high as six times 
60,000X for up to six copies of a model implemented on a 
single FPGA These results demonstrate the tremendous 
potential of hardware-based emulation. As future work, we 
plan to create a general-purpose framework that can also 
translate models given in either logical rule-, reaction 
network- or reaction rule-based format into a faithful 
hardware implementation replica of the system that 
reproduces both dynamic and steady-state behavior. This will 
facilitate fast and accurate analysis of system behavior for 
many different initial conditions and scenarios, thus opening 
the possibility for scalable simulation and analysis of highly 
complex biological systems. 
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Figure 1. Designed circuit modules (left) and Verilog implementation (right) of two modules: network_logic module for the example 
network and controlpath module. 
 

Table I. Hardware emulation speedup (single instance). 
 

Model # nodes # rounds BooleanNet  FPGA  

T-LGL  61 15 60s 0.019s 
Th diff.  23 25 65s 0.022s 

T cell diff. 54 20 60s 0.001s 
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Recently, biologists and engineers have begun to work to-
gether on synthetic biology [2, 6]. These researchers are at-
tempting to design synthetic genetic circuits that enable bac-
teria to consume toxic waste [4], destroy tumors [1], and pro-
duce drugs [11]. Although some genetic design automation
(GDA) tools have been developed [3,5,8–10], there is still a
need for more efficient methods for their modeling, analysis,
and design. One such GDA tool is iBioSim which supports
the representation of these circuits using a high-level Genetic
Circuit Model (GCM) that can be translated into the Sys-
tems Biology Markup Language (SBML) for analysis. Sev-
eral analysis methods are supported including differential
equations, stochastic simulation, and Markovian analysis.
The efficiency of these methods is enhanced by automatic
reaction-based and logical abstraction methods [7].

Recently, we have created a user interface that is similar
to those used to construct schematic diagrams which are fa-
miliar to electrical engineers. Promoters, chemical species,
and biological relationships can be placed on a graphical
schematic. Figure 1 shows an example screenshot for the
schematic capture tool. This figure shows two identical pro-
moters, PRFP and PGFP , which initiate transcription of two
genes producing mRNAs that are translated into two pro-
teins, RFP and GFP, as indicated by the edges connecting
the promoters to the proteins. Although not shown, edges
can also be connected from proteins to promoters to indi-
cate that the protein activates or represses the promoter
regulating downstream gene expression. In these cases, the
promoter can often be hidden to simplify the diagram. Fi-
nally, complex formation reactions can be included to rep-
resent how proteins combine to form other proteins. In each
case, kinetic rates and other parameters can be configured
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individually for use during analysis. Finally, GCM compo-
nents can be placed on the schematic to support hierarchical
modeling in which larger circuits are created from smaller
circuits. These components can also represent entire genetic
circuits running within individual cells in order to support
population modeling.

Another enhancement was the creation of a new simula-
tion visualization tool that leverages this schematic capture
tool to allow the user to associate chemical species with color
schemes, opacity, and cell size. Simulation data can then be
associated with this tool to enable the user to effectively ob-
serve a population of cells, in silico. As an example, Figure 2
shows a screenshot of this visualization tool as applied to 40
copies of the genetic circuit shown in Figure 1. This example
is inspired by the experiment by Elowitz et al. at Caltech
in which individual cells of the bacterium Escherichia coli
express red and green fluorescent proteins under the control
of identical promoters. If gene expression were determinis-
tic, all cells would express equal amounts of red and green
proteins, and hence appear yellow. In the actual experimen-
tal data, the appearance of redder and greener cells in the
population indicate the importance of intrinsic randomness,
or “noise,” in gene expression. As shown in Figure 2, these
results are clearly reproduced.

This presentation will highlight these latest features of
iBioSim by describing its application to the modeling, anal-
ysis, and design of a variety of synthetic genetic circuits.
This presentation will also describe recent work to associate
DNA sequences to GCM structures using the synthetic biol-
ogy open language (SBOL). Finally, we will discuss a number
of on-going ideas to further enhance this tool to represent
the dynamics of large populations of cells that are growing,
dividing, moving around, and communicating with their en-
vironment through the use of chemical signals. iBioSim is
available at http://www.async.ece.utah.edu/iBioSim/.
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Figure 1: Schematic capture tool depicting a simple genetic circuit in which two promoters initiate the
production of two species, red fluorescent protein (RFP) and green fluorescent protein (GFP).

Figure 2: Schematic visualization tool showing a simulation of the Elowitz et al. experiment in which the
genetic circuit in Figure 1 was introduced into E. coli bacteria. The noisy nature of biological systems causes
many shades of color ranging from green to red, with yellow colors in between. The visualization tool allows
a researcher to see a simulation of a population in a way similar to looking through a microscope.
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1. SUMMARY
Just as electronic systems implement computation in terms of

voltage (energy per unit charge), molecular systems compute in
terms of chemical concentrations (molecules per unit volume). In
prior work, we described mechanisms for implementing logical and
arithmetic functions, such as comparison, exponentiation and log-
arithms, with molecular reactions [1, 3, 4]. All such functions
are memoryless – “combinational” functions in the jargon of cir-
cuit design. In current work, we are developing techniques for
implementing computation with memory – “sequential” functions
in the jargon of circuit design. In a paper to be presented at this
year’s Design Asynchronous Conference, we describe techniques
for implementing synchronous sequential computations, that is to
say, computation that is synchronized by a clock [2]. In this paper,
we discuss methods for implementing asynchronous computation,
that is to say, computation that is self-timed. We implement the
computation with a multi-phase “handshaking” protocol that trans-
fers quantities between molecular types based on the absence of
other types. Our method produces computation that is accurate and
independent of the reaction rates, assuming only that some reac-
tions are faster than others. We validate our designs through ODE
simulations of the mass-action chemical kinetics. We are explor-
ing DNA-based computation via strand displacement as a possible
experimental chassis.

2. CONTEXT
Most prior schemes for molecular computation depend on spe-

cific values of the kinetic constants (the k’s associated with each
reaction.) This limits the applicability since the kinetic constants
are not constant at all; they depend on factors such as cell volume
and temperature.

We aim for robust constructs: in our methodology we use only
coarse rate categories (“fast” and “slow”). Given such categories,
the computation is exact and independent of the specific reaction
rates. In particular, it does not matter how fast any “fast” reaction
is relative to another, or how slow any “slow” reaction is relative
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to another – only that “fast” reactions are fast relative to “slow”
reactions.

Digital circuits are generally composed of two types of com-
ponents: those that implement computation and those that imple-
ment memory. The most common design paradigm is to use a
global clock signal to synchronize transfers between computation
and memory. The clock signal is generated by an oscillatory circuit
that produce periodic voltage pulses. We advocate this approach for
molecular computation in [2]. For a molecular clock, we choose re-
actions that produce sustained oscillations in the chemical concen-
trations. With such oscillations, a low concentration corresponds to
logical value of zero; a high concentration corresponds to a logical
value of one.

For computational constructs, we refer the reader to prior work [1,
3, 4]. Operations such as addition and scalar multiplication are
straightforward. Operations such as multiplication, exponentiation,
and logarithms are trickier. These can be implemented with re-
actions that implement iterative constructs analogous to “for” and
“while” loops. (They do so robustly and exactly, without any spe-
cific dependence on the rates.)

An alternative to a global clock is to use self-timed constructs
that synchronize transfers locally. In this work, we present such an
asynchronous scheme for molecular computation. (Here “global”
and “local” refer to how reactions are coupled, not to any kind of
spatial structure of the chemical solution.) We model the molecular
dynamics in terms of mass-action kinetics. We assume that the
chemical solution is homogeneous and well-stirred. All signals are
quantities of chemical types.

3. METHOD AND RESULTS
We implement transfers of signals with delay elements. A exam-

ple of a two-delay-element chain is shown in Figure 1(a). Here D1

releases its signal to T and accepts a new signal X . Meanwhile,
D2 releases its signal to Y and accepts the signal T that D1 just
released.

In spite of the fact that the chemical reactions fire at variable
rates, we seek to realize ordered delay operations. We implement
a delay element as a sequence of chemical transfers. We assign
each of the delay elements three molecular types, R1, G1, and B1

for D1, and R2, G2, and B2 for D2, as shown in Figure 1(b).
Reactions X → R1, R1 → G1, G1 → B1, B1 → R2, R2 → G2,
G2 → B2, B2 → Y effect the transfer of the quantity of X to the
quantity of Y .

A computation cycle, in which an input value is accepted and
an output value is computed, completes in several phases. In each
phase the signals are transfered from molecular types in one cate-
gory to the next.
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Figure 1. (a) A two-delay-element chain. (b) The chain labeled
with molecular types; signals are represented by quantities of each
type. (d) ODE simulation of the chemical kinetics.

All signals are assigned to one of the three categories: red, green,
and blue. All operations transfer molecules in one of the three
phases: red to green, green to blue, and blue to red.

We apply following technique to order the transfers of delay el-
ements. Firstly, we use B0 to represent X and R3 to represent Y .
Then, all molecular types are color coded into three categories: R1,
R2, and R3 are red; G1 and G2 are green; B0, B1, and B2 are blue.
Each transfer is now one of the three: red-to-green, green-to-blue,
or blue-to-red. To control the order in which reactions fire, we en-
able reactions that transfer between two categories of molecules in
absence of the third category.

Consider following reactions

∅ kslow−→ r

∅ kslow−→ g

∅ kslow−→ b

Ri + r
kfast−→ Ri,

Gi + g
kfast−→ Gi,

Bi + b
kfast−→ Bi,

(1)

The first three reactions have zero-order kinetics, generating molec-
ular types r, g, and b constantly, at a slow rate. The other reactions
quickly consume these types: red molecules quickly consume r;
green molecules quickly consume g; and blue molecules quickly
consume b. Molecules of r, g, and b can accumulate only when
molecules in corresponding color categories are absent. Accord-
ingly, we call these “absence indicators.”

Consider the following reactions

2Gi

kslow−⇀↽−
kfast

IG,i

IG,i + Rj
kfast−→ 2Gi + Gj ,

2Bi

kslow−⇀↽−
kfast

IB,i

(2)

IB,i + Gj
kfast−→ 2Bi + Bj ,

2Ri

kslow−⇀↽−
kfast

IR,i

IR,i + Bj
kfast−→ 2Ri + Rj ,

(3)

These reactions provide positive feedback, accelerating transfers
once they begin. Consider the reactions:
Red-to-green Phase reactions:

b + Ri
kslow−→ Gi

2Gj

kslow−⇀↽−
kfast

IG,j

IG,j + Ri
kfast−→ 2Gj + Gi

(4)

where j = 1, 2, · · · , n.
Green-to-blue Phase reactions:

r + Gi
kslow−→ Bi

2Bj

kslow−⇀↽−
kfast

IB,j

IB,j + Gi
kfast−→ 2Bj + Bi

(5)

where j = 0, 1, · · · , n.
Blue-to-red Phase reactions:

g + Bi
kslow−→ Ri+1

2Rj

kslow−⇀↽−
kfast

IR,j

IR,j + Bi
kfast−→ 2Rj + Ri+1

(6)

where j = 1, 2, · · · , n + 1.
The absence indicators r, g and b only persist in the absence

of the corresponding color-coded signal molecules, since they are
quickly consumed by the signal molecules if these are present. This
feature assures that as long as any reaction in a given phase has not
fired to completion, the succeeding phase cannot begin. There are
only these three absence indicators r, g and b, regardless of the
number of delay elements. Through these common absence indi-
cators, the corresponding phases of all delay elements are ordered:
all the delay elements must wait for each to complete its current
phase before they can all move to the next phase.

The result is a very crisp transfer of signal values across delay
elements. Figure 1(c) shows an ODE simulation of the reactions
(1) − (6) for two delay elements (for unitless time). It shows the
expected alternation of the phases of the transfer, from X to Y
through red, green and blue. Here kfast = 1000 and kslow = 1.
These results hold for a wide range of rates; the transfer character-
istics are independent of the specific rates.

As discussed in [2], we can use delay elements together with
computational constructs to implement general circuit functions.
We are exploring the mechanism of DNA strand-displacement as
an experimental chassis.
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ABSTRACT
With the growing complexity of synthetic biological circuits,
robust and systematic methods are needed for design and
test. Leveraging lessons learned from the semiconductor and
design automation industries, synthetic biologists are start-
ing to adopt computer-aided design and verification software
with some success. However, due to the great challenges
associated with designing synthetic biological circuits, this
nascent approach has to address many problems not present
in electronic circuits. In this session, three leading synthetic
biologists will share how they have developed software tools
to help design and verify their synthetic circuits, the unique
challenges they face, and their insights into the next gener-
ation of tools for synthetic biology.

Categories and Subject Descriptors
J.3 [LIFE AND MEDICAL SCIENCES]

General Terms
synthetic biology, systems biology, computational biology,
biological circuits

Keywords
bio-design automation, genetic compiler, chemical reaction
networks, molecular computation, biological parts

1. INTRODUCTION
Electronic circuit design is the process of selecting com-

ponents from a group of well understood electronic compo-
nents (e.g. transistors, omp amps, diodes, etc) and com-
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DAC 2011, June 5-10, 2011, San Diego, California, USA.
Copyright 2011 ACM ACM 978-1-4503-0636-2/11/06 ...$10.00.

bining these components together to implement the desired
functionality. This design process currently benefits from
having well-understood, characterized components. In addi-
tion, there are rules for the composition of circuit primitives,
mature manufacturing processes, and computer software to
help with this process.

By contrast, biological circuit design is in its infancy. While
it is temping to broadly apply techniques and analogies from
electronic circuit design, it is important to respect key differ-
ences between the two disciplines. Chief among these are the
need for truly orthogonal signaling mechanisms, metabolic
requirements of host organisms, and the lack of control and/or
observability in the systems being designed. Biological cir-
cuit design will ideally integrate algorithms and techniques
which help to address these issues while leveraging biologi-
cal systems’ ability to adapt, evolve, and be self maintain-
ing/repairing. In addition, biological circuit design method-
ologies must also leverage biophysical modeling tools to cre-
ate predictive design software to tune designs for specific
performance in the face of varied, often loosely character-
ized primitives.

This special session begins to discuss these challenges and
lay the foundation for designing biological circuits in a more
disciplined manner. The first talk is about biological part
characteristics and how to use these parts to create con-
trollers for gene expression engineering. The second talk is
about creating genetic compilers that incorporate biophys-
ical models and promise to raise the level of abstraction at
which biological systems are designed. Finally, the third
talk is about techniques to create chemical reaction networks
in order to provide a new computational paradigm in this
space.
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2. SPEAKER SUMMARIES

Scalable Parts Families, Context, and
Computational Design for Gene Expression

Engineering
Adam Arkin (Speaker)

Univ. of California, Berkeley

Our current ability to engineer biological circuits is hindered
by design cycles that are costly in terms of time and money.
Constructs invariably fail to operate as desired, or evolv-
ing away from the desired function once deployed. Syn-
thetic biologists seek to understand biological design prin-
ciples and use them to create technologies that increase
the efficiency of the genetic engineering design cycle. Cen-
tral to the approach is the creation of biological parts—
encapsulated functions that can be composited together to
create new pathways with predictable behaviors. We have
defined five desirable characteristics of biological parts—
independence, reliability, tunability, orthogonality and com-
posability. We propose that the creation of appropriate sets
of families of parts with these properties is a prerequisite for
efficient, predictable engineering of new function in cells and
will enable a large increase in the sophistication of genetic
engineering applications.

We demonstrate these concepts with examples of gene ex-
pression controllers that exercise these properties and point
to how the engineering goals of synthetic biology can be
met. Using the 5’ UTR as an controlling switchboard for
gene regulation we show how a specially chosen set of fam-
ilies of RNA-based parts can create a nearly complete set
of controllers for gene expression engineering. We further
show how they composite together and are affected by the
cellular context in which they find themselves. The latter
measures point to host systems that might be engineered to
increase the independence of our engineered systems from
host physiology.

While there are many applications for these in basic metabolic
engineering and production host optimization, we further ar-
gue that the true power of such a framework is only realized
when engineering the complex behaviors of cells, such as re-
quired for operation beyond the bioreactor for applications,
for example, in agriculture, cell/virus-based therapies, and
bioremediation. We discuss a few of our results in this area.

Gene and Cellular Circuit Design
Chris Voigt (Speaker)

Univ. of California, San Francisco

A genetic compiler for synthetic biology would enable biolog-
ical systems to be specified in a high-level language (akin to
Java or Verilog), which is then automatically converted into
a DNA sequence. I will describe several advances in our lab
towards this goal. First, genetic circuits need to be designed
specifically for assembly by computational algorithms. They
need to be simple, modular, and easily rewired. To this end,
we have developed several logic gates that can be layered.
I will describe work to use DNA synthesis to rapidly create
many orthogonal variants of these gates. Second, methods
need to be developed to computationally predict sequences
that will properly connect these gates. We have developed
biophysical models that predict the strength of genetic parts
to aid this process. Finally, relevant methods need to be de-
veloped to convert a desired higher-level language into inte-

grated gates. Together, these approaches move towards the
dream of being able to program living cells.

Compiling and Verifying DNA-Based Chemical
Reaction Network Implementations

Seung Woo Shin
Erik Winfree (Speaker)

California Institute of Technology

One goal of molecular programming and synthetic biology is
to build chemical circuits that can control chemical processes
at the molecular level. Remarkably, it has been shown that
synthesized DNA molecules can be used to construct com-
plex chemical circuits that operate without any enzyme or
cellular component. However, designing DNA molecules at
the individual nucleotide base level is often difficult and la-
borious, and thus formal chemical reaction networks (CRNs)
have been proposed as a higher-level programming language.
So far, several general-purpose constructions have been de-
scribed for designing synthetic DNA molecules that simulate
the behavior of arbitrary CRNs, and many more are being
actively investigated.

Here, we solve two problems related to this topic. First, we
present a general-purpose CRN-to-DNA compiler that can
apply user-defined compilation schemes for translating for-
mal CRNs to domain-level specifications for DNA molecules.
In doing so, we develop a language in which such schemes
can be concisely and precisely described. This compiler can
greatly reduce the amount of tedious manual labor faced
by researchers working in the field. Second, we present a
general method for the formal verification of the correctness
of such compilation. We first show that this problem re-
duces to testing a notion of behavioral equivalence between
two CRNs, and then we construct a mathematical formalism
in which that notion can be precisely defined. Finally, we
provide algorithms for testing that notion. This verification
process can be thought of as an equivalent of model checking
in molecular computation, and we hope that the generality
of our verification techniques will eventually allow us to ap-
ply them not only to DNA-based CRN implementations but
to a wider class of molecular programs.
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ABSTRACT 

The Synthetic Biology Open Language (SBOL) offers the ability 

to represent information describing synthetic DNA construct 

designs. Here we describe the evolution of SBOL, an open 

community project, to define a standard for electronic data 

exchange of synthetic biology information. We define a data 

model, its representation as SBOL-semantic, and SBOL-visual, a 

controlled vocabulary with corresponding symbols for the terms 

in the vocabulary. To reduce the cost of adoption we provide 

libSBOLj a Java implementation of SBOL. We report on the 

progress made in the development to provide data exchange 

capabilities for biological design and management tools.   

1. INTRODUCTION 
Current biological design research is limited by the availability of 

high quality descriptions of biological components. This dearth of 

biological engineering information is both a consequence of the 

early stages of research which aims to define the structural and 

functional characteristics needed and the inability of software 

tools to access information that does exist. Researchers in 

synthetic biology design, manage, and analyze their synthetic 

biological systems using software. But, these tools do not make 

efficient use of previously created DNA components.  

Participants of the iGEM competition have generated a large 

collection of DNA components (partsregistry.org) amenable to 

standard BioBrick™ assembly techniques. The Parts Registry 

now provides XML-based downloads of the information; 

however, these components are scarcely characterized 

functionally. Furthermore, with every synthetic biology 

publication new DNA components are described, but the 

information required to use them in a new design is currently 

present as computationally inaccessible text, if at all [12]. More 

recently, the BIOFAB began to perform consistent, large scale, 

quantitative characterization of the behavior of professionally 

produced DNA components (biofab.org). To enable rational 

engineering of biological systems, such information is critical. 

Specifically, to improve automated design capabilities both 

quantitative mathematical models [10] and DNA sequence 

description is necessary. But for software design tools to interpret 

component descriptions from across sources, there is a need for 

their standardized representation.  

Here we present the work of the Synthetic Biology Data Exchange 

group to define the Synthetic Biology Open Language  (SBOL). 

This framework provides the capability to represent and 

exchange the descriptions of synthetic biological components and 

systems. 

2. STANDARD FOR DATA EXCHANGE 
The most recent evolution of SBOL as a community standard [8] 

builds on prior work to define PoBoL [5], incorporates lessons 

learned from the development of the SBPkb [6], and conforms to 

the specification developed at the January 2011 workshop at the 

Virginia Bioinformatics Institute. Using this participatory design 

process we established the criteria for the SBOL core data model.  

2.1 Data Model 
The updated elements and structure of the SBOL data model 

define information to describe DNA sequences intended for 

engineering novel synthetic biological systems. The model, see 

Figure 1, is organized around the DNA Component, which 

describes a DNA sequence intended to be used as an engineering 

element. The DNA Component object may have Sequence 

Annotations which describe the positions and orientations of the 

Sequence Features. A Sequence Feature describes the primary 

annotation of a sequence and its type, as defined by the Sequence 

Ontology [4]. The Library object serves as an organizational 

container and describes the collection of DNA Components and 

Sequence Features as a set. (For the complete model, please visit 

sbolstandard.org). 

 

Figure 1. Schema of SBOL core model classes specifies the 

composition of information objects for data exchange.  

2.2 SBOL-semantic 
We express the data model for exchange using RDF, the W3C 

recommendation for representing information on the Web. This 

standard encoding allows the use of generic RDF tools to read, 

manipulate, and interpret SBOL data. For example, RDF provides 

the ability to use the standard query language SPARQL to retrieve 

DNA components from a repository of SBOL data as 

demonstrated using the SBPkb [6]. 

2.3 SBOL-visual 
We are also developing a controlled vocabulary for describing 

DNA sequence-level features of a synthetic biology design. All 

the terms in the vocabulary have corresponding graphical symbols 

that enable unambiguous visual communication of a design.  This 

combination of a controlled vocabulary and corresponding 

symbols for the terms in the vocabulary is called SBOL-visual 
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[13].  Please visit sbolstandard.org for a complete listing of the 

vocabulary and symbols. SBOL-visual is already in use in the 

graphical user interfaces of CAD tools such as TinkerCell [2], 

GenoCAD [1], and SynBioSS [14]. 

 

Figure 2. SBOL-visual symbols representing a constitutive 

promoter, ribosome binding site (RBS), coding sequence 

(CDS), and transcriptional terminator. 

2.4 libSBOLj - Implementation 
To simplify the adoption of SBOL for CAD developers, we 

developed a Java library, libSBOLj. The SBOL data model is 

implemented as Java objects managed by the Empire 

implementation of Java Persistence API for RDF [7]. Our library 

allows simple serialization and de-serialization of data to and 

from RDF/XML. We also provide the utility to express the object 

model as a JavaScript Object Notation (JSON), a popular data-

interchange format. We plan to develop support for other 

programing languages in the future as part of our ongoing 

implementation work. The libSBOLj source code is available on 

GitHub (http://mgaldzic.github.com/libSBOLj). 

3. CONCLUSIONS 
Our main goal is to promote reuse of DNA components from 

which new and progressively complex systems can be built. To 

enable synthetic biologists to reap the benefits of design at higher-

levels of abstraction, the Synthetic Biology Data Exchange group 

is committed to adopting and promoting SBOL as a standard 

representation both electronically and visually. We are currently 

working to embed SBOL capabilities into biological design and 

management tools, such as BIOFAB Data Access Client and Web 

Service, GD-ICE [9], Clotho [3], TinkerCell [2], iBioSim [11], 

and GenoCAD [1]. These SBOL-compliant tools should help 

engineers to reuse DNA components in new designs and apply 

them to solve novel problems. 
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ABSTRACT
Synthetic biology aspires to revolutionize the way we con-
struct biological circuits, as it promises fast time-to-market
synthetic systems through part standardization, model ab-
straction, design and process automation. However, the au-
tomated design of synthetic circuits remains an unsolved
problem, despite the increasing number of practitioners in
the field. One reason behind that, is the absence of an ef-
ficient mathematical formulation for the combinatorial op-
timization problem of selecting genes and promoters when
synthesizing the candidate circuits. Here, we propose an
optimization framework that is based on a linear relaxation
of the non-linear optimization problem, which proves to be
a good approximation of the non-linear dynamics present
in biological systems. Further evaluation of the proposed
framework in a real non-linear synthetic circuit (a toggle
switch), and with the use of a mutant promoter library, re-
sulted in a rapid and reproducible convergence to a synthetic
circuit that exhibits the desired characteristics and temporal
expression profiles. This work is a step towards a unifying,
realistic framework for the automated construction of biolog-
ical circuits with desired temporal profiles and user-defined
constraints.

1. INTRODUCTION
When it comes to automated biological circuit design, CAD
tools are still in their infancy despite notable developments
in the field. In this context, the use of mathematical opti-
mization has been very limited [2] and with mixed results,
while the main challenge still remains: how can we develop
algorithms that cope with the combinatorial explosion and
complex models that describe biological behavior? Here, we
introduce a novel optimization formulation for synthetic cir-
cuit design that finds the optimal part configuration, given
a library of biological parts, an objective function (e.g. the
desired temporal profile of the output protein), user-defined
constraints (e.g. circuit size), and an existing topology that
provides connectivity (e.g. gene A must positively regulate

gene B) but not individual parts (e.g. gene A, gene B, regu-
lation strength).The optimization method translates the cir-
cuit design problem into a nonlinear integer programming
formulation that it solves using spatial branch and bound
techniques.

2. METHODS
Linear formulation: For the current analysis, assume a
database of parts that has m promoters and n proteins. We
introduce the following equation to express the concentra-
tion of protein i as a function of the available promoters and
proteins:

dfi
dt

=

n∑
j=1
j 6=i

m∑
k=1

ajkyikfj − (di + µ)fi + bi (1)

where the parameter ajk is proportional to the production
rate of protein i if protein j is bound at the promoter k
upstream of gene i. Parameter di captures both the degra-
dation and auto-regulation of protein i. The yik are binary
variables defined as:

yik =


1 If promoter k is upstream

of protein i

0 Otherwise

Furthermore, we can add inducers in the system, by adding
the term −Kinducerfi into equation 1. The solution of the
linear ODE system is given by

Ḟ = AF +B (2)

where the elements of the A matrix are defined as

Aij =

{ ∑m
k=1 ajkyik If i 6= j

−di − µ If i = j
(3)

and with F and B given as

F = (f1(t), f2(t), ..., fn(t))T , B = (b1, b2, ..., bn)T

Assuming that A is diagonalizable, there exists a matrix
S = (sij), and a diagonal matrix D with its diagonal el-
ements the eigenvalues of the system, i.e. (λ1, λ2, ..., λn).

Then S−1AS = D and thus S−1Ḟ = DS−1F + S−1B.
Substituting G = S−1F and E = S−1B, we end up with
Ġ = DG+ E, which has the following solution:

gi(t) = Cie
λit − Ei

λi
(4)
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As expected, the solution of a linear ODE system is non-
linear, and thus can describe dynamics of basic biological
functions, since the latter are usually expressed with expo-
nential functions. Mapping back to F , and since F = SG
we end up with the solution :

fi(t) =

n∑
j=1

sijgj(t) (5)

Objective function: Our optimization framework will try
to obtain the parts set that minimize the difference between
the desired temporal profile and the actual one. As such,
if fp(t) and f∗p (t) are the estimated concentration and the
desired concentration of protein p at the time point t, re-
spectively, then our objective function is the following:

Z =
∑
t∈T

(fp(t)− f∗p (t))2 (6)

Linear constraints: The user may add additional con-
straints to the optimization system. For example, if a spe-
cific gene i should be included (or conversely, should be ab-
sent) in the design, then we can introduce a binary variable
xi, that will denote the presence or absence of gene i in the
final circuit. In addition, the user may restrict the number
of promoters for any given gene, limit the number of genes
per promoter, or disallow large polycistronic promoters in
the circuit:

m∑
k=1

yik ≤M1xi ∀i = 1...n (7)

n∑
i=1

yik ≤M2 ∀k = 1...m (8)

m∑
k=1

yik ≥ xi ∀i = 1...n (9)

Constraints are also in place due to stability issues of the
resulting circuit. In order for the system to have stable dy-
namics, all eigenvalues must be distinct and their real parts
must be negative. This leads to the following constraint:

Re(λi) ≤ −ε and ||λi − λj || ≥ ε ∀i 6= j = 1...n (10)

Finally, after the addition of standard diagonalization equa-
tions, normalization of eigenvalue vector space, and the ad-
dition of boundary conditions as constraints on the initial
concentration of each protein i, the concentration of the de-
sired protein is given by:

n∑
j=1

(Cje
λjt − Ej/λj) = fp(t) (11)

Optimization problem : Now that we have defined all
constraints in our system, we can formulate the optimization
problem as solving for variables xi and yik so that

Minimize Z subject to (4), (6)− (11)

This is a mixed integer non-linear programming (MINLP)
problem which can be efficiently solved in practice using
spatial branch & bound (e.g. Couenne [1]).
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Figure 1: Expression profile of the resulting syn-
thetic circuit, with promoters T7 (in upstream of
LacI) and L3 (in upstream of TetR). The desired
profile (input, depicted with blue dots) and actual
profile (cyan line) for the TetR protein is shown.
The temporal profile was split into four phases,
based on changes in the inducer concentrations.
Phase 1: IPTG high, aTc low; Phase 2: IPTG low,
aTc low; Phase 3: IPTG low, aTc higt; Phase 4:
IPTG low, aTc low.

3. RESULTS
To evaluate the capacity of our optimization framework, we
assessed its performance in the case of a toggle switch design
[4]. As an input to our optimization framework, we collected
a mutant library for the TetO and LacO promoter that was
experimentally characterized recently [3]. The values of ajk
are estimated from data in this library and other parame-
ters such as degradation rates and association constants are
chosen from [2]. As shown in figure 1, the system was able
to find a set of parts (promoters T7 and L3, upstream of
LacI and TetR, respectively) that led to a synthetic circuit
that approximates well the desired transient dynamics.We
further simulated these solutions, which resulted to circuits
that also exhibit flip-flop characteristics at various degrees.
From the complete solution space, less than 2% (7 sets) had
this property.
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ABSTRACT
The number of independent input pins used to control the
electrodes in digital microfuidic biochips is an important
cost-driver in the emerging marketplace, especially for medi-
cal purpose where chips here tend to be disposable for cross-
contamination avoidance. A promising pin-count reduction
technique, broadcast addressing, reduces the pin count by
assigning a single control pin to multiple electrodes with
mutually-compatible control signals. Prior works utilize this
addressing scheme by minimally grouping electrode sets with
non-conflict signal merging. However, merging control sig-
nals also introduces redundant actuations, which potentially
cause a high power-consumption problem. Recent studies on
PDMFBs have indicated that high power consumption not
only decreases the product lifetime but also degrades the
system reliability. Unfortunately, this power-aware design
concern is still not readily available among current design
automations of PDMFBs. To cope with these issues, we pro-
pose in this paper the first power-aware broadcast address-
ing for PDMFBs. Our algorithm simultaneously takes pin-
count reduction and power-consumption minimization into
consideration, thereby achieving higher integration and bet-
ter design performance. Experimental results demonstrate
the effectiveness of our algorithm.

1. INTRODUCTION
As the microfluidic technology advances, digital microflu-

idic biochips (DMFBs) have attracted much attention re-
cently. These miniaturized and automated DMFBs provide
various advantages including high portability, high through-
put, high sensitivity, high immunity to human intervention,
and low sample volume consumption. Due to these advan-
tages, more and more practical applications such as infant
health care, point-of-care disease diagnostics, environmental

∗This work was partially supported by the National Science
Council of Taiwan ROC under Grant No. NSC 99-2220-E-006-005
and 99-2221-E-006-220. We would like this abstract considered
for oral presentation.
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toxin monitoring, and drug discovery have been successfully
realized on DMFBs [2, 4, 6].

Electrodes

Droplets

Optical detector

Dispensing port

Figure 1: Schematic view of a digital microfluidic biochip.

Typically, a DMFB consists of a two dimensional (2D)
electrode array, optical detector, and dispensing port, as
schematically shown in Figure 1 [4]. In performing fluidic-
handling functions, droplet-based operations are introduced
on DMFB platforms. By generating electrohydrodynamic
forces from electrodes, droplets can be dispensed from dis-
pensing ports, moved around the 2D array for performing
reactions (e.g., mixing or dilution), and then moved toward
the optical detector for detection [5]. The entire operations
are also called reconfigurable operations due to their flexibil-
ity in area and time domain [1].

In realizing fluidic controls, a primary issue is the control
scheme of electrodes. To correctly control the electrodes,
electrode addressing is introduced as a method through which
electrodes are assigned by control pins to identify input sig-
nals. Early DMFB designs relied on direct addressing, where
each electrode is directly and independently assigned by a
dedicated control pin [3], as illustrated in Figure 2(a). This
addressing maximizes the flexibility of electrode controls.
However, for large arrays, the high pin-count demand com-
plicates the electrical connections between the chip and the
external controller, thus rendering this kind of chip unreli-
able and prohibitively expensive to package and manufac-
ture [3, 4, 7].

Recently, pin-constrained DMFBs (PDMFBs) have raised
active discussions to overcome this problem. One of the ma-
jor approaches, broadcast addressing, provides high through-
put for bioassays and reduces the number of control pins by
identifying and connecting them with compatible control sig-
nals. In other words, multiple electrodes are controlled by a
single signal source and are thus actuated simultaneously, as
shown in Figure 2 (b). In this regard, much on-going effort
has been made to group sets of electrodes that can be driven
uniformly without introducing any signal conflict [7].

Although broadcast addressing serves as a promising so-
lution to pin-constrained designs, yet the redundant actua-
tions during signal merging have potentially caused a power-
consumption problem. For example, in Figure 2(a), the
direct-addressing result needs two exact actuations for mov-
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ing the two droplets in this time step. In Figure 2(b), after
applying the broadcast addressing, the pin count is greatly
reduced from 20 to 7. Nevertheless, the addressing result
needs two exact actuations, plus two redundant actuations,
for moving the two droplets. As electrodes are controlled
in a series of time steps, if control pins are not carefully as-
signed to electrodes, the addressing result will introduce a
great number of redundant actuations. Hence, executing a
bioassay may incur a high power-consumption problem [8].
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Control pins Redundant actuations

(a) Pin count: 20 (b) Pin count: 7

Figure 2: Moving two droplets in a specific time step. (a)

A direct-addressing result uses two pins (pin 10 and pin 19)

to generate two exact actuations. (b) A broadcast-addressing

result uses one pin (pin 1) to generate two exact actuations,

plus two redundant actuations.

As reported in recent studies, the power-consumption prob-
lem is especially critical for battery-driven applications, such
as hand-held devices for point-of-care diagnosis and battery-
operated sensors for environmental monitoring [2, 8]. Since
these applications often require longer execution time, it is
desirable to minimize the power consumption for longer bat-
tery lifetime. Besides, high power consumption reveals a
fact of excessive actuations, which accelerates the dielectric
breakdown of some electrodes. Such defects may result in
unexpected executions and thus degrade the system reliabil-
ity [1, 4].

Unfortunately, current broadcast addressing for PDMFBs
neglects the induced number of redundant actuations dur-
ing signal merging and pin sharing, which causes a signifi-
cant power-consumption problem. As reported in [7], even
the simplest broadcast addressing with pin-count minimiza-
tion has been presented as NP-hard. And thus the design
convergence imposed by simultaneously minimizing the pin
count and power consumption has become the most difficult
challenge. Due to the distinct nature from traditional VLSI
technology, a specialized tool must be developed to solve
this problem efficiently and effectively such that PDMFBs
can be more feasible for practical applications.

1.1 Our Contributions
In this paper, we propose the first power-aware broad-

cast addressing for PDMFBs. By considering both pin-
constrained and power-aware design issues, our algorithm
can simultaneously minimize the pin count and power con-
sumption to achieve high design performance. The contri-
butions of this paper are summarized as follows.

• We introduce a new problem formulation of power op-
timization for broadcast-addressing PDMFBs. We also
propose the first addressing algorithm to minimize the
power consumption while considering the pin-count re-
duction. Our addressing technique comprehensively
take power and pin-count saving issues into considera-
tion to reduce the power-consumption and pin count.

• Unlike typical broadcast addressing which only deals
with the compatibility for identical signals, our work

can handle the integration between identical and com-
plementary signals simultaneously. In this regard, fur-
ther pin-count reduction can be achieved.

• We propose a progressive addressing algorithm based
on a minimum-cost maximum-flow network to efficiently
solve the entire power-aware addressing problem.

Experimental results demonstrate the effectiveness of our
addressing algorithm. The evaluation performed on a set
of real-life chip applications shows that our addressing al-
gorithm achieves the best results in terms of pin count and
power consumption.

2. ALGORITHM OVERVIEW

An electrode set for fluidic controls

Identify a maximum electrode group

with mutual-incompatible signals

Construct the MCMF network

Solve the MCMF network to

minimize pin count and power consumption

Power-aware addressing

Power-aware addressing result for PDMFB
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Design ouput

All electrodes are addressed?
No

Yes

Begin of subproblem
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Figure 3: Overview of our algorithm.

Figure 3 shows the overview of our progressive network-
flow based power-aware electrode-addressing algorithm. The
essential intuition behind our algorithm is to reduce the de-
sign complexity by dividing the original problem into a set
of manageable subproblems. In each subproblem, we iden-
tify a maximum electrode group with mutual-incompatible
signals to facilitate the flow formulation. Then, pin-count
and power-consumption minimizations are formulated to a
minimum-cost maximum-flow (MCMF) network. By solving
the flow network, we can optimally minimize the pin count
and power consumption. Finally, iterations of subproblems
end until all electrodes are addressed.
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ABSTRACT 

In this paper, we describe a module that generates DNA compilers 

based on grammars, attributed or not, which are stored in a 

database. Software applications using a language-based approach 

can now be customized by their users. 

Categories and Subject Descriptors 

J.3.1 [LIFE AND MEDICAL SCIENCES]: Biology and genetics 

– Biology and genetics, Specification Techniques, Design 

Management.  

General Terms 

Algorithms, Design, Standardization, Languages, Theory, 

Verification. 

Keywords 

Code generation, compiler, attribute grammar, context-free 

grammar, compilation on-the-fly, synthetic biology 

1. INTRODUCTION 
DNA is often compared to language [5]. As a result, methods 

from computational linguistics have been proposed to approach 

the design of synthetic biological constructs. For instance, a 

language describing synthetic biology principles can be used to 

guide scientists through the design of a construct [1]. In the 

meantime, the construct’s kinetic equations can be produced by 

the means of attribute grammars [2], allowing the scientists to 

simulate a design prior to any wet lab realization. However, such 

technology should be able to adapt to its users.  

Indeed, synthetic biologists are likely to work with their own parts 

and parts’ attributes, such as transcription rates, which are not 

fixed values for the entire community. Hence, both the words of 

the language and their semantic attributes change depending on 

the user. For even more flexibility, the users can be allowed to 

define their own grammars to explore a particular design space of 

interest. Consequently, the resulting analytic tool, the DNA 

compiler, should adapt to the user’s defined language. 

2. ARCHITECTURE OF THE COMPILER 

GENERATION MODULE  

2.1 Components of the module 
Figure 1 shows the components of the module as well as the 

workflow. The first step is to build the Prolog file for the 

compiler. The parts library ID and the grammar ID must be passed 

for the function to adequately query the database. A second 

function ‘call compiler’ is responsible for using the compiler.  It 

needs the DNA sequence or the design to analyze and call Prolog 

with the just built compiler file to return the analysis results. The 

code to build a compiler relies on a few steps which are 

independent and can be suppressed as needed. This independence 

eases the modification, especially toward the maximum 

automation of the compiler construction, and will give more 

flexibility to the users, letting them perform only desired tasks 

(only lexical analysis for example). The modules that make up the 

compiler are sequential. Each of them is processed only if the 

previous module worked. They include: 

‘Write DNA’: To be used if we want display the DNA sequence. 

‘DNA to parts’: Interprets the DNA sequence into parts (lexer). 

‘Write parts’: To be used to display the parts list 

‘Check grammar’: Check the validity of the parts list against the 

grammar (parser). Returns true, and the equations (if attribute 

grammar), or false. 

‘Answer grammar’: If it gets to this point in the program, it means 

a derivation tree could be built: the construct is valid against the 

grammar. 

Grammar

Analyze

Display

Build the 
compiler

Call the 
compiler

Library_id
Grammar_id

Parts

Library_id

Grammar_id

Compiler.pl

Interface modules Compiler generation

Parts list
Grammar validity

Database

Parts

Grammar rules

DNA sequence

PHP

PHP

Prolog

Parts list
Grammar validity

DNA sequence

 
Figure 1 Overview of the compiler generation module 

‘DNA to parts’ and ‘Check grammar’ are the only two modules 

that depend on the rules specifications and are hence to be 

generated from the database content, while the others may be 

hard-coded in the generation function to be fetched directly in the 

compiler file.  

2.2 Storing grammars in databases 
We developed a data model to store context-free grammars and, 

by extension, attribute grammars; Figure 2 shows the UML 

representation. Here, we describe the elements specific to attribute 

grammars. Categories can have attributes. Each part from a 

category has values for its category’s attributes. In case the 

attribute is a list, this will be specified in the category attribute 

declaration and the parts of this category will have several entries 

for each of the elements from the list. The grammar contains 

several rules that may have a semantic action attached, i.e. a piece 
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of Prolog code that will be executed after the rules are applied. 

‘Attribute_to_pass’ is a table that refers to category attributes that 

have to be passed by other categories, as-is, in order to be 

accessible in other rules where their original category did not 

appear: the inherited attributes. In addition, a table 

(‘code_tbgenerated’) stores the Prolog code corresponding to the 

rewriting of the compiler output into the target language. It is 

directly associated with a grammar. 

parts
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 description
 segment
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 grammar_id
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code_tbgenerated

 grammar_id

 code

 type

Figure 2 Data model for storing attribute grammar 

3. COMPILER GENERATION ALORITHM 

3.1 Syntactic compiler 
The DCG syntax in SWI-Prolog is used to write the rules in the 

compiler. However, we need to pre-process the grammar rules 

before writing them.  

First, the orphan rules must be removed. Orphans rules are those 

with a non-terminal symbol that only appear on the right side of 

the rules.  

Among the remaining rules, the categories involved in a left 

recursive rule must be stored.  

Finally, we write the subset of remaining rules, using the rewriting 

algorithm if needed, in the compiler file. 

To avoid any Prolog syntax issue, all elements are designated 

using their database id. 

3.2 Semantic compiler 
The process is the same as for attribute grammars with additional 

steps for handling the semantics aspects of the language. The 

compiler code passes the parts attributes as arguments of their 

‘functor’ i.e. category. In order to do the compilation in a single-

pass fashion [3], which is easier for automatic code generation, 

global variables are used for computing the semantics. These 

variables are initiated at the start rule, which is stored in the 

code_init field from the table ‘is_attribute_grammar’. From the 

computed semantics declarations stored in a variable, a fixed 

code, ‘code_tbgenerated’, specifies how to analyze the variables 

at the end of the compilation. For example, a list of function calls 

with their parameters values can be processed during the 

derivation and the fixed code will look at the list and execute the 

functions. Rules’ semantic actions are used to specify what to 

store in the global variables. The different information related to 

the semantics must be stored using a Prolog syntax and will be 

fetched directly; no meta-language appeared to be usable for 

defining rules’ semantic actions.  

There is no solution for rewriting left recursive rules in the case of 

‘general’ attribute grammars in a single-pass [4]: it is not clear 

how the semantics can be preserved. Consequently, we do not 

handle attribute grammars that are left-recursive.  

4. CONCLUSION 
All context-free grammars used in GenoCAD could be 

successfully used as-is to generate a compiler. A function to 

validate a GenoCAD design has been implemented and can be 

accessed from the ‘My designs’ screen. The attribute grammar 

published [2] has been stored in the data model proposed and a 

compiler could be generated. Yet, some constraints over the 

attribute grammars must be specified, such as no left-recursive 

rules. However, using a custom grammar editor will prevent the 

users to defined grammars that cannot be handled.  
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ABSTRACT 

The assembly and downstream transformation of genetic 
constructs has been a fundamental scientific technology for the 
last thirty years. Synthetic biology is an engineering based 
approach to molecular biology as emphasizing the standardized 
assembly of characterized DNA fragments. The standards 
promoted by the BioBricks™ Foundation have enabled novel 
constructs to be developed based upon the expected function of 
these constructs. However scientists need a software environment 
that enables them to curate large collections of parts and 
assemblies, combined with appropriate tools to facilitate quick 
creation of constructs and identification of potential design issues 
in silico.  In this paper, we present the implementation of 
BioBrick™ and GENEART® Assembly tools, coupled with an 
enhanced database to manage and develop such parts collections. 
Integration of these tools and data into the VectorNTI® software 
suite is a step towards implementation of BioCAD™, a computer 
based design approach to facilitate development of complex 
circuit based perturbation of cellular systems. 

 

Categories and Subject Descriptors 
J.3 [Computer Applications]: Life and Medical Sciences – 
biology and genetics 

General Terms 
Algorithms, Design, Experimentation 

Keywords 
Bioinformatics, Synthetic biology, BioBrick, GENEART 
Assembly, Vector NTI, Cloning, Parts, Devices 

1. INTRODUCTION 
The use of constructs has evolved from simple molecular cloning 
experiments to gene reporting [1], switch testing [2] and promoter 
characterization [3]. Assembly of constructs typically involves a 
backbone vector as well as the set of DNA fragments of interest. 
Depending on the DNA sequence and the assembly system in 
place, various combinations of restriction sites can be used for the 
extraction and recovery of the final target fragment [4].  
 
Through the understanding of underlying gene expression 
mechanisms, novel and optimized biological systems can be 
created [5]. Although there are many ways to assemble constructs 
[6], typically biologists have not developed their materials with an 
eye to reuse or elaboration from simple to complex systems. This 
large scale assembly or reuse of constructs in series of 
experiments are often restricted and limited to the capabilities of 
the selected protocol [7]; leaving little room for interoperability or 
extensibility for future experiments. 
 
A set of open cloning standards promoted through the 
BioBricks™ Foundation [8] can be used for the typing of 
constructs and the standardization of assembly protocols. 
Availability of various assembly standards [9] using combinations 
of restriction sites, amongst other criteria, also provides the option 
of selecting an appropriate assembly protocol for a given 
assembly. The resulting construct will have a restriction site scar 
between the 2 fragments which can have functional consequences, 
particularly when combing protein domains [10]. 
 
The GENEART® Assembly System is a homologous 
recombination based cloning system. This experimental design 
tool takes advantage of recombination in vitro or in yeast to join 
pre-existing DNA fragments or chemically synthesized fragments 
into a single recombinant molecule [11]. As the system relies on 
homologous recombination, the adjacent DNA fragments must 
share end-terminal homology [12] as shown in Figure 1 or they 
must be “stitched” together by means of primers [13], known as 
stitching primers. This system is thus reliant upon identification of 
possible issues that would disrupt homologous recombination and 
accurate design of the different types of primers needed in the 
experiment. 
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In conjunction with the BioBrick™ standards, the Repository of 
Biological Parts has developed to track DNA parts that have been 
generated by scientists and participants in the iGEM competition 
over the last several years [14]. The current collection has more 
than 15,000 entries, however many of these entries are poorly 
characterized and the lack of defined, parsable data records 
renders much of this data difficult to discover, use or validate in 
another laboratory. However these parts can be assembled using 
either traditional BioBrick or GENEART® Assembly approaches.   
 
Ideally synthetic biologists would use software that can assist 
them in development of their projects. This would require the 
development of software that could 1. handle collections of parts 
and devices during various stages of development, managing the 
provenance of development of novel parts, characterization of 
existing parts and assembly of parts into more complex devices; 2. 
provide expert tools that could facilitate development of projects 
by automating or semi automating design decisions, and; 3. 
provide a means to identify design issues during in silico 
development. Enabling such a BioCAD™ environment in Vector 
NTI®, a widely used commercial software package, would greatly 
speed both development among existing synthetic biologists as 
well as introducing such practices to the larger population of 
existing molecular biologists.   
 

2. ALGORITHMIC APPROACHES 
The Vector NTI® Suite is a comprehensive desktop 
bioinformatics suite. The software uses a serialized, indexed flat 
file database for sequence record import, storage and retrieval. 
The database was modified from an ASCII format to a binary 
format and the indexing scheme was supplemented with an 
improved key value index. These changes both increased the 
numbers of records that can be stored from 10,000 to ~100,000 as 
well as decreased search and retrieval times by 100%. The 
improved database was used to import the entirety of the Standard 
Repository of Biological parts. These molecules were then 
functionally characterized based upon their BioBrick IDs, 
information encoded in the header lines of the files and sequence 
similarities. Subsets containing functionally characterized parts 
were used in subsequent in silico development projects. 
 
The Vector NTI Molecule Viewer® was modified to identify sets 
of restriction enzymes important to the BioBrick Assembly 
standards. These sets were used to construct custom view and 
search sets for part characterization. This allowed us to quickly 
scan new and existing parts for the presence of these sites and 
helped us identify mutagenesis strategies to remove such sites 
from these affected parts.  
 
Construct assembly using BioBrick™ standards was implemented 
as described in the BioBricks standards (Life Technologies, Inc.). 
To reflect the current Biobrick assembly approach, paired sets of 
molecules are submitted for assembly. Sequential runs using 
progressively assembled parts gives rise to a multi-fragment 
construct representing complex devices. 
 
The implementation of construct assembly using BioBrick™ 
standards allows the final construct to be typed and assembled 
according to these standards. At the same time, the provision of 
chassis options and strand direction of assembly also allows 
various options to be visualized prior to the in vitro assembly of 
the construct. This facilitates rapid design, prototyping and 

debugging of potential design errors as in silico designs are 
developed.  
 
The GENEART® Assembly System is a homologous cloning 
based tool which also supports synthetic biology cloning projects. 
There are 4 modes to the system – seamless cloning, high-ordered 
genetic assembly resulting in construct below 60 kilobases, high-
ordered genetic assembly resulting in construct above 60 
kilobases, and high-ordered stitching assembly. For 3 former 
modes required homologous ends between adjacent fragments and 
allow primers to be designed for use to amplify the original 
fragments. Seamless cloning allows up to 4 DNA fragments plus a 
vector totaling up to 13 kilobases in length while high-ordered 
genetic assembly allows up to 10 DNA fragments plus a vector 
totaling up to 110 kilobases in length. The stitching assembly does 
not require homologous ends between adjacent ends as up to 3 
sets of stitching primers can be designed, implying a maximum of 
5 fragments, including the vector, to be stitched together. The 
resulting clone can be displayed in a circular or linear form. 
 
Both tools were used to design and subsequently construct 
constructs conforming to the two cloning methodologies. 
BioBrick™ constructs were validated to previously reported 
constructs in the Parts Repository. GENEART® Assembly 
constructs were verified by size, restriction patterns and through 
end and junction sequencing studies. 

3. CONCLUSION 
Experimental design tools have facilitated final results to be 
visualized before in vitro experiments are performed; allowing 
potential issues to be identified and resolved through in silico 
means. At the same time, the results provide baselines against 
which in vitro results can be compared. The implementation of a 
construct assembly algorithm utilizing open standards prescribed 
by the BioBricks™ Foundation has not only enabled the 
visualization and inspection of the final construct, but allowed 
various hypotheses and scenarios to be carried out without 
significant costs. The GENEART® Assembly tool permits the 
construction of 100 bp to 120,000 bp constructs without the use of 
restriction enzymes.  The improvement of the Vector NTI 
database permits the improved use and reuse of parts and 
constructs during design. This integrated system is an initial step 
to providing robust, scalable and easy to use access to Synthetic 
Biology tools. 
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ABSTRACT
We present a convex optimization approach to reconstruct
gene regulatory networks using microarray data and litera-
ture curated data. Our approach builds on the theory de-
veloped recently in [13] to obtain a model of the network in
terms of linear ordinary differential equations (ODE’s), i.e.,
as ẋ = Ax + Bu where x denotes the vector of gene expres-
sion values ans u denotes exogenous perturbation. However,
whereas the solution proposed in [13] needs the microarray
data as the outcome of a series of controlled experiments
in which the network is perturbed by over expressing one
gene at a time, our approach makes use of the available
steady-state microarray data, as is the case in many real-
world applications. First, we show how the results of [13]
can be easily extended to derive the required stable model
ẋ = Ax + Bu. We then demonstrate how a class of stable
nonlinear ODE models of the given system can be derived
by making use of piecewise quadratic Lyapunov functions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software]: Software Engineering

General Terms
Theory and Simulation Platform

Keywords

Gene regulatory network, modeling, microarray data, liter-
ature curated data, ODE’s

1. EXTENDED ABSTRACT
Computational models are now increasingly used to analyze
and predict the behavior of biochemical reaction networks
(see [8, 6]). Among these networks, gene regulatory net-
works (GRN’s), i.e., networks that capture interactions be-
tween genes and other cell substances such as proteins, are
particularly interesting now since, today, RNA microarray
assays are providing a wealth of gene expression information
at increasingly lower costs. We are interested in understand-
ing how this raw data, together with literature curated data,
can be used to develop computationally efficient and reliable
models of the underlying gene regulatory networks.

This problem has received considerable attention over the
last 10 years. For example, a first order predictive model
of a gene and protein regulatory network has been obtained
in [3] using multiple linear regressions. In [3], it is assumed
that the underlying GRN can be represented well enough by
a system of nonlinear differential equations. Furthermore, it
is assumed that the network is operating close enough to a
steady-state point. Then, it follows that the GRN can be
represented as a linear ODE ẋ = Ax+u where x ∈ Rp is the
vector of gene expression values, ẋ is the time-derivative of
x, u is an exogenous perturbation, and A ∈ Rp×p is the inter-
connection matrix, the elements of which capture the regu-
latory interactions between entities of the GRN. The model-
ing problem thus reduces to that of estimating A. Under the
steady-state assumption, ẋ = 0 so that the assumed model
now reduces to Ax = −u. Now, if we induce N independent
perturbations u and measure the corresponding steady-state
values x of the RNA concentrations, then multiple linear re-
gression can be easily applied to estimate A in the presence
of measurement noise (see [3]). In [3], this approach has been
applied to reconstruct a 9-gene subnetwork of the SOS path-
way in Escherichia coli. In [13], this approach has recently
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been compactly recast as a constrained convex optimization
solution. The objective function is taken to be a convex
combination of the network sparsity and the closeness of the
predicted outcome to the test data. The literature curated
data is accounted for as a set of constraints on the intercon-
nection matrix A. To ensure that the solution is a stable
network, an additional stability constraint is stipulated in
[13]. However, [13] needs the microarray data as the out-
come of a series of p = N controlled experiments in which
the network is perturbed by over expressing one gene at a
time whereas in many real-world applications, it is impossi-
ble to create such raw data. We show that this requirement
is actually unnecessary and that the algorithms presented in
[13] can be readily modified to be compatible with available
uncontrolled p < N steady-state microarray data samples.

We next present a convex optimization solution to construct
nonlinear ODE models of GRN’s. Although for computa-
tional and otherwise convenience, many of the current mod-
eling approaches resort to linear ODE models, it is well-
known that the entities in biochemical reaction networks
exhibit nonlinear interactions (see, for example, [1, 2, 9,
11]). To account for these nonlinearities, Hill-cube trans-
formations are recommended in Odefy (see [7]) to transform
a discrete logic model into a nonlinear ODE model. As a
practical measure, this approach could be readily adopted
to obtain the nonlinear ODE model in the following two
steps: (1) use CNO (see [9]) to obtain a Boolean model us-
ing steady-state microarray data, and (2) use Odefy (see [7])
to transform this Boolean model into the desired nonlinear
ODE model. Unfortunately, CNO requires a cue and re-
sponse data and, hence, is not compatible with steady-state
microarray data. Another approach to obtain a nonlinear
ODE model is to use the multivariate adaptive regression
splines (MARS) as follows: (1) obtain a steady-state de-
scription y = f(x), where y is the vector of target variables,
x is the vector of predictor variables, and f is the nonlinear
MARS function (see [4]); (2) model the system as ẏ = f(x)
near the steady-state. However, this approach is not guar-
anteed to yield a stable GRN as its solution. We show that
if the nonlinearity can be well approximated by a piecewise
affine function, then piecewise quadratic Lyapunov functions
(see [5]) can be appropriately used to obtain a stable non-
linear ODE model if it exists. Our solution is based on
the fact that the piecewise affine function splits the state-
space into cells, in each of which the system has a linear
ODE representation. Then, as opposed to stipulating that
xT (AT P + PA)x < 0, as done in [13], it is sufficient to stip-
ulate that

xT (AT
i P + PAi)x < 0 for x ∈ Xi,

where we assume Ai is the linearization of the nonlinear
ODE in the cell Xi of the state-space. Using the S-procedure
(see [5]), the algorithm to compute a stable nonlinear ODE
model, if it exists, is then derived. Our approach to network
reconstruction differs from that of [12] in that [12] needs
a large number of data samples that are in either a cue-
response form or in a time-series form. Our approach to
network reconstruction differs from that of [10] in that [10]
mandates that the data samples should be the outcomes of
independent perturbations to the so-called modules of the
network. We have implemented our algorithms in MAT-

LAB to successfully reconstruct a sparse 35-node network
in which the maximum number of nodes adjacent to a node
is 9. The primary disadvantage of our method is the speed
since the solution to the bilinear matrix inequality of the
form AT P + PA < 0, where A and P are both unknown a
priori, is resource intensive on computation.
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1. INTRODUCTION 
Hierarchical modularity has emerged as an organizational 
principle of biochemical networks, providing insights into 
the coordinated regulation of reactions within and across 
pathways. In principle, the modularity of a biochemical 
network should allow the system to be partitioned into 
minimally interdependent parts, which in turn can facilitate 
detailed analysis of each part in the context of the overall 
system. In practice, modularity analysis has often relied on 
ad hoc decisions to find modules that are consistent with 
textbook biochemistry. While there is general agreement 
that a module should consist of a biologically meaningful 
group of connected components in the network, there is 
little consensus on the metric needed to quantitatively 
evaluate the quality of a partition. The goal of this study is 
to investigate a novel metric that can be used to 
systematically partition a biochemical network into 
functionally relevant groups of reactions. The metric, 
termed the Shortest Retroactive Distance (ShReD), 
characterizes the retroactive connectivity between any two 
reactions in a network arising from potential feedback 
interactions, thereby grouping together network 
components which mutually influence each other. It has 
been shown that feedback in biological systems contributes 
to modularity, which in turn affords robustness by limiting 
the propagation of perturbations (Kitano 2004; Stelling, 
Sauer et al. 2004).  We evaluate ShReD as a partition 
metric on a model of liver metabolism augmented with 
drug transformation reactions and allosteric regulatory 
interactions.  

2. METHODS  
In this study, the focus is on understanding hierarchical 
relationships among reactions while treating metabolites as 
shared resources among modules.   We thus abstract the 
network as a directed graph with nodes representing 
reactions, and edges indicating a coupled relationship 
between two reaction nodes.   The interactions between 
nodes are derived as follows, and illustrated in Figure 1.  
A) For each pair of series reactions, Ri and Rj, a 

directional edge from Ri to Rj is established.  (Figure 

1a, Figure 1b).  A pair of series reactions is defined as 
one where the product of the first reaction is 
consumed by the second one.   

B) For each reaction Ri regulated (through activation or 
inhibition) by a metabolite mj, a directional edge from 
each reaction Rk producing metabolite mj to Ri is 
established. (Figure 1c, Figure 1d). 

If a reaction is reversible, then it is modeled as one node, 
and the interactions are derived as specified in (A) and (B) 
taking into account the reaction’s bidirectionality.  

 

Figure 1: Derivation of reaction-centric network. 

The ShRed of two nodes i and j is defined as the length of 
the shortest cycle that involves both nodes.  A retroactive 
interaction exists between two nodes i and j if there is a 
path from node i to node j and a return path from node j to 
node i. The ShReD of nodes i and j is the sum of the 
shortest path distance from node i to node j and the shortest 
return path distance from node j to node i. Several well-
known and efficient algorithms exist for computing the 
shortest path.  

We adapted Newman’s community detection algorithm 
(Newman 2006) to obtain hierarchical partitions based on 
the ShReD metric. Given a network of connected 
components, Newman’s algorithm divides the network into 
two partitions so as to maximize the “modularity score,” 
which scales with the number of connections within each 
partition relative to the expected number of connections 
between two randomly chosen components in the network. 
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To partition the network based on the ShReD metric, we 
modified Newman’s algorithm as follows. Instead of 
computing the differences between the actual and expected 
number of connections between two nodes i and j, we 
computed the differences between ShReDij and the expected 
ShReD, Pij, between nodes i and j. The expected ShReD, 
Pij, between two nodes is computed as the arithmetic mean 
of the average of all ShReDs involving node i and the 
average of all ShReDs involving node j.  

We can then define a ShReD-based modularity matrix, B, 
as follows: 

Bij = Pij ! SHREDij
   

The objective of our partition algorithm is similar to 
Newman’s.  We wish to find a vector s, which assigns each 
node in the network to one of two subnetworks so as to 
maximize the modularity score, Q, which we re-define as 
follows: 

Q = Bijs jsi
j
!

i
!    

where si is an element of a vector s.  Each si can have a 
value of -1 or 1.  An increase in Q is obtained in two cases: 
if Bij is positive, i.e. the ShReD between two nodes i and j is 
shorter than expected, and the two nodes are assigned to the 
same subnetwork (si = sj = 1 or si = sj = -1), or if Bij is 
negative and the two nodes are assigned to the different 
subnetwork (si = 1 and sj = -1 or vice versa).   The vector s 
that maximizes Q be approximated by the leading 
eigenvectors of B (Pothen, Simon et al. 1990).   

3. RESULTS 
For the metabolic network, which included cofactors, the 
ShReD partition generated hierarchical modules whose 
compositions compared favorably with canonical 
associations based on textbook biochemistry (Figure 2). 
Interestingly, the ShReD partition revealed a ‘redox’ 

module involving reactions of glucose, pyruvate and lipid 
metabolism as well as drug transformation, which interact 
in a cyclical manner through shared production and 
consumption of NADPH.  

4. CONCLUSION 
Our novel metric ShReD, combined with Newman’s 
algorithm, is to our knowledge the first modularity analysis 
technique that partitions a biochemical network to preserve 
cyclical interactions between reactions.  
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Figure 2. ShReD-based hierarchical partition of a hepatocyte metabolic network represented using a pie-in-tree chart. The legend in the 
lower left corner provides a color map representing the classification of reactions based on canonical associations (i.e. in the literature).  
Each pie represents a module, and the color of the pie represents proportional participation of reactions from various canonical associations.   
A single-colored pie indicates that all reactions in the module belong to a single canonical association.  A multi-color indicates that ShReD-
based partitioning found an alternative grouping.  
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ABSTRACT
In this work, we present a novel multi-objective optimization
algorithm that computes Pareto optimal tradeoff surfaces for
identifying genetic manipulations leading to targeted over-
and under- productions. These surfaces provide key infor-
mation of the phase space of the outcome of best genetic de-
sign strategies, i.e., the result of genetic knockouts. Our al-
gorithm performs the simultaneous optimization of multiple
cellular functions (i.e., multiple objectives), while minimiz-
ing the knockout cost ; it also selects those genetic designs
with greater in silico production of desidered metabolites.
Knockouts are modeled in terms of gene sets that can affect
one or more reduced reactions using gene-protein reaction
mapping. We challenge the algorithm on several data test;
here we show results on the latest genome-scale model of
Escherichia Coli K-12 MG1655 [2] iAF1260.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: [Biology and genetics];
G. 1.6 [Optimization]: [Global Optimization]

General Terms
Algorithms, Design

Keywords
Metabolic CAD, Metabolic engineering, Multi-objective Op-
timization, Biological Circuit Design, Escherichia Coli, Ge-
netic Design Strategies

1. METHODS AND DATA
The genome-scale FBA model of E. coli, iAF1260 [2] con-

sists of three parts. From m metabolites and n reactions,
we form an m × n stoichiometric matrix S, whose ij th ele-
ment Sij is the stoichiometric coefficient of metabolite i in
reaction j. The vector of flux values v, whose j th element

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWBDA’11, June 6-7, 2011, San Diego, CA, USA
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

vj is the flux though reaction j, are constrained by a lower
bound vector a and an upper bound vector b. Finally, the
linear objective is formed by multiplying the fluxes by an
objective vector f, whose j th element fj is the weight of re-
action j in the biological objective (Biomass). To allow the
algorithms to function at the genetic level, we used gene-
protein-reaction (GPR) mappings. GPR mappings define
how certain genetic manipulations affect reactions in the
metabolic network. For a set of L genetic manipulations,
the GPR mappings is summarized with an L × n matrix
G, where the lj th element Glj of G is 1 if the lth genetic
manipulation maps onto reaction j and is 0 otherwise [3].
To knockout the genes we declared the knockout vector y,
whose lth element yl is equal to 1 if the gene involved in
manipulation l is knocked out and 0 otherwise.

2. RESULTS
As matter of comparison we report the following: GDLS

algorithm [3], OptFlux algorithm [5] [4] and OptKnock algo-
rithms. [1]. GDLS algorithm [3] performs a single-objective
optimization; it optimizes the synthetic objective function
Acetate, obtaining 15.914 mmolh-1gDW-1 with knockout cost
(kcost) equal to 15. For the second synthetic objective
function, Succinate, GDLS obtains 9.727 mmolh-1gDW-1

with kcost=26. The biomass is constant: 0.050 h-1. Opt-
Flux algorithm [5][4] uses two meta-heuristics which obtain
the following results: OptFlux with Evolutionary Algorithm
reaches Acetate = 15.138 mmolh-1gDW-1 and Succinate =
9.874 mmolh-1gDW-1, while OptFlux with Simulated An-
nealing obtains Acetate = 15.219 mmolh-1gDW-1 and Suc-
cinate = 10.007 mmolh-1gDW-1. The designed algorithm
performs a multi-objective optimization obtaining the fol-
lowing results: Acetate 21.901 mmolh-1gDW-1, Succinate
12.720 mmolh-1gDW-1 and Biomass 0.050 h-1 turning off
a single gene b0918 (kdsB, reaction KDOCT2, reaction cat-
alyzed by Lipopolysaccharide Biosynthesis), that is, kcost=1
(Figure 1 shows the results in anaerobic and aerobic condi-
tions). The algorithm discovers hundreds of non-dominated
solutions with above Acetate and Succinate values but dif-
ferent kcosts; with kcost=1 the algorithm discovered two dis-
tinct genetic design strategies (gene b0918, and gene b3867,
hemN, reaction CPPPGO2, Oxygen Independent copropor-
phyrinogen-III oxidase), with kcost=2 there are 8 genetic de-
sign strategies, with kcost=3 it is possible to use 11 distinct
genetic design strategies and so on. The study of genes and
reactions of E. Coli has involved inferring 16 Pareto trade-
offs in anaerobic conditions: succinate vs. acetate; succinate
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Figure 1: Feasible solutions and the non-dominated
solution of Succinate vs. Acetate under aerobic (10
mmol/h oxygen) and anaerobic condition on a basis
of 10 mmol/h glucose fed, GLF.

vs. biomass; acetate vs. biomass; ethanol vs. biomass; glyc-
erol vs. biomass; 1,2-propanediol vs. biomass; lactate vs.
biomass; formate vs. biomass; CO2 vs. biomass; acetate
vs. ethanol; acetate vs. succinate vs. biomass; glycerol vs.
succinate vs. biomass; glycerol vs. succinate vs. acetate;
glycerol vs. succinate vs. ethanol; glycerol vs. succinate vs.
lactate; glycerol vs. succinate vs. formate. The main pur-
pose is to find the genetic design that maximizes the desired
fluxes (more than one) and biomass, with a lower kcost. We
also performed a four-objective optimization: to maximize
acetate, succinate, biomass and simultaneously to minimize
kcost (Figure 3). Anaerobic conditions were simulated as
zero oxygen and 10 mmolh-1 available glucose; aerobic con-
dition as 5 and 10 mmolh-1 available oxygen and glucose. We
computed: Succinate vs. Biomass and Acetate vs. Biomass
trade-off (Figure 2).
In aerobic conditions (10 mmol/h oxygen), we compared

the designed algorithm against GDLS. For Acetate, GDLS
found 23.1522 mmolh-1gDW-1 with kcost=4. while for Suc-
cinate 9.2704 mmolh-1gDW-1 with kcost=13. The designed
algorithm obtains the following results Acetate=27.0799 m-
molh-1gDW-1, Succinate=15.8250 mmolh-1gDW-1, with
kcost=6 (Figures 1 and 2). We found four combinations of
knockout. As matter of example, we report the following
combination (gene set and corresponding reactions): b2889,
isopentenyl-diphosphate D-isomerase; b3198, 3-deoxy-man-
no-octulosonate-8-phosphatase; ((b0849 and b2762) or(b1064
and b2762) or (b1654 and b2762) or (b2762 and b3610)),
phosphoadenylyl-sulfate reductase (glutaredoxin).

3. CONCLUSIONS
One of the goals of the present research work is to use

the Pareto optimal solutions of E. Coli in order to produce
useful metabolites and effective drugs. The algorithm scales
effectively as the size of the metabolic system and the num-
ber of genetic manipulations increase. We clearly outper-
form the GDLS heuristic [3], OptFlux, [5] [4], OptKnock [1]
and other heuristics, search methods, global and local op-
timization algorithms. Moreover, the results obtained show
that the multi-objective approach is very suitable for the
genetic design strategies (GDS) discovering. To our knowl-
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edge, this is the first study on multi-objective optimization
for the GDS problem and in the characterizing of biological
pathway in terms of Pareto optimal fronts.
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ABSTRACT
Mitochondrial oxidative phosphorylation is the major ATP
synthetic pathway in eukaryotes. In this process, electrons
liberated from reducing substrates (NADH and FADH2) are
delivered to O2 via a chain of respiratory H+ pumps. These
pumps establish a H+ gradient across the inner mitochon-
drial membrane, and the electrochemical energy of this gra-
dient is then used to drive ATP synthesis. In addition to
ATP synthesis, mitochondria are the site of other important
metabolic reactions. Mitochondria also play central roles
in cellular Ca2+ homeostasis which affects numerous other
cell signaling pathways [2]. In this work, we used a multi-
objective optimization algorithm that computes Pareto Op-
timal Tradeoff for maximizing the mitochondrial bioener-
getic in different matrix Ca2+ concentration. It appears
that Ca2+ is a global positive effector of mitochondrial func-
tion, and thus any perturbation in mitochondrial or cytosolic
Ca2+ homeostasis will have profound implications for cell
function, for example, at the level of ATP synthesis and
NADH generation [2].

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: [Biology and genetics];
G. 1.6 [Optimization]: [Global Optimization]

General Terms
Algorithms, Design

Keywords
Metabolic CAD, Metabolic engineering, Multi-objective Op-
timization, Biological Circuit Design

1. METHODS AND DATA
The mitochondrial model is a 73 state system of DAEs,

each of which represents the metabolites involved in bioener-
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getic reactions of mitochondria. The state variables was ini-
tialized to achieve the fully oxidized state [1]. In this work,
we calculated the metabolites concentration that leads to
maximize the matrix ATP and NADH, maintaining con-
stant oxidized cytochrome c, (cytc 3+), reduced cytochrome
c, (cytc2+), ubiquinone, ubiquinol, NADmtx, NADHmtx, G-
TPmtx, GDPmtx (mtx = matrix), the mitochondrial mem-
brane potential (1 mV), the matrix O2 (0.0652 nmol/mg),
the total CO2 (21.4762 nmol/mg) and Ca2+ concentration.
We initialized Ca2+ with 5 different value to evaluate the
behavior of mitochondria. First we used Ca2+=10e-6, then
10e-5, 10e-7, 10e-6×1.5 and 10e-6/1.5 nmol/mg.

2. RESULTS
In initial condition, we obtained NADH = 1.5987e-010

nmol/mg (formation) and ATP = -0.0014 nmol/mg (con-
sumption). After optimization with Ca2+=10e-6 nmol/mg,
we obtained the Pareto Front shown in Figure1 (a) and we
analyzed three non-dominated solutions: the point with ma-
ximum ATP synthesis (and lower NADH formation), the
point with maximum NADH formation (and lower ATP syn-
thesis), and, finally, the tradeoff point. The first solution
provides ATP = 2027.34 nmol/mg and NADH = 6.17e-015
nmol/mg, with over-production of SUCmtx, PYRmtx, CoA-
SHmtx, H+

mtx, ATPims ADPims (ims = intermembrane spa-
ce) and Mg2+

cyt (cyt= cytosolic space), and under-production
of ISOCmtx, aKGmtx, MALmtx, AcCoAmtx, CITims, ISOC-

ims, aKGims, SUCims, MALims and GLUcyt, ASPcyt, see
Figure 2. The second solution provides ATP = -3734.6
nmol/mg (consumption) and NADH = 6.07e-006 nmol/mg,
over-producing the following metabolites: H+

mtx, ISOCmtx,
SUCmtx, FUMmtx, CoASHmtx, ATPims, MALims whereas
CITmtx, SCoAmtx, MALims, ADPims, AMPims, Piims, PYR-

ims, GLUims,cyt and aKGims,cyt are totally consumed, as
shown in Figure 2. The tradeoff point is equal to the first
analyzed point. Increasing the matrix calcium concentration
from 10e-6 to 10e-5 nmol/mg, ATP synthesis and NADH
formation are stopped and both molecules are consumed by
mitochodrial metabolism, Figure 1 (b). This achievement
demonstrates that a perturbation in mitochondrial Ca2+

homeostasis will have profound implications for cell func-
tion at the level of ATP synthesis and NADH generation.
If calcium increases by a little step, 10e-6×1.5 nmol/mg we
obtain an increase in NADH formation, while ATP is invari-
ant. In case of drastically matrix calcium depletion, 10e-7
nmol/mg, there is a lower ATP synthesis, Figure 1 (b), but
with Ca2+= 10e-6/1.5 nmol/mg both objectives are maxi-
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Figure 1: (a) Mitochondrial NADH vs. ATP Pareto
Front with Ca2+=10e-6 nmol/mg. (b) Mitochon-
drial NADH vs. ATP Pareto Fronts with different
Ca2+ concentration. Internal plot in B present dif-
ferent y scale.

3. CONCLUSIONS
Ca2+ in a ubiquitous messenger and participates in many

signaling pathways that are crucial for cell survival. Data
from literature demonstrate that mitochondria are implied
to play a crucial role in neuronal cell survival since they are
regulators of ATP metabolism, Ca2+ homeostasis, NAD+,
NADH, and of endogenous reactive oxygen species produc-
tion. All these metabolites are key protagonists in cellu-
lar mechanisms leading to degenerative process and, con-
sequently, the programmed cell death. Moreover there are
evidences that mitochondrial dysfunction occurs prior to the
onset of symptoms of several neurodegenerative diseases,
such as Parkinson’s disease (PD) [3], Alzehimer disease (AD)
[5] and Amyotrophic Lateral Sclerosis (ALS) [4]. PD and
AD are linked by the same mitochondrial Ca2+ homeosta-
sis dysfunction hypothesis, leading to ATP depletion and
NAD+/NADH ratio imbalance, and promoting cellular mi-
crotubule disruption. Moreover, mitochondrial membrane
potential is lost and calcium homeostasis is deregulated,
this event leads to calpains activation, high levels of mito-
chondrial ROS are oxidative stress. Finally, oxidative stress
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Figure 2: The ratio of the metabolite concentra-
tions optimized by the multi-objective algorithm
compared to the initial concentrations for maximum
ATP synthesis, in red, and maximum NADH forma-
tion, in green. Small plot has focused y-axis in [0,3]
range.

culminate in neurodegeneration [5] [3]. Disrupted calcium
homeostasis and subsequent excitotoxicity are to be interre-
lated mechanisms that collectively contribute to motor neu-
ron degeneration in ASL [4].

By means of the computational quantitative framework
here proposed, we are able to mathematically infer dyna-
mics of mitochondrial bioenergetic metabolism, changing
the specific behavior pathways; in particular, we have to
maximize the ATP, and NADH uptake rates of the mito-
chondria metabolism examining the role of Ca2+. The re-
sults demonstrate that at different levels of mitochondrial
Ca2+ the organelle changes its bioenergetic activity, and this
is bounded by specifics lower and upper matrix Ca2+, be-
yond which NADH and ATP production are knocked out.
In particular, it’s shown that high calcium levels lead to
dysfunction of ATP synthesis and NADH generation.
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ABSTRACT
A method is presented for characterizing quorum-sensing
circuits using a measure of stochastic resonance. The method
is applied to a quorum-mediated trigger circuit, which is de-
signed to synchronize a population of cells in response to a
supplied exogenous signal. The stochastic resonance analy-
sis identifies an optimal basal production rate for reliable op-
eration of the circuit. The production rate can be adjusted
by a number of methods including sequence modifications in
the RBS. By combining these methods, a design optimiza-
tion procedure may be obtained for synthetic quorum-type
circuits.

General Terms
design, theory, reliability

Keywords
stochastic resonance, quorum sensing, genetic circuits

1. INTRODUCTION
Genetic systems are subject to noise within the environment
of the cell, and some circuits rely on stochastic behavior for
proper function. Growth temperature and available nutri-
ents are factors that can affect the basal production rate of
a promoter, which may appear as noise in the output sig-
nals of a logic genetic circuit. In some cases, certain levels
of noise may improve the operation of a genetic circuit. In
this situation, the circuit may be said to exhibit stochastic
resonance.

Stochastic resonance often occurs in bistable systems or cir-
cuits that have a sensory threshold [2]. Genetic circuit con-
structs are nonlinear systems and are frequently designed to

∗The authors would like this abstract to be considered for
both a poster and oral presentation.

operate based on thresholds for some concentration of a sub-
stance. For example, it is currently popular to design genetic
circuits based on Boolean logic, which implies the existence
of thresholds that distinguish the logical states within the
circuit. If a signal’s molecular population is greater than a
specified threshold, then its logical state is “1”. Its logical
state is assumed to be “0” otherwise.

There are currently several alternative definitions for stochas-
tic resonance. In this work, we consider a definition based
on Shannon’s mutual information. Under this approach, we
select two signals to represent the input and output of the
circuit. Let X be the logical state of the input signal (i.e.
X ∈ {0, 1}), and let Y be the logical state of the output
signal. Then the mutual information I (X; Y ) is evaluated
as a function of some parameter η > 0 that indicates the
amount of noise present in the system. The circuit is said
to exhibit stochastic resonance at the value of η for which
I (X; Y ) is maximized.

In this work, we consider the input X as an externally sup-
plied transcription factor, and the output Y is the quorum
signal, HSL, exchanged between cells. The parameter η is
the basal production rate of HSL, i.e. the rate at which
molecules of HSL are randomly produced when the external
signal is absent. The mutual information is found to have
a clear maximum at non-zero value of η. This information
can be used to optimize the circuit’s robustness by altering
the basal production rate of HSL.

2. STOCHASTIC RESONANCE IN QUORUM
TRIGGER

In this work, we characterize stochastic resonance in the
quorum trigger circuit shown in Fig. 1. The quorum trigger
design is based on a genetic Muller C-element circuit de-
scribed by Nguyen et al [4]. This device is called a “quorum
trigger” because it can be used to activate or “trigger” the
coordinated behaviour of a colony of cells based on an ap-
plied environmental signal. The environmental signal (called
Env in Fig. 1) could be any transcription factor able to acti-
vate the production of LuxR via the leftmost promoter. The
LuxR molecules combine with HSL molecules to activate a
feedback loop on the second promoter, which induces pro-
duction of both LuxR and HSL. HSL acts as a cell-to-cell
signal, hence contributing to the quorum activation.
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When the Env signal is absent, molecules of HSL and LuxR
are randomly produced at a low rate, referred to as the basal
production rate of the rightmost promoter. This is a source
of noise in the system, which could give rise to false activa-
tion. If the basal production rate is zero, then the circuit
is never able to be triggered due to a total absence of HSL.
There must consequently be an optimal basal production
rate at which the circuit achieves its most reliable function.

In order to predict the optimal basal production rate, the
circuit’s reliability was characterized using the mutual infor-
mation measure, defined as

I (X; Y ) =
∑
y

∑
x

p (x, y) log

(
p (x, y)

px (x) py (y)

)
.

In practice, the mutual information is computed numerically
using Monte Carlo simulations. For this work, the Monte
Carlo runs were obtained from the Gillespie Stochastic Sim-
ulation Algorithm using the iBioSim tool [3].

Figure 2 shows the plot of the mutual information between
the Env signal and the output signal for basal production
rates varying from 1×10−4 up to 4×10−2. The information
transfer is maximum around 4×10−3 achieving a value close
to 1.

3. DESIGN OPTIMIZATION
The stochastic resonance analysis indicates a procedure for
optimizing the quorum trigger circuit at design time. Based
on the results from Sec. 2, an optimal basal production rate
is identified. The basal production rate can be adjusted
by manipulating base pairs in and around the RBS. Slight
changes in the RBS can alter the expression levels across a
wide range [1]. When the basal rate is altered, the active
production rate is also altered, which may affect the mutual
information curve and shift the optimal rate to a different
value.

Because of this complex interdependence of variables, an it-
erative procedure may be used: (1) Evaluate the design’s
basal production rate for HSL, and evaluate the mutual in-
formation curve. (2) Identify the optimal rate and adjust
the basal rate toward that optimal point. (3) Repeat steps
1 and 2 until improvements are no longer obtained.

While this procedure provides a plausible method for opti-
mizing the robustness of the quorum trigger circuit, it is not
yet ideal. At present, basal production rates are difficult
to predict at design time, and must be determined through
experimental measurement. Each iteration of the design op-
timization must therefore be executed experimentally. It
is also difficult to predict the precise amount by which the
basal rate is adjusted when the RBS is modified, which may
interfere with convergence of the iterative procedure.

4. CONCLUSIONS
We presented a formal method to characterize the stochastic
resonance of a genetic circuit used for quorum sensing. This
method could be integrated in the design automation of ge-
netic circuits to produce more robust devices. However, for
this method to be useful a prediction or actual measure of

the basal production rate of the promoter is needed as well
as its range of variations.
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Figure 1: Quorum trigger genetic circuit design.

10
−4

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stochastic Resonance Quorum Trigger

Basal Production Rate

M
u

tu
a

l 
In

fo
rm

a
ti
o

n

Figure 2: Stochastic resonance observed in the quorum trig-
ger circuit.

68



Applying Hardware Description Languages
to Genetic Circuit Design

Roza Ghamari1, Brynne Stanton2, Traci Haddock1, Swapnil Bhatia1,
Kevin Clancy3, Todd Peterson3, Christopher A. Voigt2, Douglas Densmore1,

1Department of Electrical and Computer Engineering, Boston University, Boston, MA
2Department of Pharmaceutical Chemistry, University of California, San Francisco, CA

3Life Technologies, Carlsbad, CA
{rozagh, thaddock, swapnilb, dougd}@bu.edu,

bcstanton@gmail.com, cavoigt@picasso.ucsf.edu,
{kevin.clancy, todd.peterson}@lifetech.com

1. INTRODUCTION
In electronic circuit design, a specific class of circuits are

classified as “digital logic.” These circuits abstract voltages
as either “1” (present) or “0” (absent). These 0-1 circuits
may be viewed as a network of switches. The behavior
of these networks can be expressed using Boolean Alge-
braic equations. This formalism provides a number of ad-
vantages including proving circuit equivalence, reducing the
size/complexity of the circuit, and translating higher level
behaviors into a set of well defined boolean primitives. Dig-
ital logic can be further refined into combinational and se-
quential logic. Combinational logic differs from sequential
logic in that the output produced by the circuit is solely
a function of its current inputs (without regard to input
history). Combinational logic forms the basis for much of
digital logic and is the building block for sequential logic.
Its automated creation, optimization, and verification are
all mature areas of research.

Synthetic biology has recently gained attention with its
focus on engineering biology [7]. In particular, many re-
searchers have investigated how to assemble genetic regula-
tory networks. These networks can be viewed as a collection
of elements which aid in DNA transcription (promoters) and
elements which produce proteins (genes). Promoters can be
arranged in such a way that small molecules or transcrip-
tion factors can act upon them to turn specific genes on and
off. If one views transcriptional signals as either present (1)
or absent (0) then analogies can been made between certain
genetic regulatory networks and combinational logic circuits
[5], [8]. Figure 1 illustrates a NOR gate [11], [4] in a variety
of representations (electrical and genetic).

However, discrepancies exist in this broad analogy be-
tween electrical digital logic systems and biological systems.
These include the need for orthogonal transcription factors
(electronic signals are physically separated), the selection
of compatible promoter/transcription factor combinations
(electronic signals 1 and 0 are universal), and the tuning
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permission and/or a fee.
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A B O

0 0 1

0 1 0

1 0 0

1 1 0

module NOR1121(

    input A,

    input B,

    output O

    );

assign O = ~(A | B);

endmodule

Truth Table Verilog Logic Gate

Genetic Circuit

Input: Transcription 

Factors A and B

If both A and B are 

present then protein 

cod1 is created

Cod1 represses the 

production of cod2

Figure 1: Various representations of a NOR Gate

of other DNA elements to produce protein concentrations
needed for correct circuit functionality. However, these is-
sues notwithstanding, if tools are built which allow synthetic
biologists to use the combinational logic paradigm, then the
wealth of knowledge on how to transform, optimize, and ma-
nipulate behavioral requirements into this paradigm could
be leveraged for biological systems.

This work outlines our approach to taking a hardware de-
scription language (HDL) called Verilog and compiling this
using a library of genetic circuit primitives. Using Verilog
has several potential advantages:

• It provides a very mature, expressive language with a
large user base, tremendous library support, and syn-
thesis tools from higher level languages.

• Algorithms and techniques for logic synthesis of elec-
tronic circuits can now be re-cast more easily to apply
to genetic circuits.

• It connects electrical engineers to the field of synthetic
biology providing increased collaborative opportuni-
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ties.

What follows is our proposed design flow from Verilog
to genetic circuits. We have implemented this as a Clotho
(clothocad.org) [6], [12] “App” named Cello (a play on the
term Cell Logic). Cello provides both the graphical user
interface for the design as well as a method to specify design
constraints and execute the “genetic compiler”.

2. DESIGN FLOW

#1 Library and Constraint Specification

#5 Part and I/O Selection, Device Tuning

A B C

+

+

O

“Cello” App

#2 Verilog Compilation

A B C

O

NOR2 

NOR2 

#3 AST Mapping and Motif Assignment

A B

C

O

A B

C

O

#4 Motif Assembly and Optimization

LmrA

reporter UidR

reporter

269

382

AraaTc

IPTG

EYFP

#6 Automated Assembly

Reporter 1

Reporter 2

Data1 Data2

Data4Data4

Data3

Data5

Repression/RBS Data 

Figure 2: Proposed HDL to Genetic Circuit Design
Flow

We propose the following design flow (Figure 2):

1. Select a library of biological parts from available databases.
Constraints specify which parts and transcription fac-
tors can be used as well as which should be avoided.

Parts are organized in database “Families” according
to their function and potential composition.

2. Compile the Verilog program into an abstract syntax
tree (AST). This data structure captures the desired
logical function as well as the input and output rela-
tions.

3. Assign nodes in the AST to biological functional oper-
ators and map those operators to genetic motifs. This
graph “coloring” can use a variety of optimizations in-
volving desired network size as well as known design
complexity limits.

4. Stitch the collection of motifs together via input and
output signals. Reduce the assembled motifs to an
equivalent motif which uses fewer biological resources.

5. Select physical parts to implement the motifs based
on characterization data. Tune ribosome binding sites
based on the level of gene expression desired. This will
ensure appropriate transcriptional and translational per-
formance requirements.

6. Send selected parts to liquid handling robots for auto-
mated assembly. The Cello App has full use of Clotho’s
suite of automated assembly algorithms.

3. RELATED AND FUTURE WORK
For designing genetic circuits, other language and design

environments such as Eugene [2], ProMoTo [10] and Proto
[1] have been proposed. None of these are explicitly bridg-
ing the gap from electronic circuit design to genetic circuit
design. Lower level two-level logic descriptions like Espresso
[9] and ABC [3] do not have the rich set of tools provided
by more mature HDLs.

Future work involves the experimental verification of de-
signs created with Cello, the inclusion of more behavioral
Verilog constructs, and the improvement of the design opti-
mization and tuning steps.
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ABSTRACT 
In the fields of engineering, datasheets are used by engineers to 
determine whether the behavior of a part or device will meet the 
requirements of a system in which the part or device might be 
used.  In Synthetic Biology, a rapidly increasing number of 
standard biological parts are becoming available.  Manual 
retrieval and selection of parts will become progressively time 
consuming.  We proposed that electronic datasheets can facilitate 
the automation of part retrieval and selection.  We hypothesize 
that automated part retrieval and selection will support the design 
of new biological devices and systems with increased 
functionality while decreasing development time.  In this report, 
we describe how we designed, implemented, and deployed 
electronic datasheets at the BIOFAB.  These new software 
artifacts lay the foundation for testing our hypothesis. 

Keywords 
Synthetic Biology, Information Management, Datasheets, 
Automation 

1. INTRODUCTION 
Canton and his colleagues note that “Quantitative 

descriptions of devices in the form of standardized, 
comprehensive datasheets are widely used in electrical, 
mechanical, structural and other engineering disciplines. A 
datasheet is intended to allow an engineer to quickly determine 
whether the behavior of a device will meet the requirements of a 
system in which the device might be used.” Given this 
perspective, they developed a prototype datasheet for the standard 
biological part F2620 [1]. The “Canton” datasheet provides design 
information and performance data.  The design of F2620 is 
depicted graphically using high-level symbols that indicate, for 
example, that the promoter R0040 is upstream of the RBS B0034.  
Performance data are provided in four sections on the same page 
that depict the static and dynamic performance, input 
compatibility, and reliability of F2620. The Canton datasheet is 
visually appealing and contains useful information. 

At the International Open Facility Advancing Biotechnology 
(BIOFAB), we are producing collections of professionally 
engineered, high quality standard biological parts [2]. We have 
publically released data and information for 330 parts.  As the 
production capacity of the BIOFAB matures and other biofabs 
around the world come on line, we can expect that the number of 
available standard biological parts will grow geometrically if not 
exponentially.  This expected abundance of parts poses a new 
problem.  How does a human engineer review and select the best 
parts for new biological devices and systems?  Building on the 
work of Canton and his colleagues, we propose the development of 
electronic datasheets.  Electronic datasheets can provide human-

centered access to design information and performance data for the 
growing number of standard biological parts [3].  They have the 
added benefit of providing an application interface to the same data 
and information.  By providing computers ready-access to the data 
and information, computers can be used to automate the process of 
retrieving and selecting the best parts for new biological devices 
and systems [4]. We hypothesize that the automated retrieval and 
selection of parts will eventually facilitate the design of new 
biological devices and systems with increased functionality while 
decreasing development time.  The test of that hypothesis will be 
left for future work.  This report describes how we designed, 
implemented, and deployed electronic datasheets at the BIOFAB. 

2. SOFTWARE DEVELOPMENT 
2.1 Design 
The high-level requirements for the BIOFAB’s electronic datasheets were:  
 
• Provide design information and performance data for the BIOFAB’s 

parts and constructs 
• Provide the data and information in human- and machine-readable 

formats 
• Make access to the data and information as simple as possible 
• The data and information should be useful to biological device and 

system engineers 
 
In meeting these requirements, it was decided to build a three-
tiered application composed of a rich internet application called 
the Data Access Client (DAC) [5], a RESTful web service called 
the Data Access Web Service [6], and a relational database called 
the BIOFAB DB. Both the DAC and DAWS provide design 
information and performance data for BIOFAB parts and 
constructs.  The DAC provides a human-readable interface.  The 
DAWS provides the machine-readable interface. All that is 
required for using the DAC and DAWS is a modern web browser 
and an Internet connection.  Evaluating if the data and information 
provided is useful to biological device and system engineers is an 
ongoing process.  We directly elicit requirements from individuals 
using BIOFAB parts.  We also provide means for users to 
communicate use cases and comments. 

The DAC was designed as an information “dashboard” [3,7].  It 
integrates information about the entire inventory of available 
collections, parts, and constructs with design information and 
performance data of the individual components.  For example, 
with the DAC a user is informed that there is a Random Promoter 
Library available.  When the user selects the Random Promoter 
Library, the DAC displays the parts and constructs in the library.  
If the user selects an individual construct the DAC provides the 
DNA sequence, bulk gene expression, and gene expression per 
cell for the construct. 
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The DAWS is a RESTful web service [6].  It provides a simple 
and platform-independent application interface (API). Any 
modern software development kit has the necessary classes for 
developing a client application that can retrieve data and 
information from the DAWS.  For example, the DAC uses 
Javascript and AJAX to retrieve data and information from the 
DAWS.  It is straightforward to develop an Apple iPhone/iPad 
application with a similar capacity. There are efforts underway to 
have TinkerCell [8] , Clotho [9], and Gene Designer [10] retrieve 
data and information from the DAWS.  The DAWS, provides data 
and information in standard formats which are described in more 
detail in section 2.2. 

The data and information displayed by the DAC and provided by 
the DAWS is maintained in a relation database called the 
BIOFAB DB. 

2.2 Implementation 
The Data Access Client is developed with Javascript, Ext JS 3.3 
and 4.0 [12], and Adobe Flex [13].  The GUI widgets for 
displaying a construct’s DNA sequence and annotations are 
components from the Vector Editor project [14]. 

The Data Access Web Service is developed with Java, J2EE, 
BioJava [15], libSBOLj [16], and Gson [17] libraries. The 
DAWS, presently provides collections and parts information in 
Javascript Object Notation (JSON) [11]. Construct design 
information is provided in Genbank, INSD [18], Synthetic 
Biology Open Language (SBOL) JSON [16], and SBOL RDF 
[16] formats.  Please attend the talk or visit the poster “Evolution 
of SBOL-design information exchange standard’’ for a more 
detailed discussion of SBOL [19]. The DAWS provides construct 
performance summary data in CSV and JSON formats and raw 
data in JSON format.  We are working on integrating construct 
design information, performance summary and raw data into one 
unified data model that can be serialized into SBOL JSON and 
SBOL RDF formats. 

The DAC and DAWS are provided via the World Wide Web 
using the Glassfish application server [20]. 

2.3 Deployment 
The Data Access Client and Web Service can be accessed from 
the BIOFAB website at: http://biofab.org/data. The source code 
for the DAC and DAWS is available at Github: 
https://github.com/BIOFAB/DataAccess. Issues with the DAC 
and DAWS are being tracked at Github: 
https://github.com/BIOFAB/DataAccess/issues. 

3. CONCLUSIONS 
We designed, implemented, and deployed electronic datasheets at 
the BIOFAB. These new datasheets provide human-centered 
access and an application interface to design information and 
performance data. They also facilitate the automation of part 
retrieval and selection.  We hypothesize that automated part 
retrieval and selection will support the design of new biological 
devices and systems with increased functionality while decreasing 
development time. The electronic datasheets are new software 
artifacts that lay the foundation for testing our hypothesis. 
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