
14th International Workshop on Bio-Design Automation
Paris, France

October 24th-26th 2022



Foreword

Welcome to IWBDA 2022!
The IWBDA 2022 Organizing Committee welcomes you to the Fourteenth Interna-
tional Workshop on Bio-Design Automation (IWBDA). The Fourteenth International
Workshop on Bio-Design Automation (IWBDA) brings together researchers from the
synthetic biology, systems biology, and design automation communities to discuss con-
cepts, methodologies and software tools for the computational analysis and synthesis of
biological systems.

The field of synthetic biology, still in its early stages, has largely been driven by experi-
mental expertise, and much of its success can be attributed to the skill of the researchers
in specific domains of biology. There has been a concerted effort to assemble repositories
of standardized components; however, creating and integrating synthetic components
remains an ad hoc process. Inspired by these challenges, the field has seen a proliferation
of efforts to create computer-aided design tools addressing synthetic biology’s specific
design needs, many drawing on prior expertise from the electronic design automation
(EDA) community.

The IWBDA offers a forum for cross-disciplinary discussion, with the aim of seeding
and fostering collaboration between the biological and the design automation research
communities.
This year, the program consists of 6 workshops, 16 contributed talks, and 20 lightning
talks for posters: The talks are organized into 4 sessions:
• Biofoundries and Automation
• Modeling
• Measurement
• Software and Pipelines

In addition, we have a distinguished invited speaker, Dr. Gregory Batt from Inria for a
keynote seminar. We would like to thank all the participants for their contributions to
IWBDA. We would also like to highlight the efforts of the Program Committee and the
Student Volunteers.
IWBDA is proudly organized by the non-profit Bio-Design Automation Consortium
(BDAC). BDAC is an officially recognized 501(c)(3) tax-exempt organization.
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Program

All times CEST (UTC + 1) Paris local time.

Monday, 24th October 2022 (at Learning Planet Institute)
09:30 – 10:30 Registration

10:30 – 10:35 Welcome & Opening Remarks

10:35 – 11:45 Workshop 2: SBOL Version 3: Data Exchange throughout the Bioengineering Lifecycle

Tom Mitchell, Jacob Beal and Bryan Bartley.

11:45 – 12:00 Short Break

12:00 – 13:00 Workshop 2 (continued)

13:00 – 14:30 Lunch on your own

14:30 – 15:30 Workshop 3: Automating Laboratory Protocols with the Laboratory Open Protocol (LabOP) language

Bryan Bartley, Jacob Beal and Dan Bryce.

15:30 – 15:45 Short Break

15:45 – 16:45 Workshop 3 (continued)

16:45 – 17:00 Short Break

17:00 – 17:30 Lightning Talks 1 (90 seconds presentation of each one of the posters)

17:30 – 18:30 Posters:

(1) Steps Towards Functional Synthetic Biology. Ibrahim Aldulijan, Jacob Beal, Sonja Billerbeck, Jeff Bouffard, Gaël Chambon-

nier, Nikolaos Delkis, Isaac Guerreiro, Martin Holub Martin Holub, Daisuke Kiga, Jacky Loo, Paul Ross, Vinoo Selvarajah,

Noah Sprent, Gonzalo Vidal and Alejandro Vignoni

(2) Adapting Malware Detection to DNA Screening. Dan Wyschogrod, Jeff Manthey, Tom Mitchell, Steven Murphy, Adam

Clore and Jacob Beal

(3) Artificial Metabolic Networks: enabling neural computations with metabolic networks. Léon Faure and Jean-Loup Faulon

(4) Developing a scoring system to optimise the design of CRISPR Cas12 diagnostics. Akashaditya Das and Ana Pascual-Garrigos

(5) DBTL bioengineering cycle: developing a population oscillator. Andrés Arboleda-García, Iván Alarcon-Ruiz, Yadira Boada,

Jesús Picó and Eloisa Jantus-Lewintre

(6) Computer-aided enhancement of genetic design data. Matthew Crowther and Angel Goñi-Moreno

(7) Exploring Advantages and Limitations of Discrete Modeling of Biological Network Motifs. Difei Tang, Gaoxiang Zhou and

Natasa Miskov-Zivanov

(8) SynPath – An Automated Biosynthetic Pathway Design and Analysis Tool. Carol Gao, Helena van Tol and Xi Wang
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(9) The Context Matrix: A Framework for Context-Aware Synthetic Biology. Camillo Moschner, Charlie Wedd and Somenath

Bakshi

(10) An Interactive Microfluidic Design and Control Workflow. Yangruirui Zhou and Douglas Densmore

(11) Dynamic Behavior Alters Influences and Sensitivities in Biological Networks. Gaoxiang Zhou and Natasa Miskov-Zivanov

(12) Experimental Data Converter. Sai Samineni, Gonzalo Vidal, Jeanet Mante, Guillermo Yañez-Feliú, Carlos Vidal-Céspedes,

Chris Myers and Timothy J. Rudge

(13) Expanding the metaheuristic framework: evolving cells with the bat algorithm. Víctor Reyes, Nicolás Hidalgo and Martín

Gutiérrez

(14) PLATERO: A Plate Reader Calibration Protocol to work with different instrument gains and asses measurement uncertainty.

Yadira Boada, Alba González-Cebrián, Joan Borràs-Ferrís, Jesús Picó, Alberto Ferrer and Alejandro Vignoni

(15) Spatially Solving the Graph Coloring Problem Using Intercell Communication. Daniela Moreno, Diego Araya and Martín

Gutiérrez

(16) A comparison between D-optimal and model-based design of experiments for efficient biomanufacturing. Iván Blázquez

Arenas, Pablo Carbonell and Irene Otero-Muras

(17) Probabilistic programming for synthetic gene networks. Lewis Grozinger and Angel Goñi-Moreno

(18) In-silico design for fold-change detection (FCD) synthetic circuits. Rongying Huang and Ramez Daniel

(19) Rule-based generation of synthetic genetic circuits. Daisuke Kiga, Kazuteru Miyazaki, Shoya Yasuda, Ritsuki Hamada, Sota

Okuda, Ryoji Sekine, Naoki Kodama and Masayuki Yamamura

(20) Standardizing the Representation of Parts and Devices for Build Planning. Jacob Beal, Vinoo Selvarajah, Gael Chambonnier,

Traci Haddock-Angelli, Alejandro Vignoni, Gonzalo Vidal and Nicholas Roehner

Tuesday, 25th October 2022 (at Learning Planet Institute)
08:00 – 09:00 Registration

09:00 – 10:00 Workshop 4: Principles of genetic circuit design

Hatem Abdelrahman.

10:00 – 10:30 Demo: DySE: Dynamic System Explanation framework

Gaoxiang Zhou, Difei Tang and Natasa Miskov-Zivanov.

10:30 – 10:45 Short Break

10:45 – 11:45 Workshop 5: Python Tools for Modeling of Biocircuits From High-Level Specification to Parameter

Inference

Ayush Pandey and Zoltan Tuza
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11:45 – 12:00 Short Break

12:00 – 13:00 Workshop 5: (continued)

13:00 – 14h:0 Lunch on your own

14:30 – 15:30 Workshop 6: OneModel: an easy-to-use tool for modular building of biocircuits models (Part 1)

Fernando N. Santos-Navarro.

15:30 – 15:45 Short Break

15:45 – 16:45 Workshop 6: OneModel: an easy-to-use tool for modular building of biocircuits models (Part 2)

Fernando N. Santos-Navarro.

16:45 – 17:00 Short Break

17:00 – 18:00 Keynote: Adding automation and reactiveness to your experiments: motivation, tools and applications.

Gregory Batt

Wednesday, 26th October 2022 (at iGEM Paris Expo – Porte de Versailles)
09:30 – 09:45 Welcome & Opening Remarks

09:45 – 10:00 Sponsored Talk: Asimov – Intelligent design of living systems to enable next-generation biotechnologies

Traci Haddock

10:00 – 10:30 Lightning talks (90 seconds presentation of each one of the posters)

10:30 – 10:45 Short Break

10:45 – 11:45 Talks Session 1: Biofoundries and Automation, Chair: Olivier Borkowski

10:45 – 11:00 Efficient Droplet Microfluidic Characterization for Design Automation

Diana Arguijo and Douglas Densmore

11:00 – 11:15 Low-cost Open Source Benchtop Bioreactor

Vitor Marchesan, Lívia Galinari, Luiza Possa, Tiago Mendes, João Vitor Molino and Livia Ferreira-Camargo

11:15–11:30 Harnessing Biofoundries for the forward engineering of strains, with a focus on increased cis, cismuconic acid titers in

yeast

Kealan Exley, Zofia Dorota Jarczynska, Linas Tamošaitis and Vijayalakshmi Kandasamy

11:30–11:45 The iBioFoundry: Automated, Low-Cost, High-Throughput Experimentation

Camillo Moschner, Charlie Wedd, Georgeos Hardo and Somenath Bakshi

11:45 – 12:00 Short Break

12:00 – 13:00 Talks Session 2: Modeling, Chair: Alejandro Vignoni

12:00 – 12:15 Model-driven analysis and debugging of synthetic logic circuits with new CRISPRi components
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Davide De Marchi, Roman Shaposhnikov, Paolo Magni and Lorenzo Pasotti

12:15 – 12:30 From Specification to Implementation: Assume-Guarantee Contracts for Synthetic Biology

Ayush Pandey, Inigo Incer, Alberto Sangiovanni Vincentelli and Richard M Murray

12:30 – 12:45 A Bounded Model Checking Framework for the Analysis of Chemical Reaction Network Models

Mohammad Ahmadi, Lukas Buecherl, Zhen Zhang, Chris Myers, Chris Winstead and Hao Zheng

12:45 – 13:00 Characterization of integrase and excisionase activity in cell-free protein expression system using a modeling and

analysis pipeline

Ayush Pandey, Makena L Rodriguez, William Poole and Richard M Murray

14:30 – 15:30 Talks Session 3: Measurement, Chair: Zoé Pincemaille

14:30 – 14:45 FPCountR: improved analytical methods enable absolute protein quantification

Eszter Csibra and Guy-Bart Stan

14:45 – 15:00 magmiX – An automated magnetic bio-separator for sustainable biomedical research

Christoph Sadee, Julian Alexander Zagalak, George Konstantinou and Jernej Ule

15:00 – 15:15 Towards an automated assay for the quantification of secreted proteins

Sara Napolitano, Sebastián Sosa Carrillo, François Bertaux, Hélène Philippe and Gregory Batt

15:15 – 15:30 Rapid gene circuits prototyping with JUMP assembly

Rizki Mardian, Marcos Valenzuela-Ortega, Jin Wong and Christopher French

15:30 – 15:45 Short Break

15:45 – 16:45 Panel: Young Biofoundries

Daniel Schindler (MaxGENESYS), François Bertaux (Lesaffre), Stéphane Lemaire (Sorbonne Université)

16:45 – 17:00 Short Break

17:00 – 18:00 Talks Session 4: Software and Pipelines, Chair: Ayush Pandey

17:00 – 17:15 GUARDIAN: Ensemble Detection of Engineering Signatures

Aaron Adler, Joel Bader, Brian Basnight, Jitong Cai, Elizabeth Cho, Joseph Collins, Yuchen Ge, John Grothendieck, Kevin

Keating, Tyler Marshall, Anton Persikov, Helen Scott, Roy Siegelmann, Mona Singh, Allison Taggart, Benjamin Toll, Daniel

Wyschogrod, Fusun Yaman, Eric Young and Nicholas Roehner

17:15 – 17:30 SIMPLIFE: An automated pipeline for inserting functional domains into globular proteins

Georgie Hau Sorensen, Fabio Parmeggiani and Thomas Gorochowski

17:30 – 17:45 Galaxy-SynBioCAD: Automated Pipeline for Industrial Biotechnology

Joan Hérisson, Thomas Duigou, Kenza Bazi-Kabbaj, Mahnaz Sabeti Azad, Manish Kushwaha and Jean-Loup Faulon

17:45 – 18:00 Implementing Cross-Platform Protocol Execution with the Laboratory Open Protocol language
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Bryan Bartley, Jacob Beal, Daniel Bryce, Alexis Casas, Jeremy Cahill, Timothy Fallon, Robert Goldman, Luiza Hesketh, Tim

Dobbs and Alejandro Vignoni

18:00 – 18:15 Closing Remarks



Keynote Presentation
Adding automation and reactiveness to your experiments: motivation, tools and

applications
Gregory Batt

Speaker Biography
Dr. Gregory Batt is a senior research scientist at Inria and the head of the InBio group at Institut Pasteur.
He studied molecular and cellular biology and computer science at the Ecole Normale Supérieure de
Lyon. He received his PhD in computer science from the University of Grenoble in 2006. Prior to joining
Inria in 2007, he was a postdoctoral researcher at Boston University. Since 2017, he leads the InBio team,
an Inria/Institut Pasteur research group. The InBio team is interested in understanding, controlling and
optimizing cellular processes from the single cell to the cell population levels. InBio members combine
wet and dry biology in the same lab. They employ systems and synthetic biology approaches with control
and active learning methods, together with stochastic and statistical modeling frameworks. They also
develop affordable bioreactor-based platforms with automated measurements and reactive experiment
control. In recent applications, they have notably designed an artificial differentiation system in yeast and
used it to create consortia with tuneable composition, and have characterized protein secretion under
various stress conditions to optimize production in yeast.

Keynote Abstract
Small-scale, low-cost bioreactors are emerging as powerful tools for microbial systems and synthetic
biology research. They allow tight control of cell culture parameters over long durations. These unique
features enable researchers to perform sophisticated experiments and to achieve high reproducibility.
However, existing setups are limited in their measurement capabilities. It is often essential to follow over
time key characteristics of the cultured cell population, such as gene expression levels, cellular stress
levels, and cell size and morphology. Researchers usually need to manually extract, process and measure
culture samples to run them through sensitive and specialized instruments. Manual interventions strongly
constrains the available temporal resolution and reactiveness capabilities. In this talk, I will present
ReacSight, a generic and flexible strategy to enhance bioreactor arrays with automated measurements
capabilities and reactive experiment control. It can also be used to enhance any computer-controlled
plate-based measurement device with pipetting capabilities and automation. ReacSight leverages the
affordable Opentrons pipetting robots. It is ideally suited to integrate open-source, open-hardware
components but can also accommodate closed-source, GUI-only components. Applications include the
control of an artificial differentiation system in yeast to create consortia with tuneable composition,
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and the characterization of protein secretion under various stress conditions to optimize production in
yeast. In the same spirit, we have also developed MicroMator, a software tool to streamline the use of
Micromanager and enable the realization of smart, reactive microscopy experiments. MicroMator also
fosters throughput, reproducibility and reactivity.



Contributed Talks
The following 16 abstracts feature as contributed talks in this year’s IWBDA program:

Talks Session 1: Biofoundries and Automation
(1) Efficient Droplet Microfluidic Characterization for Design Automation. Diana Arguijo and Douglas Densmore
(2) Low-cost Open Source Benchtop Bioreactor. Vitor Marchesan, Lívia Galinari, Luiza Possa, Tiago Mendes, João Vitor Molino

and Livia Ferreira-Camargo
(3) Harnessing Biofoundries for the forward engineering of strains, with a focus on increased cis, cismuconic acid titers in yeast.

Kealan Exley, Zofia Dorota Jarczynska, Linas Tamošaitis and Vijayalakshmi Kandasamy
(4) The iBioFoundry: Automated, Low-Cost, High-Throughput Experimentation. Camillo Moschner, Charlie Wedd, Georgeos

Hardo and Somenath Bakshi

Talks Session 2: Modeling
(1) Model-driven analysis and debugging of synthetic logic circuits with new CRISPRi components. Davide De Marchi, Roman

Shaposhnikov, Paolo Magni and Lorenzo Pasotti
(2) From Specification to Implementation: Assume-Guarantee Contracts for Synthetic Biology. Ayush Pandey, Inigo Incer,

Alberto Sangiovanni Vincentelli and Richard M Murray
(3) A Bounded Model Checking Framework for the Analysis of Chemical Reaction Network Models. Mohammad Ahmadi, Lukas

Buecherl, Zhen Zhang, Chris Myers, Chris Winstead and Hao Zheng
(4) Characterization of integrase and excisionase activity in cell-free protein expression system using a modeling and analysis

pipeline. Ayush Pandey, Makena L Rodriguez, William Poole and Richard M Murray

Talks Session 3: Measurement
(1) FPCountR: improved analytical methods enable absolute protein quantification. Eszter Csibra and Guy-Bart Stan
(2) magmiX – An automated magnetic bio-separator for sustainable biomedical research. Christoph Sadee, Julian Alexander

Zagalak, George Konstantinou and Jernej Ule
(3) Towards an automated assay for the quantification of secreted proteins. Sara Napolitano, Sebastián Sosa Carrillo, François

Bertaux, Hélène Philippe and Gregory Batt
(4) Rapid gene circuits prototyping with JUMP assembly. Rizki Mardian, Marcos Valenzuela-Ortega, Jin Wong and Christopher

French

Talks Session 4: Software and Pipelines
(1) GUARDIAN: Ensemble Detection of Engineering Signatures. Aaron Adler, Joel Bader, Brian Basnight, Jitong Cai, Elizabeth

Cho, Joseph Collins, Yuchen Ge, John Grothendieck, Kevin Keating, Tyler Marshall, Anton Persikov, Helen Scott, Roy
Siegelmann, Mona Singh, Allison Taggart, Benjamin Toll, Daniel Wyschogrod, Fusun Yaman, Eric Young and Nicholas
Roehner

(2) SIMPLIFE: An automated pipeline for inserting functional domains into globular proteins. Georgie Hau Sorensen, Fabio
Parmeggiani and Thomas Gorochowski

(3) Galaxy-SynBioCAD: Automated Pipeline for Industrial Biotechnology. Joan Hérisson, Thomas Duigou, Kenza Bazi-Kabbaj,
Mahnaz Sabeti Azad, Manish Kushwaha and Jean-Loup Faulon

(4) Implementing Cross-Platform Protocol Execution with the Laboratory Open Protocol language. Bryan Bartley, Jacob Beal,
Daniel Bryce, Alexis Casas, Jeremy Cahill, Timothy Fallon, Robert Goldman, Luiza Hesketh, Tim Dobbs and Alejandro
Vignoni
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Efficient Droplet Microfluidic Characterization for
Design Automation

Diana Arguijo
dma25@bu.edu

Department of Biomedical Engineering, Boston University
Boston, MA

Douglas Densmore
dougd@bu.edu

Department of Electrical Engineering, Boston University
Boston, MA

1 INTRODUCTION
Droplet microfluidics provides a tool for the acceleration of
synthetic biology research by increasing screening through-
put and reproducibility [1]. Precise biological screening uti-
lizing small reagent volumes requires equally precise de-
signs that meet the intended performance of the user. One
method for implementing microfluidic devices with exact
performance is to design, fabricate, and test devices that iter-
ate over the various geometric microfluidic parameters [3].
Without expert knowledge, this method is resource and time
intensive, which increases the barrier to entry for first-time
users. To address this challenge, machine learning is used
for droplet microfluidic design automation to efficiently map
performance metrics to specific designs [2]. However, large
data sets are required to initialize or train a model. Here, we
propose a workflow for microfluidic device design automa-
tion that combines active machine learning, camera-free
droplet monitoring, and automatic device characterization.
Specifically, through the use of impedance sensing, droplets
in a microfluidic device can be monitored automatically.

2 PERFORMANCE CHARACTERIZATION
Droplet generators have multiple geometric parameters that
can be varied during the design process, as shown in Fig-
ure 1A. Each droplet generation parameter affects the mi-
crofluidic performance metrics such as droplet size and gen-
eration rate [3]. Additionally, the impedance sensing param-
eters impact the impedance signal profile.

Electrodes embedded in a microfluidic device can be used
to measure the impedance of droplets in oil [5]. As a droplet
passes through the sensing area between the electrodes, there
is a peak in the impedance signal due to the capacitance dif-
ference between water and oil, as shown in Figure 1B. Using
peak detection, the theoretical impedance data is analyzed
to determine the droplet generation rate. A second microflu-
idic performance metric, droplet diameter (𝑑) , is calculated
using Equation 1. Here, 𝑄𝑤 is the volumetric flow rate for
water and 𝐹 is the droplet generation rate.

𝑑 = 2
(

3𝑄𝑤
4𝐹𝜋

)1/3
(1)

Under certain flow conditions, the size distribution of
droplets is either monodisperse or polydisperse [6]. By an-
alyzing the impedance profile under certain flow rates, the
data can be sorted and the specific conditions that yield a
monodisperse size distribution can be recorded for microflu-
idic device characterization (Figure 1B).

Figure 1: Droplet generation and impedance sensing. A) Geo-
metric and flow parameters for a droplet generator and
impedance sensing electrodes. B) Droplets in the impedance
sensing area and the theoretical impedance signal droplets
with a monodisperse (top) and bidisperse (bottom) size dis-
tribution.
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Figure 2: Droplet generation characterization for design automation. A) Active learning design automation workflow. B)
Comparison of manual and automated data generation. C) Data set generation by varying oil and water flow rates.

3 MICROFLUIDIC DESIGN AUTOMATION
Existing machine learning models are constrained to droplet
generation using fluids with specific properties. To train a
model on different fluids large data sets are required. One
solution is to utilize active learning to train a model while
limiting the number of microfluidic devices designed, fabri-
cated, and characterized [4].

As shown in Figure 2A, the proposed algorithm starts with
the user specifying performance metrics and constraints. The
machine learning algorithm will identify several initial de-
signs to seed the model [4]. After these devices are fabricated
using rapid prototyping [3], the model will be trained on
the data generated from the automated device operation.
Once the model has been trained on the small data set, a
new design is generated with a predicted performance that
approaches the target performance. With each round of de-
sign generation and characterization, the model accuracy
improves [4].

To efficiently generate the data for training the model,
this workflow utilizes automated device operation and data
collection, Figure 2B. Instead of the microfluidic user manu-
ally varying the flow rates to generate each data point for
the model, the automation protocol connects to the syringe
pumps and changes the flow rates automatically. Addition-
ally, the proposed protocol will connect to the impedance
sensors to collect and analyze the impedance data in real-
time, replacing the need for a high-speed camera and video
processing to extract the droplet generation rate and size.

4 CONCLUSION AND FUTURE WORK
Through the combination of active learning, impedance sens-
ing of droplets, and automatic device characterization, the
workflow proposed in Figure 2 will enable efficient data gen-
eration for microfluidic device design automation. Integrat-
ing and testing a robust impedance sensor with fast sampling
rates is required to implement the framework described here
with droplet generation rates in the kHz range. Additionally,
the workflow can be extended to include other sensor types
to monitor droplets.

REFERENCES
[1] Gach, P. C., Iwai, K., Kim, P. W., Hillson, N. J., and Singh, A. K. Droplet

microfluidics for synthetic biology. Lab on a Chip (2017).
[2] Lashkaripour, A., Rodriguez, C., Mehdipour, N., Mardian, R., McIn-

tyre, D., Ortiz, L., Campbell, J., and Densmore, D. f. d. g. Ma-
chine learning enables design automation of microfluidic flow-focusing
droplet generation. Nature Communications (2021).

[3] Lashkaripour, A., Silva, R., and Densmore, D. Desktop micromilled
microfluidics. Microfluidics and Nanofluidics (2017).

[4] McIntyre, D., Lashkaripour, A., and Densmore, D. Active learning
for efficient microfluidic design automation. International Workshop on
Bio-Design Automation (IWBDA) (2020).

[5] McIntyre, D., Lashkaripour, A., and Densmore, D. Rapid and inex-
pensive microfluidic electrode integration with conductive ink. Lab on
a Chip (2020).

[6] Rosenfeld, L., Lin, T., Derda, R., and Tang, S. Review and analysis
of performance metrics of droplet microfluidics systems. Microfluidics
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1 INTRODUCTION 

To achieve maximum efficiency in a biological 

compound production, researchers need to screen 

multiple parameters, to identify the bio products 

viability, especially on engineered cells [2]. There are 

a multitude of tools to automate and screen 

important parameters on the micro-scale. Yet, there 

is still a bottleneck, the validation of the acquired 

data in the benchtop scale, due to cost and low 

customization[10]. For example, automated used 

bioreactor hardware costs at least $6.000,00 [4], 

which results in labs limiting the number of reactors 

to very few or using only non-automated cultures. 

Today, most innovative bioreactors can read online 

data and estimate biomass growth using a built-in 

fluorometer and densitometer [7]. There are a few 

options of open-source bioreactors available, but 

most needs the user to program parameters in C++ 

language [5], or they lack flexibility [8].  

This work aims to show a flexible, low-cost 

benchtop bioreactor capable of supplying multiple 

features. It can work in several regimens, read online 

and inline sensors, and active actuators to create the 

desired environment to best address cell needs.  

 
2 BIOREACTOR DESIGN 

First, we estimated the most common laboratory 

equipment of biolabs, as the bare minimum to be 

able to use this reactor: A laminar flux cabinet, 

Autoclave, and a magnetic stirrer. Then, we selected 

building materials that are cheap, easy to acquire, 

and broadly available. When an item needed custom 

solutions, a Filament Deposition 3D printer was used. 

Table 1, lists the most relevant items and costs. The 

materials cost was estimated for running 12 

experiments as a PhotoBioReactor (PBR), due to the 

silicone lid wear. 

 

Bioreactor Control 

The Open-Source Single Board Computer, Raspberry 

Pi, has been chosen as the processing and control 

unit due to its flexibility of multiple input and output 

ports, enabling the connection of all the sensors and 

actuators. It runs the Linux Raspberry Pi OS together 

with the Mycodo software for the interface and 

control. Mycodo is an Open-Source system that 

allows adding multiple sensors, and creating actuator 

patterns, for example, adding fresh medium upon 

reaching an established pH or color reading 

threshold, and it can activate or deactivate the LED 

strips that provide the light source according to a 

programmed light cycle. All of this is done through its 

web interface, enabling real-time data visualization. 

 

Bioreactor Construction 

The standard labware reagent bottle has been 

chosen as the bioreactor vessel to fit all criteria, 

constraining on wide mouth types, enabling multiple 

sensors and actuators connection. The reactor cap is 

designed to hold the sensors and tubing, and it is 

made of polymerizable silicon rubber. To create this 

lid, a 3D mold matrix was designed and printed. The 

sensors implemented were: digital temperature 

sensor DS18B20; pH sensor for DIY makers; a digital 

RGB color sensor APDS9960 to estimate biomass 

concentration using real-time color readings of the 

reactor culture color [1]. To provide light energy for 

light-dependent cells, a 3D structure was designed 
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and printed to hold common LED light strips, which 

can provide up to 100 μmol photons.m-2.s-1 on the 

reactor surface. The agitation was done by a 

magnetic stirrer at the bottom. Detailed steps of 

construction are available at: 

http://github.com/VitorFrost/photobioreactor . 

 
3 BIOREACTOR TESTING 

To challenge and validate the bioreactor viability, a 

model organism[9] Chlamydomonas reinhardtii 

expressing heterologous fluorescent protein 

mCherry[6] was used, and the chosen reactor 

configuration was a single batch PBR with 500mL 

working volume. Strains were grown in Erlenmeyer 

flasks containing 100 mL of TAP media [3] on an 

orbital shaker at 110 RPM, and under constant light 

(100 μmol photons.m-2.s-1) for 3 days at room 

temperature, in which an inoculation of 5mL of this 

culture was added to the reactor containing 500mL 

of TAP. The experiment was run in triplicate, a 

sample was daily taken from days zero to five, and an 

extra sample was taken on day 7 to verify reactor 

stability. Figure 1 shows a working reactor and some 

details. 

 
4 DISCUSSION AND FUTURE WORK 

Results showed high correlation between online 

readings of the green color with offline Chlorophyll 

samples reading, as seen in Figure 2. The pH sensors 

also had a high correlation, but it displayed a -0.5 

offset from the samples. The increase in chlorophyll, 

pH, and mCherry fluorescence (figure 2-a,b,c) 

indirectly indicates cell growth, and that it was 

possible to create a working Bioreactor, capable of 

providing adequate conditions to cell growth, along 

with online data collection, allowing faster detection 

of growth curve phase changes. The next step is to 

test the dynamics system, especially a Fed-Batch 

Bioreactor, and to test with another organism. 
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Figure 1: Bioreactor operating as Photobioreactor (1) sampling 
port, (2) gas outlet, (3) closed gas inlet or input, (4) pH probe, 
(5) temperature sensor, and (6) color sensor. 
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Table 1: Bioreactors parts and cost for running 12 experiments. 

Bioreactor parts Requirements Price/unit (USD) Total price 

Platinum silicone rubber Shore 20A 0.275kg $60/kg $16.50 

Raspberry Pi 3 B+ or Raspberry Pi 4 B 1 GB 1 unit $36.38 $36.38 

Temperature sensor ds18b20  1 unit $8.99 $8.99 

pH sensor kit 1 unit $29.50 $29.50 

APDS9960 color sensor 1 unit $7.50 $7.50 

Metal straws 4 units $0.60 $2.40 

GLS 80 glass (1L or 500 mL) 1 unit $27.51 $27.51 

5v-3.3v level shifter  1 unit $3.50 $3.50 

PLA filament  0.235 kg $56.95/kg $13.38 

PETG filament  0.032 kg $56.99/kg $1.82 

Single-use syringe filter 0.22 micron sterile with 33mm diameter 24 units $4.32 $103.68 

12V 10A power supply 1 unit $17.99 $17.99 

5050 white led strip lights 2.5 meters $2.53/meter $11.33 

400W DC Mosfet module 3 units $4.20 $12.60 

Peristaltic Pump 1 unit $9.98 $9.98 

Prototype Breakout PCB Shield Hat for Raspberry Pi 1 unit $3.25 $3.25 

Silicone Tube 2mm ID x 4mm OD 2 meters $5.89/meter $11.78 

Some wires, electrical connectors, and soldering Multiple items - $50 

  TOTAL = ~ $370.00      
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Figure 2: Graphical comparison of automated data collection and offline samples during the time of C. reinhardtii cultivation. Graph A shows in 
orange chlorophyll fluorescence offline sample readings and, in green, inline bioreactor readings of the green color channel measuring color 
development. On B, in orange, pH offline sample readings, and, in blue, online pH readings. On C, Fluorescence readings of offline samples. All 
fluorescence readings are in Arbitrary Units 18



Harnessing Biofoundries for the 
forward engineering of strains, 

with a focus on increased cis, cis-
muconic acid titers in yeast.


1. INTRODUCTION

The CfB biofoundry capabilities includes an 
Inscripta Onyx platform to generate massively 
parallel genome edited strains to accelerate the 
DBTL cycle. The Inscripta’s automated bench-top 
appliance for genome engineering facilitates rapid 
large-scale CRISPR editing of S. cerevisiae or E. coli 
to introduce up to 10,000 edits [1]. Using 
proprietary technology, the MAD7 nuclease can 
i n t r o d u c e t a r g e t e d s i n g l e - n u c l e o ti d e 
polymorphisms (SNPs), insertions, and/or 
deletions, into the host genome [2].


With the Inscripta Onyx platform's ability to 
generate thousands of strain variants within days, 
it is advantageous to match this pace of library 
generation to the identification of useful strain 
variants. Biofoundries possess infrastructure for 
the execution of high-throughput automated 
methods and are indispensable for the rapid 
phenotypical screening and sequencing of strain 
libraries [3]. By combining the capabilities of the 
Inscripta Onyx and the high-throughput platforms 
at the CfB Biofoundry, for targeting and identifying 
novel genes respectively, an optimized yeast strain 
producing cis,cis-muconic acid (ccM) with 

increased yields was generated within one month. 
Muconic acid is an important commodity chemical 
for nylon production. A GFP-biosensor coupled 
with the ccM-producing yeast strain enabled the 
online monitoring of ccM production [4]. Using 
fluorescent assisted selection equipment, such as 
the PIXL microbial colony picker and FACS, GFP 
fluorescent ccM-producing yeast strain were 
isolated. Subsequent in-house sequencing of 
barcoded editing plasmid DNA from Inscripta 
tracked the abundance of each edit in the Inscripta 
library and revealed a number of unique gene 
targets that improved ccM yields.


The Inscripta Onyx in conjunction with the 
integrated infrastructure of a Biofoundry enables 
the rapid and expansive completion of many 
iterations of a DBTL cycle. For instance, after 
analyzing single advantageous gene targets, 
determined by an Inscripta library, the CfB 
Biofoundry infrastructure enables multiplex-CRISPR 
targeting to generate variants with multiple edits 
for further strain optimization. The Inscripta-
generated libraries aid genome discovery and 
enable forward engineering of strains to improve 
product titers [1]. 
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1 INTRODUCTION
A fundamental limitation to the engineering and discovery
of novel biological systems is low experimental throughput
due to time and effort constraints associated with manual
sample handling. To address this need, BioFoundries, highly-
automated biological facilities, have emerged that can be
hired for particular experiments and method development
[5, 8]. Many labs, however, do not have access to these fa-
cilities, either due to geographical or financial limitations.
Furthermore, many laboratories still prefer complete control
over their experimental setups.

Here, we present the "in-house BioFoundry" (iBioFoundry),
an open-source, low-cost automation pipeline written in
Python and designed for maximal flexibility in DNA assem-
bly and experiment preparations. The iBioFoundry repre-
sents a throughput-adaptive workflow that can be applied
to a variety of different liquid handling systems. To enable
easy access to this lab automation pipeline we showcase its
use on the low-cost Opentrons OT-2 liquid handling robot.

2 THE IBIOFOUNDRY
The iBioFoundry follows the implementation steps of a given
application, and in version 1.0 focuses on method-agnostic
DNA assembly. Applications are divided into separate, con-
secutive operations (Figure 1). Each operation requires CSV-
based input spreadsheets and a Python Jupyter Notebook,
and generates a range of CSV-based output spreadsheets for
precise sample tracking.

A DNA assembly workflow starts on day 1 with DNA ex-
tracts automatically being molarity-adjusted ("molaritised")
into a 96- or 384-well plate, called "ark plate", based on a
CSV-input of the DNA to be used. Next, the operator gen-
erates a reagents definition and a design spreadsheet. The
reagents definition file can be adjusted to accommodate any
DNA assembly method (e.g. Golden Gate, Gibson or Gateway
cloning) while the design file allows one to choose between
two design modes: "Defined" designs require each DNA piece
of an assembly to be be precisely defined in the same row of
the spreadsheet. "Factorial" designs allow for more flexibility
and automated design. Each column represents a particular
part position (e.g. promoter, ribosomal binding site (RBS),
coding sequence (CDS), terminator, destination vector), and
rows have to be filled with all the variants of each part which

one intends to test. The iBioFoundry then automatically gen-
erates a fully factorial assembly design of the given parts to
create all combinations of possible assemblies (e.g. 5x promot-
ers, 2x RBSs, 3x CDSs, 1x terminator, 3x destination vectors
generates 90 assembly combinations). Automatically gener-
ated assemblies are indexed, and their part composition and
movement between tubes precisely recorded, allowing for
sample tracking throughout the entire automation pipeline.
Dynamic liquid handling algorithms allow the factorial de-
sign to be column-adjusted, i.e. simply modifying the number
of columns in the design spreadsheet allows for expansion
or reduction of the number of part types to be used. Finally,
to increase accuracy and reduce time during liquid handling,
the iBioFoundry calculates the most effective pipetting strat-
egy based on repeated usage of the same DNA parts.

Consecutive thermocycling, specific to the assembly method
chosen, is performed off-deck to allow for increased usage
of the robotic platform. Further Jupyter Notebooks calculate
and execute liquid handling for chemical transformations,
cell spreading on multi-well plates, colony PCRs on day 2,
and automated liquid culture inoculation with PCR-verified
colonies in 96-deep well plates. Finally, on day 3, sample
tracking allows for fast creation of 96-well-based glycerol
stocks. The entire overnight growth plate can then be sent
directly for sequencing or can be used for DNA extraction
in the lab.

This DNA assembly automation workflow enables low-
cost creation of up to 192 plasmids by one person in a period
of 3 days, starting with purified DNA and finishing with
glycerol stocks of PCR-verified assemblies, and sequencing-
ready samples. DNA assembly efficiencies are dependent on
the assembly method chosen and the parts being assembled,
and have been shown to be equivalent to manual liquid
handling.

3 DISCUSSION
Computer-aided design and execution of biological exper-
iments is becoming increasingly important [1]. In particu-
lar considering the vast sequencing space of biomolecules
(DNA, RNA, proteins) an inconceivably large design space
would have to be created and tested to generate a complete
genotype-phenotype mapping for a given application [3].
Exploring even a small fraction of this design space in a
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Figure 1: Typical iBioFoundry Workflow for Automated Molecular Cloning on Day 1

timely manner is only feasible using lab automation. How-
ever, most academic laboratories still do not have access to
these automation techniques. The iBioFoundry represents
an automation pipeline, designed to democratize lab automa-
tion, both in terms of financial investment and usability.

Two essential components in achieving this goal are a sim-
ple design and execution interface, and the possibility of low-
cost implementation. The usage of Jupyter Notebooks allows
for human-in-the-loop (HITL) design and liquid handling,
enabling real-time feedback to the operator. Furthermore,
the ability to generate both defined and factorial designs
during assemblies permits simple, rapid experiment modifi-
cations, and can be seen as an introduction of a Design of
Experiments (DoE) approach for a broad, non-specialised
audience. DoE has recently been recognised as a transfor-
mative strategy to design and investigate biological systems
[4].

Multiple pipelines for biology automation have recently
been published [1, 2, 6, 7]. However, most of them are im-
plemented on high-end, expensive liquid handling systems,
and low-cost implementations have thus far shown limited
capabilities to automatically adapt to different methods and
changing throughput between experiments. As a result, the
required additional time and modification of existing work-
flows has been prohibitive for widespread adoption [9]. The
iBioFoundry counters this trend using a throughput-adaptive
workflow, implemented on the low-cost Opentrons OT-2 ro-
bot.

We believe that this technology has the power to truly
democratize lab automation, and accelerate design and dis-
covery of novel biological systems.
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1 INTRODUCTION 

Engineering-inspired layered design of synthetic circuits 
enables the decoupling of environment-specific sensing 
(inputs) and actuation (outputs) devices with an 
information processing layer, which provides the 
required complexity for the designed functions [1]. 
Information processing requires toolkits of components 
that mimic digital or analog behaviors like logic gates, 
amplifiers, and switches. CRISPR interference (CRISPRi) 
modules are used to construct logic gates and other 
networks in many organisms due to their regulation 
programmability [2]. In addition to the traditionally 
adopted Streptococcus pyogenes dCas9 (SpdCas9), genes 
from other organisms will expand the available toolkit of 
orthogonal parts and are expected to overcome SpdCas9 
limitations like size, toxicity and off-targeting [3]. 
Our limited ability to predict the output of even simple 
circuits currently hampers the design of synthetic 
circuits, motivating efforts in developing predictive 
models for interconnected systems. Among the many 
circuit-, host- and environment-borne unpredictability 
sources, the stress by heterologous expression is a major 
cause of unexpected behaviors and tools are needed to 
characterize, predict and mitigate its effects [4,5]. 
In this work, we showcase the Staphylococcus aureus 
dead-Cas9 (SadCas9) to design synthetic circuits in 
engineered bacteria. This regulator was recently used in 
other organisms motivated by its smaller size than 
SpdCas9 and its more restrictive PAM sequence 
(NNGRRT) with a theoretical off-target reduction [6,7]. 
We show that SadCas9 is suitable for NOT gate design, 
but quantitatively unexpected transfer function features 
were observed. Mathematical modeling was then 
adopted to drive the debugging of this circuitry. 
 

2 CIRCUIT DESCRIPTION AND CONSTRUCTION 

The analyzed circuitry is illustrated in Fig.1. SadCas9 was 
obtained from Addgene plasmid 113718 [8], sgRNA by 
de-novo synthesis and the other parts were from iGEM 
Distributions. BioBrick Standard Assembly was used to 
construct circuits, with HSL-inducible SadCas9 cassette in 
low copy, RFP target cassette (driven by different 

constitutive promoters–Pcon) in medium copy and IPTG-
inducible sgRNA cassette in high copy vectors. Plasmids 
were co-transformed in the TOP10F’ Escherichia coli 
strain. The sgRNA sequence was customized to target a 
21-bp sequence that was cloned downstream of Pcon. 
 
 

 

Figure 1: SadCas9-based NOT gate with 3-oxo-C6 homoserine lactone 
(HSL) as input and RFP as output. 
 

3 QUANTITATIVE EXPERIMENTS 

Fluorescence (F) and absorbance (A) were measured via 
microplate reader (Infinite F200Pro, Tecan). Cultures 
were grown in M9 with glycerol and casamino acids in 96-
well plates, incubated at 37°C, 3-mm linear shaking, 5-
min sampling time. A signal proportional to RFP synthesis 
rate per cell was obtained as 𝑆𝑐𝑒𝑙𝑙(𝑡) = 𝑑𝐹∗(𝑡)/𝑑𝑡 /
𝐴∗(𝑡), where F* and A* are the background-subtracted F 
and A. The resulting 𝑆𝑐𝑒𝑙𝑙(𝑡) was averaged in exponential 
growth phase as steady-state output. 
 

4 EXPERIMENTAL RESULTS 

The circuits were studied using constitutive promoters of 
diverse strengths (J23118–medium, J23119–strong) to 
drive RFP. We expected output curves with the same 
shape and different amplitudes due to the same 
regulation mechanism on promoters with different 
activities, as observed in previous work [9]. Both circuit 
versions qualitatively resulted in functional NOT gates, as 
shown by the decreasing trend as a function of HSL 
(Fig.2). As expected, the stronger promoter produced 
higher RFP levels. However, the shape of the curves was 
unexpectedly different in terms of quantitative features 
as activity range, switch point and steepness. We 
assumed that the expression load caused by RFP could 
explain the experimental trends observed in the data. 
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Figure 2: Experimental data (average of 3 replicates) and fitting by a Hill 
equation to summarize the input-output trends. 
 

5 MATHEMATICAL MODEL DEFINITION 

We simulated the HSL-RFP transfer function at steady-
state by Hill equation models with cell load. The resulting 
model capturing the shape variation observed in vivo is: 

S𝑚𝑎𝑥,𝑙𝑢𝑥𝑅 = 𝛼𝑃𝑅 

𝑄 =
𝐿𝑢𝑥𝑅

1 + (
𝐾𝑙𝑢𝑥

𝐻
)

𝜂𝑙𝑢𝑥
 

S𝑚𝑎𝑥,𝑐𝑎𝑠 = 𝛿𝑙𝑢𝑥 +
𝛼𝑙𝑢𝑥

1 + (
𝐾𝑙𝑢𝑥

𝑄 )
𝜂𝑙𝑢𝑥

 

S𝑚𝑎𝑥,𝑟𝑓𝑝 = 𝛿𝑐𝑜𝑛 +
𝛼𝑐𝑜𝑛

1 +
𝐶𝑎𝑠
𝐾𝑐𝑎𝑠

 

𝑆𝑖 =
𝑆𝑚𝑎𝑥,𝑖

1 + 𝐽𝑟𝑓𝑝 ∙ 𝑆𝑚𝑎𝑥,𝑟𝑓𝑝
 

𝐿𝑢𝑥𝑅 𝑜𝑟 𝐶𝑎𝑠 𝑜𝑟 𝑅𝐹𝑃 = 𝑆𝑖/𝜇 

In this set of equations, Smax,i represents the maximum 
synthesis rate of the i-th protein of the circuit (LuxR, 
SadCas9 or RFP) achievable in absence of cell load, Si is 
the actual synthesis rate per cell, and LuxR, Cas and Q 
represent the intracellular levels of LuxR, SadCas9:sgRNA 
and HSL:LuxR active complex. Hill equations have the α, 
δ, K, η parameters indicating maximum rate, basic 
activity, half-induction concentration and Hill coefficient, 
respectively. Cell load was described as a scale factor 
between Smax,i and Si, with Jrfp being the resource usage 

parameter [4]. Finally, µ is growth rate. Simulations were 
run via Matlab R2017b (MathWorks) with parameters 
fixed to values selected from previous works [9,10]. 
 

6 SIMULATIONS FOR MODEL-BASED DEBUGGING 

The simulation of Srfp for different values of Jrfp 
successfully predicted the observed trend (Fig.3). The 
model confirms that hidden interactions occur in the 
circuit by turning the target gene into a global repressor 
of all the three genes, thus generating a feedback loop. 
Wide variations are predicted to occur as a function of 
the resource usage (index of cell load) of the target gene. 
 

7 CONCLUSIONS 

This work showed unexpected behaviors in the output of 
a synthetic circuit affected by cell load. If not considered, 
load effects may lead to wrong biological conclusions 
(e.g., in terms of Hill equation parameters) or low 
generalization power (e.g., when reusing components in 
circuits driving different genes). We used SadCas9 as a 
new model system, also demonstrating it is suitable for 
circuits design and it is being successfully applied in our 
lab to construct other logic gates and biological devices. 
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1 INTRODUCTION
Mathematical modeling has played a key role in the founda-
tions of synthetic biology and since then has been extensively
used to study the design of engineered biological systems [3].
From a design standpoint, the development of models is nec-
essary to decide when to use the circuits described by these
models. As system complexity increases, we believe that it is
necessary to develop a complete design methodology that be-
gins with a top-level description of the system’s objective and
guides the designer in the generation of an implementation
that can be proven to meet the specification. This is the main
contribution of this paper. We present a methodology that
decouples reasoning about component specifications from
reasoning about the modeling details of each component.
This methodology allows designers to focus on particular
aspects of the design process at various levels of detail while
ensuring that other aspects of the design are not forgotten.

Contract-based design
The design methodology presented here is centered on contract-
based design [5]. At the heart of contract-based design are
assume-guarantee contracts, which are formal specifications
that distinguish between the responsibilities of a component
and the assumptions made on its environment. A contract
is thus as pair C = (𝑎,𝑔) of assumptions 𝑎 and guarantees 𝑔.
Contracts come with a rich algebra [2, 4] that allows us, for
example, to compose contracts in order to find system speci-
fications from subsystem specifications and to find missing
specifications to complete a design through the operation
of quotient. We demonstrate the application of our method-
ology with the design of a biological AND gate. We use the
contract algebra to derive the specification of the system
from its components. We discuss how contracts help us to
meet a system-wide specification when we have a partial
implementation of the system available. Finally, we show
how our methodology seamlessly connects the specification
of a component with its models and implementations.

2 BIOLOGICAL AND GATE
Consider the design of an AND gate with inputs 𝑢1 and 𝑢2
and one output 𝑦. This design (built in [1]) is a composition
of three subsystems as shown in Fig. 1, where the inputs

∗ Authors contributed equally.

are chemical inducer signals (salicylate and arabinose re-
spectively), and the output 𝑦 is the fluorescence of green
fluorescent protein (GFP). Let the output of subsystem Σ1 be
𝑥1 and the output of Σ2 be 𝑥2. According to [1], 𝑥1 models
an engineered tRNA called supD and 𝑥2 models an mRNA
that codes for T7 RNA polymerase. For the translation of
this mRNA, 𝑥1 must be present, hence the AND logic. When
both 𝑥1 and 𝑥2 are present, Σ3 is activated to express GFP.
We can write the specification for the subsystem Σ1 by de-
scribing the assumptions and guarantees of the design. We
assume that at time 𝑡 = 𝜏𝑢1 , we have 𝑢1 ≥ 𝑢1min , and 𝑢1 stays
over this threshold. The contract C1 = (𝑎1, 𝑔1) for Σ1 guaran-
tees that 𝑥1 ≥ 𝑥1min at time 𝑡 ≤ 𝜏𝑢1 + 𝑡1. To write this specifi-
cation as a contract, we split it into two viewpoints. First, we
have a functionality viewpoint that 𝑥1 ≥ 𝑥1min follows from
𝑢1 ≥ 𝑢1min . The other is a timing viewpoint that the event 𝜏𝑥1 ,
defined as the time when 𝑥1 ≥ 𝑥1min , happens at most 𝑡1 time
after the event 𝜏𝑢1 , defined as the time when 𝑢1 ≥ 𝑢1min .
That is, we have the following two contract viewpoints:
C 𝑓1 = (𝑢1 ≥ 𝑢1min , 𝑥1 ≥ 𝑥1min ) and C𝑡1 = (1, 𝜏𝑥1 ≤ 𝜏𝑢1 + 𝑡1),
where 1 represents the boolean value “true”.
For Σ2, we have the input 𝑢2 that activates 𝑥2. For this sub-
system, if we assume that at 𝑡 = 𝜏𝑢2 , 𝑢2 crosses the threshold
𝑢2 ≥ 𝑢2min , then the subsystem specification guarantees that
𝑥2 ≥ 𝑥2min at time 𝑡 ≤ 𝜏𝑢2 + 𝑡2. The functionality and timing
contracts C2 = (𝑎2, 𝑔2) for Σ2 are C 𝑓2 = (𝑢2 ≥ 𝑢2min , 𝑥2 ≥
𝑥2min ) and C𝑡2 = (1, 𝜏𝑥2 ≤ 𝜏𝑢2 + 𝑡2), where 𝜏𝑥2 is, as before, the
event when 𝑥2 crosses the threshold 𝑥2 ≥ 𝑥2min .
Similarly for Σ3, under the assumptions that 𝑥1 ≥ 𝑥1min and
𝑥2 ≥ 𝑥2min starting at some 𝑡 = max(𝜏𝑥1 , 𝜏𝑥2 ), Σ3 guarantees
that the output𝑦 is at least 𝐹 > 1 fold-change higher than the
leaky expression output 𝑦𝜖 at time 𝜏𝑦 ≤ 𝑡3 + max{𝜏𝑥1 , 𝜏𝑥2 }.
Hence, the contracts for Σ3 are C 𝑓3 = (𝑥1 ≥ 𝑥1min ∧ 𝑥2 ≥
𝑥2min , 𝑦 ≥ 𝐹𝑦𝜖 ) and C𝑡3 = (1, 𝜏𝑦 ≤ max{𝜏𝑥1 , 𝜏𝑥2 } + 𝑡3). Note
that for brevity we have not considered other viewpoints
which would describe all of the AND logic conditions.

Generating specifications of the system
Now that we have the specifications for the three elements
of the system, we seek the specification of the entire sys-
tem. First, we use the operation of composition to obtain the
specification of the subsystem consisting of components Σ1
and Σ2. We compute the compositions C̄ 𝑓12 := C 𝑓1 ∥ C 𝑓2 and
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C𝑡12 := C𝑡1 ∥ C𝑡2 . Then we abstract this operation to obtain a
specification whose assumptions only depend on inputs and
whose guarantees involve both inputs and outputs. We obtain
C 𝑓12 =

((𝑢1 ≥ 𝑢1min ∧ 𝑢2 ≥ 𝑢2min ), (𝑥1 ≥ 𝑥1min ∧ 𝑥2 ≥ 𝑥2min )
)
.

Now we obtain the specification of the entire system by com-
posing these contracts with those of Σ3, i.e., we compute
C̄ 𝑓123 = C 𝑓12 ∥ C 𝑓3 and C̄𝑡123 = C𝑡12 ∥ C𝑡3 and then abstract these
contracts to obtain C 𝑓123 =

((𝑢1 ≥ 𝑢1min ∧ 𝑢2 ≥ 𝑢2min ), 𝑦 ≥ 𝐹𝑦𝜖
)

and C𝑡123 = (1, 𝜏𝑦 ≤ max{𝜏𝑢1 + 𝑡1, 𝜏𝑢2 + 𝑡2} + 𝑡3). These con-
tracts give us a specification for the entire system. They only
refer to variables that lie at the interface between the system
and its environment, namely 𝑢1, 𝑢2, and 𝑦; there is no men-
tion of 𝑥1 and 𝑥2. This allows us to “black-box” the system
so that it can be used as a component of a more involved
system.

Design synthesis of missing subsystem
In the discussion so far, we went from component specifica-
tions to the specification of the entire system. Now we will
start from a top-level specification and the specification of
a subsystem, and we will look for the specification of the
missing subsystem needed to satisfy the top-level specifica-
tion. Therefore, suppose that we are given a specification for
the entire system: C 𝑓𝑠 =

((𝑢1 ≥ 𝑢1min ∧ 𝑢2 ≥ 𝑢2min ), 𝑦 ≥ 𝑦min
)

and C𝑡𝑠 =
(
1, 𝜏𝑦 ≤ max{𝜏𝑢1 , 𝜏𝑢2 } + 𝑡3

)
.

Suppose we also have available the specification of a sub-
system, say the composition of Σ1 and Σ2 — C 𝑓12 and C𝑡12
as computed above. The question is, what is the specifica-
tion of an element that we have to add to C 𝑓12 and to C𝑡12 so
that the resulting implementation meets the system-level
specifications, C 𝑓𝑠 and C𝑡𝑠 ? The largest specification with
this property is given by the contract quotient. We com-
pute the quotient and refine by removing references to the
inputs 𝑢1 and 𝑢2: C 𝑓𝑞 =

(
𝑥1 ≥ 𝑥1min ∧ 𝑥2 ≥ 𝑥2min , 𝑦 ≥ 𝑦min

)
and C𝑡𝑞 =

(1, 𝜏𝑦 ≤ max{𝜏𝑥1 − 𝑡1, 𝜏𝑥2 − 𝑡2} + 𝑡3
)
. Any im-

plementation of this contract is guaranteed to satisfy the
system-level specification when it operates in conjunction
with an implementation of C12. We now look for an imple-
mentation of C𝑞 . We can propose a first-order model using
the following expression:

𝑦 (𝑡) = 𝑘3
(
1 − 𝑒−

𝑡−𝜏𝑥
𝑡3

)
· 𝑠 (𝑡 − 𝜏𝑥 ), (1)

where 𝑠 (·) is the step function and we define 𝜏𝑥 := max(𝜏𝑥1 −
𝑡1, 𝜏𝑥2 − 𝑡2) and 𝑘3 = 𝑘o

𝑒 (𝑦min−𝑦 (0))
𝑒−1 . The dynamical model is

given by ¤𝑦 =
(
𝑘𝑦 − 𝑑𝑦𝑦

) ·𝑠 (𝑡−𝜏𝑥 ), where𝑘𝑦 = 𝑘3
𝑡3

and 𝑑𝑦 = 1
𝑡3
.

With 𝑘o = 1, this model satisfies the guarantees such that
𝑦 = 𝑦min at the required timing guarantee 𝑡 = 𝜏𝑥+𝑡3. This syn-
thesized dynamical implementation model can be expanded
further to include the modeling details specific to a synthetic
biology implementation by using a Hill activator function

instead of the step function. The biological implementation
with a Hill function has an additional constraint on the Hill
coefficient. To offset this, we set 𝑘o > 1 so that the model
in (1) satisfies 𝑦 > 𝑦min at a time 𝑡 < 𝜏𝑥 + 𝑡3. In this way,
the biological implementation with the Hill functions also
satisfies the guarantees as shown in Fig. 2.

3 CONCLUDING REMARKS
We presented a contract-based design framework for syn-
thetic biology. Current modeling practices in synthetic bi-
ology are limited to system analysis and inverse problems
for system identification. Our results are a step towards a
design framework that reasons about system properties us-
ing contracts and is capable of correlating implementations
with specifications. Two key insights are discussed below.
Speeding up the experimental design process. Usually, biolog-
ical circuit design entails multiple experimental iterations
to optimize parameters such as promoter strengths, input
levels, and physical conditions like temperature. In our ap-
proach, since the parameters of the implementations are
mapped to the system objectives, these controllable aspects
in the experimental design can be manipulated accordingly.
Hence, a formal design framework serves to minimize the
experimental trial-and-error steps.
Resource loading effects on system design. Engineered genetic
circuits are dependent on resources such as RNA polymerase,
ribosome, and ATP. As resources are used up by a subsystem,
the performance of other subsystems is affected due to load-
ing effects. The contract-based design framework proposed
in this paper can be scaled to describe such environmental
assumptions by adding resource viewpoints in addition to
those we discussed.
We anticipate diverse future directions stemming from the
research presented in this paper as we build towards model-
guided design for large-scale synthetic biological systems.
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Figure 1: The AND gate schematic shows composition of three subsystems to achieve AND logic implementation in an engineered
biological system. The static AND gate specifications are such that when both inputs 𝑢1 and 𝑢2 are greater than their specified
minimum values, we have 𝑦∗ ≥ 𝐹𝑦𝜖 , where 𝐹 > 1 is the desired fold change in output compared to the leaky output 𝑦𝜖 . The
dynamic specifications add that the output achieves the desired fold-change in time 𝑡 ≤ 𝜏𝑦 .
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First-order Implementation
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Figure 2: Given the top-level system specification and the contracts for Σ1 and Σ2, we synthesize the missing subsystem
specification (Σ3) using the quotient operation on contracts. Then, we propose a first-order implementation from the synthesized
contract and a detailed implementation that expands the step functions into Hill functions to model the biological activation
mechanisms. All parameters in the implementations are mapped to the specifications as shown. In the simulation, the dotted
and dashed lines show the contract assumptions and guarantees, respectively, while solid lines show implementations. Here 𝜏𝑢
is defined as 𝜏𝑢 := max{𝜏𝑢1 , 𝜏𝑢2 }. Python code to generate the simulations is available online.
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1 INTRODUCTION
In order to model stochastic behavior of systems, probabilis-
tic formalisms such as Markov chains are used. Continuous
Time Markov Chains (CTMCs) can be used to model chem-
ical reaction networks’ (CRNs) stochastic temporal behav-
ior. Given a CRN modeled as a CTMC, probabilistic model
checkers such as PRISM [4] can calculate the probability of
certain events such as "population of species X exceeding
100 molecules within 20 seconds starting from the initial
conditions of the model".

Probabilistic model checkers require the model’s state-
space to be finite, meaning that all species populations should
be bounded. As a result, they cannot be used in scenarios
where there is no upper-bound on the values the species
populations can take. Tools such as STAMINA [6] are de-
veloped to handle infinite-state models. Instead of a single
value, STAMINA reports a range (a lower-bound and an
upper-bound) for the probability of an event.

Here, a new approach based on Bounded Model Checking
(BMC) [2] is proposed to analyze infinite-state CRN models.
Given a CRN C and an event𝑋 𝑡 ≤𝑇−−−→ 𝜃 (population of species
X reaching 𝜃 within 𝑇 seconds), this framework intends to
find a set of traces satisfying the event. A trace satisfying the
event 𝑋 𝑡 ≤𝑇−−−→ 𝜃 is a valid sequence of states that start in the
initial state of the model and end in a state where 𝑋 = 𝜃 . We
call such a trace awitness. The problem of finding a witness of
length k is encoded as a satisfiability modulo theories (SMT)
problem, 𝐵𝑀𝐶 (𝑘), and is solved using a SMT solver. Starting
from 𝑘 = 0, this framework tries to find witnesses of length
k. If there are no witnesses for a particular bound k, or if all
witnesses of bound k are already found, k is incremented by
1 in order to look for longer witnesses. The outcome of this
approach is a set, W, of witnesses corresponding to a finite,
partial state-space of the model constructed by overlaying
these witnesses on top of each-other. A probabilistic model
checker can be used to calculate the probability of the event
of interest on this partial state-space. The resulting probabil-
ity is a lower-bound for the probability of the event on the

∗The authors of this work are supported by the National Science Foundation
Grant Nos. 1856733, 1856740, and 1900542. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the funding agencies.

original model. Moreover, the set of witnesses can be further
analyzed to facilitate debugging of the model. For example, if
a property like "the probability of event𝑋 𝑡 ≤𝑇−−−→ 𝜃 is less than
𝑝" is falsified on the model by calculating a lower-bound
greater than 𝑝 , the set of witnesses W can be analyzed to
extract information, such as "the relative frequency of reac-
tions among traces leading to a state where 𝑋 = 𝜃 ", in order
to gain insight into why the property has been falsified and
to help with the refinement of the model.

2 RESULTS
The proposed framework is tested on three CRNs. The BMC
method used for analyzing these models is described in [1].

Enzymatic Futile Cycle: This model uses six-reactions
to represent a biochemical futile cycle [3]. The network is
illustrated in Figure 1A. The event of interest is 𝑆5

𝑡 ≤100𝑠−−−−−→ 40.
Table 1 shows the results of applying the proposed BMC

framework on this model. For each threshold value 𝑝 , the
framework tries to generate a set of witnesses satisfying the
following condition: the probability of the event of interest
on the partial state-space generated by that set is greater than
the threshold 𝑝 . Figure 1B shows the growth in probability
and the size of the partial state-space constructed by the
witness set as time progresses.

In order to speed up the process of the expansion of the
witness set, we use a technique called scaffolding on all the
experiments presented here. When a witness is found, it
is guaranteed that the target state is reachable from every
state of that witness. Therefore, a trace sharing a suffix of a
witness is also a witness. The scaffolding method exploits
the existing witnesses, instead of solving a BMC encoding
for a large bound 𝑘 , to find new witnesses that share the
same suffix with any of the witnesses already found. More
information on scaffolding method and how it’s encoded
as a SMT problem can be found in [1]. For all experiments
presented here, scaffolding method is used to generate (at
most) 50 new witnesses exploiting the current set of found
witnesses W, after every 3 new witnesses are found using
the original BMC approach.

Modified Yeast Polarization: This model is a CRN con-
sisting of 7 species reacting through 8 reaction channels [3].
The network is illustrated in Figure 2A. The event of interest
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is 𝐺𝑏𝑔
𝑡 ≤20𝑠−−−−→ 50 (𝐺𝑏𝑔 = 0 in the initial state of the model).

Table 2 shows the results for applying the proposed BMC
framework on this model. Figure 2B shows the growth in
probability and the size of the partial state-space constructed
by the witness set as time progresses. In order to reduce
the complexity of the BMC encoding, we use the divide-
and-conquer technique to generate witnesses for this model.
With divide-and-conquer, instead of finding a witness start-
ing from the initial state and ending in a state where𝐺𝑏𝑔 = 50,
we first find a trace from the initial state to a state where
𝐺𝑏𝑔 = 10. Then, this newly found state is used as the initial
state to find a trace to a state where𝐺𝑏𝑔 = 20. This procedure
is continued until a trace ending in a state where 𝐺𝑏𝑔 = 50
is found. The new trace constructed by following these 5
found traces is a witness for the event of interest. Utilizing
divide-and conquer significantly reduces the complexity of
the BMC encoding, resulting in a much better performance
in scenarios where witnesses for the event of interest are
relatively long. More information on divide-and-conquer
method can be found in [1].

Circuit 0x8E: This example is a genetic circuit model
that consists of 15 reactions including 79 reaction rates [5].
The model is illustrated in Figure 3A. The event of interest
is 𝑆8

𝑡 ≤1000𝑠−−−−−−→ 30 (𝑆8 = 0 in the initial state of the model).
Table 3 shows the results of applying the proposed BMC
framework on this model. Figure 3B shows the growth in
probability and the size of the partial state-space constructed
by the witness set as time progresses. We use the divide-
and-conquer technique with a step of 10 on this model, i.e.
a witness to the event is constructed by sequencing three
witnesses, one from the initial state to a state where 𝑆8 = 10,
one from the newly found state to a state where 𝑆8 = 20 and
finally a trace ending in a state where 𝑆8 = 30.
3 DISCUSSION
The described BMC framework shows promise for analyzing
stochastic behavior of CRNs. It is able to generate a lower-
bound for the probability of certain events happening on a
CRN model with potentially infinite state-space. An impor-
tant byproduct of this framework is the generated witness
set. We argue that reporting the mere probability of an event,
although important, is not helpful enough for debugging a
model. The generated witness set tends to be small (com-
pared to the potentially infinite state-space of the model)
and thus can be analyzed to extract information such as the
relative frequency of reactions in error-traces. This infor-
mation can be utilized to gain insight into the root cause of
the erroneous behavior of the model. An example of how
the witness set can be utilized to extract such information is
shown in Table 4.

The current framework does not produce an upper-bound
for the probability. We expect that modifying the encoding

to find strongly connected components in the model’s state-
space instead of witnesses can be helpful in producing the
upper-bound.

Tables 2 and 3 show that the BMC framework is currently
not able to produce a witness set for higher threshold val-
ues within reasonable time frame. We expect that modifying
the encoding and introducing a probability measure for the
traces to search for witnesses with higher probability first
would significantly improve the performance of the frame-
work. Currently, the framework searches for the shorter
witnesses first. If there are many such relatively short wit-
nesses with abysmal probability, a large amount of CPU time
is spent on finding those witnesses first, ignoring longer
witnesses that could potentially have higher probabilities.

Figure 1B shows that the probability stays almost the same
after the size of the partial state-space has grown larger than
a certain amount. Running the framework for a longer period
will result in finding longer witnesses and longer witnesses
often have lower probabilities. Therefore, the conclusion that
this lower-bound probability is close to the actual probability
of the event can be made with high confidence. In figures 2
and 3B we can observe that the probability has not plateaued,
suggesting that running the framework for a longer period
will likely result in a higher lower-bound.

The current BMC framework is able to generate a lower-
bound for the probability of events happening on a CRN with
potentially infinite state-space. The described optimization
techniques scaffolding and divide-and-conquer significantly
improve the performance of the framework. We expect future
improvements such as introducing the encoding for strongly
connected components and to prioritize the search for high
probability witnesses to improve the applicability of this
framework. All scripts are accessible at https://github.com/
fluentverification/bmc_counterexample/tree/main/iwbda.
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Table 1: Results for applying the BMC approach to the enzymatic futile cycle model. The event of interest is 𝑆5
𝑡 ≤100𝑠−−−−−−→ 40. First

column shows a probability threshold the framework tries to surpass. Second column shows the probability of the partial
state-space generated by the witness set. Third column reports the time it took for the framework to finish in seconds. Size of
the state-space is defined as the sum of the number of states and transitions.

threshold probability time partial state-space size
1 × 10−30 8.04 × 10−29 2.8 39
1 × 10−20 2.87 × 10−2 13.2 158
4 × 10−2 4.13 × 10−2 29.2 190

Table 2: Results for applying the BMC approach to the modified yeast polarization model. The event of interest is 𝐺𝑏𝑔
𝑡 ≤20𝑠−−−−−→ 50.

First column shows a probability threshold the framework tries to surpass. Second column shows the probability of the partial
state-space generated by the witness set. Third column reports the time it took for the framework to finish in seconds. Any
experiment that took more than 1800s is marked with -TO-. Size of the state-space is defined as the sum of the number of states
and transitions.

threshold probability time partial state-space size
1 × 10−90 2.54 × 10−90 9.4 333
1 × 10−80 1.08 × 10−80 25.2 681
1 × 10−70 1.09 × 10−70 122.7 1620
1 × 10−60 1.11 × 10−60 1207.6 4593
1 × 10−50 -TO- -TO- -TO-

Table 3: Results for applying the BMC approach to the genetic circuit 0x8E model. The event of interest is 𝑆8
𝑡 ≤1000𝑠−−−−−−−→ 30. First

column shows a probability threshold the framework tries to surpass. Second column shows the probability of the partial
state-space generated by the witness set. Third column reports the time it took for the framework to finish in seconds. Any
experiment that took more than 1800s is marked with -TO-. Size of the state-space is defined as the sum of the number of states
and transitions.

threshold probability time partial state-space size
1 × 10−12 1.08 × 10−12 0.28 7
1 × 10−11 1.94 × 10−11 1.73 101
1 × 10−10 1.02 × 10−10 47.29 1131
1 × 10−9 -TO- -TO- -TO-

Table 4: Example of how the witness set can be analyzed to gain insight into the behavior of the enzymatic futile cycle model.
First row shows the relative frequency of each reaction among the total fired reactions after running 1000 SSA (Stochastic
Simulation Algorithm) simulations of 100 time units each. Second row shows the relative frequency of each reaction among
the total reactions in a witness set with probability 4.13 × 10−2 generated for the event 𝑆5

𝑡 ≤100𝑠−−−−−−→ 40. It can be concluded from
this table that 𝑅6 fires more frequently and 𝑅5 fires less frequently among traces that satisfy the event 𝑆5

𝑡 ≤100𝑠−−−−−−→ 40 compared to
normal behavior of the system.

R1/Total R2/Total R3/Total R4/Total R5/Total R6/Total
1000 SSA Simulations 0.025 0.227 0.022 0.251 0.227 0.022

Witness set W with 𝑃 (W) = 4.13 × 10−2 0.118 0.096 0.081 0.331 0.092 0.283
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Figure 1: A) Enzymatic Futile Cycle model B) Growth in probability and the size of the partial state-space constructed by the
witness set as time progresses. Size of the partial state-space is defined as the sum of the number of states and transitions. Time
is measured in seconds.

Figure 2: A) Yeast Polarization model B) Growth in probability and the size of the partial state-space constructed by the witness
set as time progresses. Probability axis is in logarithmic scale. Size of the partial state-space is defined as the sum of the number
of states and transitions. Time is measured in seconds.
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Figure 3: A) Circuit 0x8E model. Reaction rates can be found at https://github.com/fluentverification/bmc_counterexample/
blob/main/iwbda/circuit_description.txt B) Growth in probability and the size of the partial state-space constructed by the
witness set as time progresses. Probability axis is in logarithmic scale. Size of the partial state-space is defined as the sum of the
number of states and transitions. Time is measured in seconds.
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1 THE PIPELINE
Over the past few years, we have seen a widespread adoption
of software tools in synthetic biology research for model-
ing, simulation, analysis, data exchange, and design opti-
mizations. The focus on bio-design automation and ratio-
nal design in synthetic biology has led to this enthusiastic
acceptance of software tools. A few examples include CO-
PASI [5] (modeling and simulation), iBioSim [7] (CAD-style
circuit modeling), Tellurium [1] (text scripting to model cir-
cuits), RBS Calculator [12] (prediction of translation initi-
ation rates), and automated design recommendations [11].
The rise in tools for specific tasks has led to their integration
into automated pipelines like Infobiotics [6] and Galaxy Syn-
BioCAD [4]. However, there is still need for user-friendly
modeling and analysis pipelines that work alongside experi-
mental data in a design-build-test-learn cycle. Towards that
end, we present an automated Python pipeline for iterative
modeling, model reduction, analysis, and parameter identi-
fication of synthetic biological circuits. We further develop
on BioCRNpyler [10] (to build models), AutoReduce [9] (to
obtain reduced models), and Bioscrape [14] (for simulations,
analysis, and Bayesian inference using Emcee [3]) to create
this computational framework shown in Figure 1. We ap-
ply the proposed pipeline to characterize an integrase and
excisionase-mediated DNA recombination circuit in TX-TL1.

2 MODELING INTEGRASE ACTIVITY IN TX-TL
To characterize the integrase activity independent of the
excisionase, we design a two plasmid system — (1) Bxb1
integrase expressing plasmid fused with CFP to measure in-
tegrase expression, and (2) a YFP plasmid that gets activated
on integrase action (shown in Figure 2A). Using this circuit,
we characterize the integrase expression in TX-TL and its flip-
ping action on a promoter to control the fluorescent reporter
expression (data shown in Figure 3A).

Towards this first goal, we model the two plasmid system
in TX-TL using a detailed mechanistic chemical reaction net-
work (CRN) with mass-action kinetics using BioCRNpyler.

1Throughout this paper, we refer to cell-free protein expression system as
TX-TL
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Figure 1: An iterative Python pipeline for modeling, analysis, and
learning of biological circuits. In the first iteration, we build the CRN
model for subsystem #1 then obtain the minimal representation suit-
able for parameter identification. Bayesian inference is used to find
parameter distributions. The second iteration uses the previously
identified context and circuit parameters to inform the model.

We simulate this CRN model using Bioscrape (shown in Fig-
ure 2B) to explore the design space and the resource-loading
effects. However, the detailed model is infeasible to fit to the
experimental data due to the problem of unidentifiability [2]
and high-dimensionality. Hence, we use AutoReduce to au-
tomatically derive potential reduced models for this system.
We choose a reduced model that recovers the desired proper-
ties (integrase flipping, fluorescent reporter levels, and any
other important context effects), shown in Figure 2C as M-3.
To obtain a further reduced model, we abstract the context by
switching off resource-dependent mechanisms for transcrip-
tion and translation in BioCRNpyler. Then, we reduce the
model using quasi-steady state approximation (QSSA) and
assuming abundance of certain species to obtain a minimal
ODE model (M-4). It is evident from Figure 2C that the model
M-4 recovers the commonly used Hill function, however, no
heuristics were used in deriving this model. For this model,
we use Bayesian inference to fit the TX-TL data (Figure 3B).
The parameter inference algorithm is implemented in Bio-
scrape as a black-box Python wrapper for the emcee package.
Hence, the “full-stack" Python pipeline of modeling, design-
space exploration, sensitivity analysis, model reduction, and
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parameter inference gives us a validated mathematical model
for integrase activity in TX-TL.

3 MODELING EXCISIONASE ACTIVITY IN TX-TL
Similar to the integrase model, we construct an integrase-
excisionase model and its simulations (shown in Figure 4A
and 4B). Then, in multiple model reduction steps, we derive
a minimal ODE model (M-8 in Figure 4C) suitable for param-
eter identification. Using the identified parameters, we build
and predict excisionase activity in reversing the integrase ac-
tion. The experimental data and the parameter identification
steps for excisionase characterization are shown in Figure 5.

4 CONCLUSION
We present an automated and iterative pipeline for mod-
eling, analysis, and parameter identification of biological
circuits by building on existing Python tools — BioCRNpyler,
AutoReduce, and Bioscrape. Using this pipeline, we charac-
terize the expression and activity of enzyme-mediated DNA
recombination in cell-free protein synthesis system. We build
detailed chemical reaction network models from high-level
description of the biological circuit and the context using
BioCRNpyler. We show that many sensitive parameters in
this detailed model affect the output. However, for feasible
parameter identification, we use AutoReduce to automati-
cally obtain reduced models that have fewer parameters. We
derive a hierarchy of reduced models under different assump-
tions to finally derive a minimal ODE model for each circuit.
Then, we run sensitivity analysis-guided Bayesian inference
using Bioscrape for each circuit to identify the parameters of
the models. We characterize the strength of integrase to flip a
promoter direction as well as the excisionase mechanisms to
reverse it. This characterization of the integrase-excisionase
activity in cell-free opens up a new paradigm of complex
circuit designs that depend on accurate control over protein
expression levels independent of induction or degradation.
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MATERIALS AND METHODS
Cell-free experiments
Experimental characterization of both integrase and exci-
sionase activity were done in TX-TL – an in vitro, cell-free
protein expression system. As depicted in Figure 2A, the
TX-TL reactions created are composed of S30 E. Coli cell
extract, energy buffer, and plasmid DNA [13]. Each reaction
contains a different concentration of the DNA plasmids in
our synthetic circuits added to a common TX-TL master mix
(cell extract and energy buffer). Then, these reactions are
analyzed through the fluorescent protein expression levels
on a Biotek plate reader.

Data analysis and inference
Sensitivity analysis tools in Bioscrape [14] were used to find
identifiable parameters from the data. Python emcee’s [3]
Markov chain monte carlo (MCMC) sampler was used for
the Bayesian inference algorithm implemented in Bioscrape.
Code for all data analysis and parameter inference is available
on Github [8].
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Figure 2: Modeling and analysis of integrase expression and activity in TX-TL. (A) The circuit consists of two plasmids, one expressing the
Bxb1 integrase and the other with a reversed promoter upstream of YFP reporter. The integrase activity flips the promoter so that YFP is
expressed. BioCRNpyler is used to convert this abstract system description into a CRN model written as an SBML file. (B) shows the simulation
of the detailed model and the sensitivity analysis that shows the most influential parameters for the time-course of YFP expression. (C) The
CRN model is reduced in multiple steps with AutoReduce. First, the conservation laws are determined (as shown in C-2) and a reduced model is
obtained symbolically. This reduced model is further reduced using QSSA which gives multiple possibilities out of which one model (M3) is
selected based on error performance metric as computed by AutoReduce. Then, a minimal model is obtained by abstracting the details and
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for each reduced model using Bioscrape are shown at the bottom.
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A. Median Integrase Expression (CFP) and Activity (YFP) in TX-TL

B. System Identification By Parts Using Bioscrape
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Figure 3: Experimental data and system identification of integrase expression and activity in TX-TL. (A) Median background-subtracted
fluorescence data for the integrase circuit in TX-TL. (B) We identify the system by parts, that is, we first select the integrase expression part of
the circuit and run sensitivity analysis to find out its identifiable parameters. We observe that 𝑘𝑖 is the only sensitive parameter and hence, we
run Bayesian inference to identify the posterior parameter distribution for 𝑘𝑖 . The model fit alongside the data is shown in the rightmost
column. Once we have idenitifed this part, we fix the corresponding parameter, 𝑘𝑖 , and run the sensitivity analysis for YFP output. We identify
all parameters that YFP is sensitive to. The corner plot shows the posterior distributions of each parameter alongside their correlations with a
75% confidence contours. 36



Characterization of integrase and excisionase activity IWBDA 2022, October 24-26, 2022, Paris

BxB1-CFP
pTet

Transcription
Translation

D
e

g
ra

d
a

ti
o

n

Integrase 

Activity

attL attR

YFP
pConst attB attP

attL attR
attB attP

attL attR

Integrase and Excisionase Enzyme-Mediated 

DNA Recombination in TX-TL
A

attB attP

YFP

YFP

attL attR

P7

P7

BxB1-CFP
pTet

Xis-mScar
pTet

attB attP

YFPP7

YFP

attL attR
P7

Xis-mScar
pTet

Compiled CRN

Simulation and sensitivity 

analysis using Bioscrape
B

E. coli cell extract 

and energy buffer mix

Model Reduction using AutoReduceC

YFP sensitivity in full model

CRN model (M5) with

30 states & 54 parameters

Excisionase 

Activity

 Flipping Mechanism #1

Flipping Mechanism #2

Degradation

CRN model (M5)
with 30 states

ODE model (M6) with 
conservation laws 

ODE model (M7) 
w/ 𝑇𝑖 ,𝐶𝑖1 ,𝐶𝑖 ,𝑇𝑒 ,𝑇

at QSS

ODE model with
𝐶𝑖 ,𝑇𝑖 ,𝐶𝑎 ,𝑇𝑒 ,𝐶𝑖1 ,𝑇

at QSS

ODE model with 
𝐶𝑖2 ,𝐶𝑖 ,𝑇𝑖 ,𝑇𝑒 ,𝐶2

at QSS

1-step TL
ODE model

1-step TX 
ODE model

Excisionase 
mechanism #1 

switched off 

Minimal model (M8) with
1-step TX-TL, excisionase 
mechanism #2, and QSSA

Total: 5 states

2. Conservation Laws and QSSA:
AutoReduce

3. Context Abstraction:
BioCRNpyler

4. QSSA:
AutoReduce

1. CRN model:
BioCRNpyler

Analysis at each step:
Bioscrape

Excisionase 
mechanism #2 

switched off 

0.25 0.50

0.25

0.50

Figure 4: Mathematical models for excisionase expression and activity in TX-TL. (A) Modeling excisionase action using BioCRNpyler. We
obtain a CRN for the circuit with both integrase and excisionase in TX-TL by describing the circuit specifications in BioCRNpyler. (B) shows
the simulation for the CRN model. We use the identified integrase parameters to predict the excisionase activity. We observe that as more
excisionase is expressed, YFP expression falls down. The sensitivity of each parameter in the CRN model with time is shown in the sensitivity
analysis heatmaps. (C) Using AutoReduce, we obtain different levels of reduced models for the integrase-excisionase system.
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A. Median Integrase (CFP) & Excisionase (mScarlet) Expression and Activity (YFP) in TX-TL

B. System Identification By Parts Using Bioscrape
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Figure 5: Experimental data and system identification by parts of integrase and excisionase expression and activity in TX-TL. (A) Median
background-subtracted fluorescence data for integrase-excisionase circuit in TX-TL. We observe that as more integrase is added, more YFP
is expressed until the maximum possible expression is reached at 1.5nM integrase. With higher excisionase levels, we observe a decreasing
gradient of YFP levels. (B) To identify the model parameters, we set the previously identified integrase mechanism parameters and update
those accordingly to account for various loading effects. In the second iteration, we infer the parameters for the mScarlet expression. Finally,
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1 INTRODUCTION AND AIMS
Our aim for this work is to develop a generalisable method
for fluorescent protein (FP) calibration, that could be used by
any group wishing to calibrate fluorescence readings on mi-
croplate readers, from arbitrary or relative units to molecular
units. While methods for conducting calibrations with small
molecule fluorophores are available, for this work we were
interested in using fluorescent proteins directly as calibrants.
We reasoned it should be possible to develop a simplified pro-
tocol for fluorescent protein purification, that allows users
to directly calibrate their instruments using the same FPs as
present in their cellular assays, in order to ensure that the
values obtained from calibrated experimental measurements
directly reflect the number of protein molecules present per
cell.

2 METHODS AND RESULTS
An overview of the FPCountR fluorescent protein calibra-
tion protocol is illustrated in Fig. 1. Calibrants are produced
by a bacterial overexpression and a subsequent preparation
step, followed by the production of a dilution series sub-
jected to two assays. The calibration of plate readers with
fluorescein has traditionally been conducted using a dilution
series of known concentrations of fluorescein, subjected to a
fluorescence assay in the plate reader whose calibration is
desired (measurement of relative fluorescence units, RFU).
The results are used to relate fluorescein molecule number
to RFU to obtain a conversion factor, which can in turn be
used to convert RFU readouts from experimental data into
MEFL units [1]. For protein calibrants produced in-house,
the process is identical, but one additional assay is required,
for protein concentration determination.

Calibrant preparation does not require protein
purification
Initial versions of our FPCount method included a straight-
forward protocol for the purification of FPs. However, if the
requirement for protein purification could be eliminated,
the majority of the cost and labour of calibrant preparation
could be removed, and it would enable those without prior

experience of protein techniques to feel confident in pro-
ducing reliable calibrants. However, most assays developed
for protein concentration determination are general assays
that detect all proteins. The requirement for protein concen-
tration determination therefore appeared to necessitate the
purification of FPs.

As light absorption is crucial to their performance, all
widely-used FPs possess a literature-recorded extinction coef-
ficient (‘EC’) measurement corresponding to light absorption
at their peak (‘max’) excitation wavelength (Fig. 2A). Sus-
pecting this might be adapted as a novel ‘ECmax’ assay for
protein concentration, we established using purified FPs that
this was in fact the best performing assay in terms of both
accuracy and sensitivity. Indeed, it had one extra potential
advantage over traditional methods: it did not in principle
require the FPs to be pure. To investigate this, we lysed cells
expressing different FPs (mCherry and mTagBFP2), sepa-
rated the soluble fractions and concentrated them. Putting
these through an ECmax assay and fluorescence assay, we
observed it was possible to quantify FPs in crude lysates with
high sensitivity, and to obtain almost identical conversion
factor values as from our purified FPs (Fig. 2B). Calculated
conversion factors were within 20% of expected values from
purified FPs and showed high precision (coefficients of vari-
ation between 0.06-0.12).

Automated analysis of fluorescent protein calibration
We have developed an automated analysis pipeline to accom-
pany the experimental protocol (based in part on the flopR
package [5]). The analytical steps involved in the calculation
of conversion factors are illustrated in Fig. 1. After a prepara-
tion of a serial dilution, two measurements are taken of the
calibrants, one to determine protein concentration and the
second to determine fluorescence. In order to obtain protein
concentrations using the ECmax assay, the collection of data
on the entire absorbance spectrum (200-1000nm), rather than
just at the peak absorbance wavelength, is required. This al-
lows for the correction of path length and the removal of light
scatter. The raw data is processed by two consecutive R func-
tions: plot_absorbance_spectrum() and get_conc_ECmax().
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Helpfully for automation purposes, a database of FPs has
recently been developed ( [6], https://www.fpbase.org/). As
each FP in FPbase is associated with a structured set of prop-
erties, including its extinction coefficient (ECmax), we can
automate its retrieval using the FPbase API.

Quantification of proteins in E. coli as molecules per
cell
Using the above calibration, along with a few amendments
to take into account autofluorescence and cell-based fluores-
cence attenuation, it was possible to convert plate reader data
from engineered E. coli growth assays into molecules per cell.
For example, using a p15A vector, we found that mCherry
abundance varies between about 900 to 70,000 molecules
per cell. While the FP abundances were in the same order
of magnitude, mTagBFP2 accumulated to higher levels per
cell than mCherry by 3.8-fold on average. Using OD as a
measure of the cumulative cellular volume in a culture [7],
FP abundance could even be calculated in molar units instead
of molecules per cell.

3 CONCLUSION AND SUMMARY
We have shown that it is possible to develop a simplified
method for direct fluorescent protein calibration without
requiring protein purification, by using a simple absorbance-
based assay that allows accurate FP quantification in crude
cell lysates. This method, FPCountR, allows for the quanti-
tative characterisation of synthetic E. coli parts and circuits
using any FP, in molecules per cell or even as molar con-
centrations. Further details of the method development are

available in our preprint [4]. We have made both the ex-
perimental protocol [3] at https://www.protocols.io/view/
fpcount-protocol-in-lysate-purification-free-proto-bzudp6s6
and analytical workflow [2] at https://github.com/ec363/
fpcountr (including a worked example of the package func-
tions), available as open resources.
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Figure 1: Overview of fluorescent protein calibration workflow using FPCountR. A calibration workflow is described (left),
followed by a demonstration of how this calibration can be used to convert experimental data from arbitrary fluorescence
units per optical density into molecules per cell (right). The calibration workflow consists of a wet lab protocol (top, available
on protocols.io) and an analysis package (bottom, available on GitHub). Figure created with Biorender.com.
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Figure 2. Absolute FP calibration in lysates. A. Absorbance spectra of mCherry (red) and mTagBFP2 (blue) showing FP-specific 
absorbance at their respective ECmax wavelengths. B. Performance of ECmax assay in calibrations using cell lysates, as compared to 
using purified proteins. C. mCherry and mTagBFP2 expression, induced at a range of arabinose concentrations, and quantified in a 
calibrated plate reader. Data was processed with FPCountR.
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Figure 2: Absolute FP calibration in lysates. A. Absorbance spectra of mCherry (red) and mTagBFP2 (blue) showing FP-specific
absorbance at their respective ECmax wavelengths. B. Performance of ECmax assay in calibrations using cell lysates, as
compared to using purified proteins. C. mCherry and mTagBFP2 expression, induced at a range of arabinose concentrations,
and quantified in a calibrated plate reader. Data was processed with FPCountR.
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1 INTRODUCTION
One major aim of the Fourth Industrial Revolution or In-
dustry 4.0 is viable and sustainable manufacturing. In this
context, bioproduction is playing an important role [5, 8].
It is a field of production which applies biology to produce
goods of interest using biological systems as factories [4].
Among all the bioproducts, proteins represent an important
class. Indeed, they can be used in many fields of our daily life,
including medicine or pharmacy, but also in industry where
enzymes can be used to transform a wide range of substrates
into a variety of products [8]. Proteins can be easily produced
in yeasts. Yeasts provide unique advantages, including the
ability to secrete proteins [3, 7]. Protein secretion is a feature
of great interest for bioproduction purposes because it could
simplify the downstream processes and purification steps [7].
In this framework, however, the real-time tracking of the
quantity of secreted proteins is desirable to have good con-
trol of the bioprocess, leading to the necessity to automate
measurements.

Here, we present an innovative and general pipeline for
quantifying secreted proteins based on the use of magnetic
beads which allow a simplified method to separate secreted
proteins from cells. Specifically, it is based on fusing the POI
(Protein Of Interest) with a purification Tag, that binds its
partner present on the magnetic beads. Then, the level of
bounded protein could be measured either by using fluores-
cent reporters fused to the POI or through other labeling
assays. Thus, by mixing the beads with the cell culture, only
the protein dissolved in the culture medium will be captured
by the immuno-beads. Then, applying a magnetic field, the
beads linked to the POI will be trapped in the vial, whereas
the cells will be free to be moved into another vial or wasted.
After this washing, the beads will be resuspended and sent to
a flow cytometer, which is now able to recognize the particles
and read their fluorescence.

∗Corresponding author. † Both authors contributed equally to this research.

2 A BEADS ASSAY FOR SECRETED PROTEIN
QUANTIFICATION

Principle of the method
A common approach to measure secreted proteins is to fuse
them with a fluorescent reporter [2, 6]. However, in these
techniques, cells will produce the POI already fused with the
reporter becoming fluorescent as well. Therefore, separating
cells from the supernatant in which the secreted proteins are
present is a key step in these methods. Another weakness
of this practice is the detection: the single proteins are too
small to be sensed by common instruments, such as the flow
cytometer, which we chose for its sensitivity.

To make this technique feasible through the use of the
flow cytometer, we developed a protocol in which we make
use of agarose-based microbeads covered with antibodies
that recognize and bind to a common epitope in the different
POIs (Figure 1.B). To this end, we built a genetic construct
in which the POI is fused, at the C-terminal end, to a fluores-
cent reporter (mNeonGreen), in turn, fused, at the C-terminal,
to three consecutive copies of the FLAG tag, which is the
common region we selected, as shown in Figure 1.A. Subse-
quently, cells secreting this construct are grown and a sample
of this culture is incubated with the magnetic beads covered
with anti-FLAG antibodies. During the incubation, the se-
creted construct will make contact with the agarose-based
beads allowing the binding between the FLAG tag and the
anti-FLAG antibody, while the proteins still inside the cells
will not be visible by the beads. At the end of the incubation
time, using a magnetic field, the beads are separated from
the cells and passed through the flow cytometer, as shown
in Figure 1.C (steps from 2 to 5).

Gating criteria
Despite the washing step to separate beads and cells, a mix-
ture of both will be sent to the instrument for detection. How-
ever, the two types of particles have different light scattering
properties. Therefore, they can be separated computationally
by gating on the forward/side scatter, as shown in Figure 1.C
(step 6).
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Ratiometric measurement
The binding capacity of the bead might vary among different
batches, and even among single beads in the same sample.
This can add unwanted variability and heterogeneity to the
measurements, reducing the reproducibility among different
experiments. Another source of variability among the ex-
periments is the incubation time which might influence the
binding of the beads with the proteins into the supernatant.
Finally, also the manipulation by the operator can affect the
outcome of the protocol, also because of the viscosity of the
beads mixture.

To overcome these drawbacks, we implemented a strategy
termed ratiometric measurement. It consists of mixing the
sample to be measured with a known concentration of a
second fluorescent reporter (Figure 1.C - step 1). This reporter
should be built exactly as the POI construct to have the
same binding properties. Thus, the ratio between the POI
fluorescence and the known fluorophore is computed. In
this way, due to the fact that all the samples contain the
same concentration of the reference protein, the differences
between samples are due only to the variation of the POI.

Automation
Since the pipeline has been developed, we are integrating
it into the ReacSight strategy [1]. Furthermore, we are au-
tomatizing the protocol by using the automatic pipette of
the Opentrons OT-2 robot equipped with a magnetic mod-
ule that allows the separation of the magnetic beads from
the cells. This integration will enable us to perform online
secretion measurements throughout the experiments.

To this end, it is important not only to develop the code
which controls the OT-2 robot but also to adapt the proto-
col to the requirements of the robot itself. Specifically, the
washing step performed by the robot is less efficient than
that one performed by a human operator. This means that
more cells will be sent to the flow cytometer together with
the beads, decreasing the total number of beads analyzed
and worsening the statics. Moreover, as explained in [1], our
cells are mostly optogenetically-induced and, therefore, the
incubation step is performed in the dark, to avoid further
secretion during this time. This is not completely possible
in the robot. Therefore, we analyzed the effective needs of
the incubation for this pipeline. The preliminary results we
have on this side are very promising.

3 CONCLUSIONS
We developed a method to measure secretion levels in a
quantitative and standard manner, by using fluorescent re-
porters, monoclonal antibodies bound to magnetic beads
and a flow cytometer. This method will allow us to measure

secretion levels directly from cell culture, without an a pri-
ori separation of supernatant. We also assessed the issue of
the variability inherent to the characteristics of the beads
by performing ratiometric measurements. Finally, we start
to automatize the protocol by dealing with the problems of
bead concentration and incubation time.

This innovative pipeline can become a useful tool for both
research and industrial bioproduction.
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Figure 1: An assay to quantify secreted proteins directly from the culture media. (A) An example of protein construct compatible
with this assay. The secreted POI is fused to a fluorescent reporter followed by the FLAG tag purification peptide. (B) The
Anti-FLAG antibodies attached to a 4% agarose magnetic bead will allow the capture of the secreted POI. (C) The developed
assay is performed according as follows. (i) A sample of the culture medium is mixed with a known concentration of a second
fluorophore (i.e. mCerulean) with the same binding capacity. (ii) The solution containing the magnetic beads is added to the
mixture. (iii) The 1-hour incubation will allow the beads to capture the secreted proteins. (iv) Beads are partially washed by
applying a magnetic field. (v) The washed beads are passed through a flow cytometer. (vi) The data analysis pipeline allows us
to further filter the dataset by separating beads from cells, by considering the different light scatter properties. In the forward
light scatter (FCS-HLin) versus the side light scatter (SSC-HLin) graph here represented, the blue line separates the ratio that
distinguishes beads from cells. The green line restricts the gating to those events higher than the maximal SSC observed for
cells. The red line shows the threshold set for the binding capacity of the beads, below which beads show reduced fluorescence.
The events within the blue area correspond to the majority of cells, while the events in red are considered as beads.
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1 INTRODUCTION
A synthetic biology project, in particular gene circuit design,
typically requires the capability to build an extensive library
of DNA constructs in order to explore the genetic design
space. Recently, Modular Cloning (MoClo) or Type-IIS assem-
bly method has received serious attention in the synthetic
biology community for its capacity to facilitate rapid assem-
bly of hundreds of genetic constructs in a standardized and
automated fashion.

While there has been a variety of different MoClo stan-
dards introduced in the past few years [1, 4, 5], most of
them have varying degrees of compatibility and are aimed
at specific organisms. Here, we introduce a MoClo-based
vector design named JUMP (Joint Universal Modular Plas-
mids) that aims to improve the existing MoClo standards,
by combining the compatibility of commonly adopted vec-
tor standards, such as PhytoBricks, BioBricks, and Standard
European Vector Architecture standard (SEVA). JUMP is a
flexible framework because it is easy to add new features
at any assembly stages via two secondary sites flanking the
main insertion chassis. As JUMP is built upon SEVA back-
bones, it is also easy to exchange its origin-of-replications
(OriV) and antibiotic resistance (AbR) genes, making it sim-
ple to generate a wide variety of vectors with various OriV
and AbR combinations. In total, we have created a library of
10 OriV and 5 AbR, and this ever-growing toolkit can still
be expanded.

Additionally, we have also developed an open-source soft-
ware package that can be used to design and create an assem-
bly plan with the simple click of a button, further assisting
the quick assembly of a large number of genetic constructs
using JUMP. We demonstrate this capability with a case
study of building combinatorial assembly of a synthetic gene
circuit.

2 RESULTS
Detailed design for the JUMP vectors can be found from [3].
In short, JUMP is a Modular Cloning standard where multi-
ple genetic parts can be assembled through different levels
of hierarchy facilitated by standardized 4-base overhang con-
ventions, and alternating Type-IIS restriction enzymes and
antibiotics resistance markers, in this case using the combina-
tion of BsaI and kanamycin for the odd-level, and BsmBI and
spectinomycin for the even-level. Basic JUMP-compatible
genetic parts, termed level-0 parts, are stored in a backbone

Figure 1: Schematic of JUMP vector. A. Basic SEVA vector con-
sisting of cargo, antibiotic resistance gene, and origin of repli-
cation in a modular format. B. JUMP extends a SEVA back-
bone by having a main modular insertion cassette flanked
by two additional secondary sites, separated by BioBricks
affix, makes it compatible to BioBricks and SEVA standards.
Digestion into the cloning sites can be done with BsaI/BsmBI
for the main site, AarI for the upstream site, and BbsI for the
secondary site. All 4-base overhangs that dictate the assem-
bly position follows PhytoBrick standard. Image is adapted
from [3]

with ampicillin resistance. The secondary sites are located
downstream and upstream of the main insertion site, and
are divided by the BioBrick prefix and suffix. Cloning into
these region can be done at any level using other Type-IIS
enzymes, i.e., AarI and BbsI, respectively. Figure 1 illustrates
the schematic of the JUMP vector.

On top of a modular vector design, JUMP is accompanied
by a dedicated software package that helps facilitate rapid
assembly of large-scale genetic constructs. In general, there
are 3 supported functionalities:

(1) Domestication of genetic parts from template plasmids
or synthetic DNA to make JUMP compatible level-0
parts using a universal acceptor vector. This includes
removal of any internal restriction sites for all enzymes
required for using JUMP. Users need to provide the
sequence annotation of parts they want to create, and
any template files if they want to amplify those parts
out of other plasmids, otherwise synthetic DNA frag-
ments will be recommended. If parts amplification is
preferred, a list of primers and PCR parameters will
be generated.

(2) Simulation of JUMP assembly in-bulk. Users need to
provide a tabular file consisting the list of genetic con-
structs assembly plan, and their corresponding plasmid
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Figure 2: JUMP assembly software user interface. A. Domes-
ticating genetic parts B. Simulating JUMP assembly plan. C.
Design automation of a more complex gene circuit. Shown
here is an example of automating the design of a 4-input
AND gate using split-intein mediated logic AND gate library
from [2].

maps. The software runs exhaustive check to match
the part overhangs given the selection of a restriction
enzyme (i.e., BsaI for the odd-level, and BsmBI for the
even-level). If desired, new plasmid maps and their vi-
sual SBOL abstraction can be automatically generated,
given the perfect match of the part overhangs.

(3) Design automation of higher degree of synthetic gene
networks, e.g., combinatorial assembly of gene circuits
design. Users can choose a selection of predefined gene
circuits (e.g., multiple input AND/OR/NAND/NOR logic
gates, full-adder, MUX-and-DEMUX, etc.), gate libraries,
and combinatorial assembly strategy (e.g., whether or
not to permute the gene positions and/or promoters).
The software then will generate an assembly plan that
can accommodate required genetic constructs to ex-
plore the desired genetic design space.

For each functionality, the JUMP software can generate an
experimental plan that can either be performed by hand (e.g.,
a spreadsheet containing primer design, PCR reaction param-
eters, pipetting plan, etc.) or be executed by an automated
platform (e.g., Python script for Opentrons OT-2). Figure 2
illustrates the user-interface of the JUMP assembly software.

3 DISCUSSION
This work aimed to facilitate rapid assembly of genetic con-
structs for a large scale synthetic biology project via a modu-
lar and flexible vector design paired with a design automation
software. We have developed a broad range of vector library
(with various OriV and AbR) that are compatible with the
PhytoBricks, BioBricks, and SEVA standards. Along with
JUMP, we created an open-source tool that can enable in-
stant experimental plans that can be executed directly in the
lab, either by hand or via automated liquid handling plat-
forms. We demonstrated the practicality of this approach
through a real project in designing a large number of genetic
constructs to investigate the design space of synthetic gene
circuits. In the future, it will be interesting to see this ap-
proach to be adopted in different synthetic biology projects,
such as metabolic engineering, biosensors, etc.
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1 INTRODUCTION
Synthetic biology is pushing the boundaries of what is pos-
sible with genetic engineering and has the potential to rev-
olutionize human health and industry. This potential for
great benefit, however, is accompanied by the potential for
harm due to accidental or malicious release of genetically
engineered organisms.

Prior to the IARPA FELIX program, there existed no dedi-
cated biosurveillance tools for detecting genetic engineering,
and efforts to evaluate whether DNA was engineered re-
lied heavily on time-consuming analysis by subject matter
experts (SMEs). While there were tools for screening DNA
synthesis orders for pathogenic or toxin-encoding sequences,
these approaches focus on detecting known dangerous se-
quences [1] and cannot detect engineering that is novel or
not directly harmful.

As part of the Guard for Uncovering Accidental Release,
Detecting Intentional Alterations, and Nefariousness (GUAR-
DIAN) project, we have developed and integrated tools that
use a variety of artificial intelligence (AI) and machine learn-
ing (ML) techniques to screen sequence data and individual
cells for signatures of engineering. Our whole-genome se-
quencing analysis system uses an ensemble approach based
on the guiding principle that no single approach is likely to
be able to detect engineering with perfect accuracy. Critically,
ensembling enables GUARDIAN to detect foreign sequence
inserts in 13 target organisms with a high degree of speci-
ficity that requires no SME review.

2 RESULTS
As part of an independent Test & Evaluation (T&E) during
FELIX, we used GUARDIAN to analyze 100 samples listed
in Table 1. We calculate that GUARDIAN’s ensembled detec-
tion of samples with foreign inserts has a sensitivity of 0.62
and a specificity of 0.95, as compared to a slightly higher
sensitivity of 0.65 and a considerably worse specificity of 0.8
for SME review (see Figure 1). SME review consisted of team
members evaluating the outputs of GUARDIAN’s modules
and calling a sample engineered on that basis, while ensem-
bling involved automated comparison of module outputs and

calling a sample engineered based on a voting algorithm (see
Methods). SME review took 5 days to complete, whereas our
ensembled approach took less than 2 hours. Finally, rather
than sample species or another factor, it appears that insert
length and the proportion of engineered cells had the great-
est effect on GUARDIAN’s performance. If we exclude 19
out of 23 false negative negatives based on GUARDIAN’s
apparent limits of detection (insert length >1000 bp, dilution
>5.35∗10−5), then its sensitivity rises from 0.62 to 0.9.

3 METHODS
As shown in Figure 2, GUARDIAN ensembles output from
six modules. BGAF assembles and taxonomically classifies
genomes from Illumina short-read and Nanopore long-read
sequencing data, then analyzes these genomes and passes
them on to HMM, N-Gram, and BED-DD for their anal-
yses. The outputs of all four assembly-first modules are
then ensembled with the outputs of the reads-first modules
JHUARDIAN and Targeted Search. GUARDIAN’s approach
to ensembling involves grouping modules’ output regions
of interest (ROIs) for a sample based on their pairwise se-
quence similarity. ROIs are DNA sub-sequences that have
been identified by a module as potentially engineered. If two
ROIs are sufficiently similar, then their groups are merged.
GUARDIAN then calls a sample engineered if it has at a
group of at least two ROIs produced by different modules.

JHUARDIAN
JHUARDIAN is a bioinformatics pipeline that includes tax-
onomic classification with Kraken [7], read mapping with
Bowtie [3], read assembly with MEGAHIT [4], and annota-
tion with BLAST. JHUARDIAN can be used to filter out reads
that map to the reference genomes for organisms present
in a sample, or it can be used to filter in reads that map to
plasmids in UniVec. JHUARDIAN calls annotated regions
engineered based on taxonomic mismatches with the host
and keywords such as “synthetic,” “artificial,” or “cloning.”
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Targeted Search
Targeted Search is a read analysis pipeline that uses the
Burrows-Wheeler Aligner (BWA) [5] to map reads to a cu-
rated list of target sequences commonly used in genetic en-
gineering and to the reference genomes for our target organ-
isms (Table 1). Targeted Search calls a sample engineered if
it contains sufficient reads mapping to its target sequences.

BGAF
The BBN Genetic Anomaly Filter (BGAF) pipeline includes
whole genome assembly with Abyss [6] from short reads and
Prymetime [2] from short and long reads, taxonomic classi-
fication and read mapping with BBN’s FAST-NA tool, and
annotation with BLAST. FAST-NA uses a probabilistic data
structure known as a Bloom filter to determine whether short
sub-sequences in sample contigs are definitely unnatural or
may map to the reference genome for a target organism in
Table 1. BGAF then constructs ROIs from any unnatural sub-
sequences and calls them engineered based on their BLAST
results against NCBI (looking for suspicious keywords) and
the target sequences used by Targeted Search.

HMM
The HMM pipeline uses Hidden Markov Models (HMMs) con-
structed from the aligned reference genomes of our target
organisms (Table 1) to compute HMM scores for sample as-
semblies and flag ROIs with high scores. The HMM pipeline
calls samples engineered based on their overall HMM score
and the results of BLASTing their ROIs against UniVec, fil-
tering hits against an exclusion list of plasmids that matched
the genomes of our target organisms.

N-Gram
The N-Gram pipeline uses n-gram language models con-
structed from the reference genomes of our target organisms
(Table 1) to compute sequence entropy scores for sample
assemblies and flag ROIs with high scores. N-Gram filters
ROIs by BLASTing them against NCBI and removing any
that match the sample host taxon. N-Gram then calls the
remaining ROIs engineered based on their entropy score and
their BLAST results against UniVec and the target sequences
used by Targeted Search.

System Requirements
We created Docker containers for each of our system modules
to make the system easier to run. Most modules are written
in Python, though some modules such as BGAF use libraries
written in C or Perl. To process 100 samples of varying size,
the system required 14,900 CPU hours (< 72 hr elapsed time
with parallel processing of samples) and 17.9 TB of disk
space. A significant portion of this was required for genome
assembly (∼11,600 CPU hr and ∼4.6 TB of disk space).

4 DISCUSSION
Complex metagenomic samples in which engineering signa-
tures were highly diluted by diverse natural DNA sequences
proved to be the most difficult for GUARDIAN to detect. In
this case, the most effective modules were JHUARDIAN and
Targeted Search, in part because these modules could analyze
raw sequencing reads directly without requiring a potentially
intractable genome assembly as a pre-processing step. To
better handle complex samples in the future, new tools are
needed that can similarly analyze reads first. In addition, it
would be beneficial to develop enhanced signature-based de-
tection of engineering, since the large space of unsequenced
natural DNA can limit the effectiveness of anomaly-based
approaches to detect unnatural sequences.

Beyond engineering detection, our work could also be
extended to “reverse compile” engineering signatures into
putative design specifications. Such a biological decompiler
would seek to match known design motifs to predicted se-
quence features such as promoters and protein coding se-
quences. This could enable detection of engineering based
on the relative order and organization of different types of
sequence features, even if their individual engineering sig-
natures are small. It would also enable investigation into the
purpose or attribution of an organism’s engineering.
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Table 1: IV&V Organisms and # of Samples

Organism w/ Insert w/o Insert
A. thaliana 1 1
B. subtilis 7 3
C. freundii 2 1
E. coli 11 3
Influenza A 1 2
O. oncorhynchi 0 1
O. sativa 3 1
P1 Phage 0 1
P. aeruginosa 2 4
P. putida 3 1
Rabies lyssavirus 0 1
R. toruloides 2 1
S. cerevisiae 10 4
S. enterica 8 1
T7 Phage 0 1
Y. lipolytica 2 1
Bacteria mixture 0 3
Bacteria+yeast mixture 0 6
Metagenomic soil 4 2
Metagenomic gut 4 2

Figure 1: True positive (TP), false negative (FN), false positive
(FP), and true negative (TN) sample counts and for detecting
samples containing sequence inserts using SME review (left)
and automated ensembling (right).

Figure 2: Overview of the GUARDIAN system.
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INTRODUCTION
Structure-guided design holds much promise for engineering
biology with software suites like Rosetta [6] having already
proven useful for the de novo design of a range of different
proteins. This includes antibodies with engineered specificity
towards targets of interest [1] and custom three-dimensional
protein structures [9]. A particularly interesting application
of structure-guided protein design is finding optimal loca-
tions for the insertion of functional domains, or even whole
enzymes, into the backbones of molecular machines like poly-
merases. Such an approach has already been employed to
augment the function of Cas enzymes, improving the editing
capabilities of CRISPR-Cas systems [7].

Historically, structure-guided design has been limited by
a dependence on experimental structure data, such as from
Cryogenic Electron Microscopy (Cryo-EM) or X-ray crys-
tallography, which is expensive to produce [4]. A solution
to this issue is to use recent advances in computational pro-
tein structure prediction. For example, AlphaFold [4] is now
able to accurately infer the structure of many proteins from
sequence alone. Using AlphaFold-derived structures for ra-
tional design of proteins could vastly expand the range of
possible designs and is especially valuable when working
with proteins that are difficult to crystallise.

Here, we present the Structurally Informed Modifications
of Protein Loops for Insertions of Functional Entities (SIM-
PLIFE) workflow which integrates AlphaFold-predicted struc-
tures with the protein grafting capabilities of Rosetta to help
automate the augmentation of proteins with new functions.

THE SIMPLIFE WORKFLOW
SIMPLIFE was created to aid in the insertion of functional
domains into a globular protein backbone, while retaining
function of both insert and backbone. Designing an insertion
would usually require some parameter optimisation specific
for each input structure, as well as some prior knowledge
on which parts of the backbone can be altered. With SIM-
PLIFE, prior knowledge is not needed because the workflow
involves a step to rapidly graft and score the insert domain
into every single loop of the backbone structure. SIMPLIFE is
therefore an agnostic screening tool that returns only loops

for which the insertion is energetically favourable. SIMPLIFE
is implemented by four shell scripts that run XML scripts
for Rosetta or Python code for AlphaFold for a particular
input. The major steps in this process are shown in Figure 1.
Two files are required as input, one containing the backbone
protein, and the other the domain to insert. Either file can
be submitted in a PDB format (if structural data is available)
or as a FASTA protein sequence file. For FASTA formatted
inputs, AlphaFold is used to predict a 3D structure of the
input. All structures go through a minimization and relax-
ation step, along with some Rosetta-specific preparation of
the input structures. The user is then prompted to specify
which region of the input insert domain structure should
be grafted into the backbone protein. Grafting is then per-
formed by the CCDEndsGraftMover [1] via Rosettascript [3].
Filters are applied to the resulting pose to ensure the insert
has favourable surface availability and overall energy scores.
Structures passing this stage are further refined by remod-
elling the region of the grafted structure most proximal to the
insert, using FastDesignMover [2]. Since the grafting process
is generally unable to obtain loop closures, the Rosetta tool
ChainBreakFilter are used to score the bond-lengths between
backbone and insert. These Rosetta-derived structures are
then submitted to AlphaFold to predict a final structure with-
out chain breaks. The AlphaFold structure is also compared
to the Rosetta generated structure to validate the output.

APPLICATION TO T7-RNA POLYMERASE
T7 RNA polymerase (T7 RNAP) is commonly used for tran-
scribing heterologous genes due to its high processivity and
orthogonality to the endogenous gene expression machinery
of production hosts. For these reasons, we chose T7 RNAP as
an input structure to demonstrate the SIMPLIFE workflow.
PDB entry ‘1h38’ was used as a high-resolution crystal struc-
ture for T7 RNAP [8], and as an insert domain we selected
DogTag, a protein tag that has been optimised for strong in-
loop protein-protein interactions to the DogCatcher binding
protein [5].

Of the 883 residues in the ‘1h38’ structure, SIMPLIFE iden-
tified 297 residues as potential insertion sites that were not
annotated as part of any secondary structure. Inserting the
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Grafting script
Runtime: 314 sec/output
Input: 883 x 10 sequences
Output: 37 sequences  
 
 

Input protein insert 
and backbone

Generate protein 
model with AlphaFold

Automated cleanup & identification of loops

AnchorGraftMover:
Graft of domain into every permissible loop

Filter based on energy socres and SASA

FastDesignMover: 
Redesign/refine residues proximal to insert

Alphafold prediction of final design, comparrison 

Finalised insertion design (PDB format)

PackRotamer and minimise

Score sequences based on chainbreak score

AlphaFold script
Runtime: 4860 sec/output
Input: 37 sequences
Output: 9 sequences  
 
 

PDB PDB 

FASTA

Crystal-derived
AlphaFold-derived

SASA 
score

Passes filter

Fails filter

Insert

PDB: 1h38

Figure 1: Overview of the SIMPLIFE workflow. (Middle) Schematic of the major workflow steps. The two main scripts for the
workflow are shown in grey boxes and their respective runtimes for Oracle Cloud Infrastructure shown. (Left) At the filter
stage of SIMPLIFE, scoring the Solvent-Accessible Surface Area (SASA) can be used to evaluate the degree to which the DogTag
domain (marked in red) is buried within the polymerase structure itself. A passing structure from the filter (purple) will result
in the DogTag domain being able to freely interact on the surface of the polymerase, compared to a non-passing structure
(green). (Right) The highest-scoring structure using a crystal structure-derived input protein (magenta) and AlphaFold-derived
input (cyan). The prediction in both cases favour insertion at residue 97.

DogTag domain into each site yielded 37 different structures
across 19 different insert positions that passed the filter crite-
ria. An optional filter was used to score the solvent-accessible
surface area (SASA) of the insert (filter passed if score > 2200),
which was implemented to ensure that the position of the
DogTag would be on the surface of the engineered poly-
merase to ensure it was available for binding to DogCatcher.
These 37 structures were modelled using AlphaFold, yielding
a total of 9 final output structures from the workflow with
an acceptable similarity between the Rosetta and AlphaFold
outputs (RMSD < 5).

SIMPLIFE was run on a high performance computing
(HPC) cluster using the Oracle Cloud Infrastructure (OCI),
provided and funded by the Oracle for Research program
to allow for GPU acceleration. Using the HPC cluster, the
total runtime for each successful structure was around 5400
seconds, with specific runtimes for most time-consuming
scripts shown in Figure 1.

Running the SIMPLIFE workflow on either crystal-derived
or AlphaFold-derived input structures led to near identical
results. For 1h38, the same insert sites were suggested for
both inputs, with a slightly lower energy score of -2681.7
for the best candidate from the AlphaFold-derived model.
Furthermore, the AlphaFold-derived structure did not con-
tain any residue gaps, unlike the crystal-derived structure.
These features make the AlphaFold-derived input structure
a favourable alternative.

CONCLUSION
We have shown that SIMPLIFE is able to identify multiple
permissible sites for domain insertion into T7 RNA poly-
merase and that both crystal and AlphaFold-derived input
structures yield similar results. We are currently experimen-
tally verifying these computationally generated designs.
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1 INTRODUCTION
Computation has become an essential tool in life science
research. Synthetic biology, metabolic engineering and in-
dustrial biotechnology make no exception to that trend. As
for genetic circuits, there are plenty of software tools to assist
the biosynthetic pathway design process [20]. Brie�y, from
a given target compound and a given chassis strain, the �rst
step consists of doing retrosynthesis [2, 4, 8, 9, 17, 19, 29]
to �nd metabolic reactions that link the target compound
to the native metabolites of the host strain. The result of
retrosynthesis is a metabolic map and there is a need in a
second step to enumerate the pathways linking the chassis
metabolites to the target [5, 15, 21, 22, 24]. The third step is
to �nd the most promising enzyme sequences catalyzing the
metabolic reactions. Once the pathways have been annotated
with enzyme sequences, they can be ranked in a fourth step
with some metrics [4, 7, 16, 19]. In addition to the enzyme
identities, there are multiple layout solutions and settings
to engineer the top-ranked pathways. The �fth step deals
with promoters, order and RBS strength combinatorics by
making use of tools such as the RBS calculator [26] to com-
pute RBS sequences for di�erent strengths, and design of
experiments (DoE) [6, 23] to sample the space of possible con-
structs, which can be very large. Several computational tools
can be used to perform a sixth and last step of DNA assem-
bly design before constructing the pathways [1, 14, 18, 28].
Engineered pathways are generally evaluated using HPLC or
mass spectrometry analyses [11, 25]. Considering the above,
we are clearly at a stage where the pathway engineering
process is not that far from being fully driven by computer
software products. However, there are several hurdles that
prevent this from happening even for tools covering pathway
design only. First, the tools are not easily �ndable, they are
stored in di�erent places and the keywords to search online
are not obvious. Secondly, some of the tools are di�cult to
access, some requiring registration, purchase, or access fees.
Thirdly, almost none of the tools are interoperable and cannot
be chained one after another to ensure that computational
experiments are communicated well, and hence reproducible.
Lastly, and perhaps most problematic for wider acceptance,

∗Both authors contributed equally to this research.

the tools can be di�cult to comprehend, requiring a level
of expertise that limits their use by a large community. Sci-
enti�c work�ows help to address these issues by providing
an open, web-based platform for performing �ndable and
accessible data analyses linked to experimental protocols
for all scientists irrespectively of their informatics expertise,
along with interoperable and reproducible computations re-
gardless of the particular platform that is being used [31].
Indeed, without programming skills, scientists that need to
use computational approaches are impeded by di�culties
ranging from tool installation to determining which param-
eter values to use, to e�ciently combining and interfacing
multiple tools together in an analysis chain. Among existing
work�ow platforms, Galaxy is a system originally developed
for genome analysis [12] which now includes more than 8500
tools that can be found in the public ToolShed [3].

2 RESULTS
Here, we introduce the Galaxy-SynBioCAD web portal, the
�rst Galaxy set of tools for synthetic biology, metabolic en-
gineering and industrial biotechnology, fully integrated into
automatic pipelines. The portal is a growing community ef-
fort where developers can add new tools and users can eval-
uate the tools performing design for their speci�c projects.
The tools and work�ows currently shared on the Galaxy-
SynBioCAD portal cover an end-to-end metabolic pathway
design and engineering process from the selection of strain
and target to automated DNA parts assembly and strain
transformation. All work�ows are available from our in-
stance (galaxy-synbiocad.org) or any instance of Galaxy (by
installing tools from the ToolShed). To develop an integrated
ecosystem, we selected software applications from among
the computational tools mentioned above. Several criteria
were used for this selection: (i) the tools needed to be rele-
vant for pathway design and engineering, (ii) be published,
(iii) open-source under MIT, GNU GPL, or related licenses,
(iv) well documented and deposited in GitHub, (v) make
use of standard input/output, and (vi) exist as a standalone
command-line tool. Within a work�ow, each tool connected
to one or more tools must share common �le format for data
exchange, i.e. each output �le of a tool has to be compat-
ible with the input �le format of downstream tools in the
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work�ow. The �le format relies on the nature of the data
(e.g. metabolic model, construct design, ranked properties)
and the implementation choice made for each tool. Among
the standard formats used, some are rather generic (CVS,
TSV, JSON) while others are more speci�c to a scienti�c �eld
(e.g. SBOL, SBML). The selected tools can be divided in three
categories: (i) those aimed at �nding pathways to synthesize
heterologous compounds in chassis organisms (RetroRules,
RetroPath2.0, RP2Paths, rpCompletion), (ii) thoses aimed at
evaluating and ranking pathways (rpThermo, rpFBA, rpRe-
port, rpViz, rpScore) and (iii) those related to genetic design
and engineering (Selenzyme, SbmlToSbol, PartsGenie, Opt-
DOE, DNA Weaver, LCR Genie, rpBASICDesign, and DNA-
Bot). Following FAIR principles [26], all selected tools are
open source with code available on GitHub and installable
through the Conda package manager [29]. Therefore, any
user can install the tools needed on their own computer and
run these as standalone programs or chain them together to
process more complex calculations. To go further in chain-
ing tools, three types of Galaxy work�ows are available on
the Galaxy-SynBioCAD portal: 1) a Retrosynthesis work-
�ow to enumerates the pathways enabling the synthesis
of a given target chemical in a host chassis organism (Fig-
ure 1); 2) a Pathways analysis work�ow to score and rank
the pathways produced through Retrosynthesis based on
multiple criteria (Figure 2); 3) two Genetic design and engi-
neering work�ows (Figures 3, 4) that produce assembly plans
(Golden Gate [10], Gibson [13], LCR [30] and BASIC [27])
for plasmids encoding the pathways generated by the Ret-
rosynthesis or Pathway analysis work�ows. We illustrated
our work�ows by designing and engineering a library of 88
pathway variants designed to produce lycopene in E. coli
DH5-alpha on Opentrons liquid handlers. The Galaxy work-
�ows were executed from four di�erent workstations (in
France and abroad) demonstrating the ability of the Galaxy-
SynBioCAD portal to run work�ows (including robot drivers
with di�erent labwares) at di�erent sites, and consequently
the possibility of completing multi-partners design and engi-
neering projects.
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Figure 1: RetroSynthesis and Pathway Enumeration work�ow. (A) The work�ow of tools for retrosynthesis and pathway
enumeration. Tools can be chained manually by running each tool one after the other in a command-line terminal. Outputs of
each tool (�les) can be directly given as inputs of the others without any other processing. (B) The work�ow menu at runtime
in the Galaxy interface. The user speci�es the genome scale SBML model of the host organism and the InChI structure of the
target molecule. The user can also change the default settings for each tool by clicking on its name. The RetroRules entry has
been set as default for convenience. The work�ow generates a collection of heterologous pathways for target production in
separate SBML �les. (C) The work�ow as displayed in the Galaxy work�ow Editor.
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Figure 2: Pathway Analysis and Ranking. (A) Work�ow of tools for pathway analysis and ranking. (B) The work�ow menu
upon executing it within the Galaxy interface. The user speci�es the GEM SBML model of the host organism and the set of
pathways to rank (here we can choose the output of Retrosynthesis work�ow). The user can also modify default parameters of
each tool by clicking on its name. The work�ow generates a collection of heterologous pathways which are scored and ranked.
(C) The work�ow as displayed in the Galaxy work�ow manager.
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Figure 3: Genetic Design (Golden Gate, Gibson and LCR). (A) Tools can be chained manually by running each tool one after
the other in a command-line terminal. Outputs of each tool can be directly given as inputs of the others without any other
processing. (B) The work�ow menu upon executing it through the Galaxy interface. The user speci�es the pathway (SBML)
that he wishes to build. The work�ow generates assembly plans by using LCR (LCR Genie) or Golden Gate or Gibson (DNA
Weaver). (C) The work�ow as displayed in the Galaxy work�ow manager.
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Figure 4: BASIC assembly work�ow. (A) The three genetic design tools can be chained manually by running each tool one after
the other in a command-line terminal. Outputs of each tool can be directly given as inputs of the others without any other
processing. (B) The work�ow menu upon executing it through the Galaxy interface. The user speci�es the pathway (SBML) that
he wishes to build. (C) The work�ow as displayed in the Galaxy work�ow manager. (D) Architecture of the three �rst constructs
generated by BasicDesign for the lycopene pathway in SBOL format. The view representation is generated using the VisBOL
web service. Squared brackets represent “miscellaneous” parts corresponding to methylated pre�x and su�x linkers (LMS and
LMP) and the plasmid backbone (BASIC_S...). Other parts (promoter, RBS, CDS) are shown using the usual SBOL symbols, the
RBS sequences are coded on standardized UTR-RBS linkers and so form the linkers between the promoter and CDS parts.
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1 INTRODUCTION
Laboratory protocols are used for a wide range of purposes
in research and development, at many different stages, in-
cluding experiment design, execution, data analysis, interpre-
tation, and communication and sharing with other groups
(Fig 1). However, protocols are often difficult to communi-
cate or reproduce, given the differences in context, skills,
instruments, and other resources between different projects,
investigators, and organizations. To this end, the Bioproto-
cols Working Group (https://github.com/Bioprotocols has
developed a draft specification [1] for a unified protocol
modeling language, called the Protocol Activity Modeling
Language (PAML). The PAML data model has been designed
to support the following needs:

• Execution by either humans or machines
• Maintaining execution records and associated

metadata markup
• Mapping protocols from one laboratory environ-

ment to another
• Recording modifications of protocols and the re-

lationship between different versions
• Verification and validation of protocol complete-

ness and coherence
• Planning, scheduling, and allocation of labora-

tory resources

Here we describe recent progress implementing PAML
and demonstrating that it can be translated to and executed
across different laboratory platforms in order to address use
cases presented by the stakeholder community.

2 AUTHORING AND EXECUTING PAML
PROTOCOLS

PAML protocols may be authored using either the pypaml
programming API or the web-based PAML Editor (https:
//pamled.sift.net). The pypaml library implements the PAML
standard in Python and provides modeling, execution, and ex-
porting functionality (https://github.com/Bioprotocols/paml/).
The PAML Editor is a React and Django application built
upon pypaml. It provides a browser-based visual scripting

interface, using activity blocks whose input/output ports are
connected by flows. The PAML Editor is intended for a broad
user-base and does not require significant programming ex-
pertise.

We have also implemented an execution engine as part
of the pypaml library that can directly execute a protocol
through an instrument’s API or via translation into an exe-
cutable format, such as Autoprotocol. The PAML execution
engine uses a token based execution semantics that imple-
ments the UML activity model based upon Petri-nets [2].
Execution involves identifying when each activity should be
executed and processing the flow of input and output tokens
between activities.

3 IMPLEMENTING SPECIALIZED PROTOCOL
EXECUTION FOR MULTIPLE PLATFORMS

The pypaml execution engine uses specialized listeners to
translate protocols into different protocol formats. Current
listener prototypes focus on laboratory automation (Autopro-
tocol) and human-readable “paper protocols” (Markdown).
For example, the Autoprotocol listener translates PAML pro-
tocols into a list of instructions in JSON format operating
on reagents and containers. The Markdown listener renders
written protocols as Markdown documents with hyperlinked
definitions of reagents and containers. Currently, members
of our working group are also implementing specialized lis-
teners for Opentrons and Echo lab robots.

Much recent PAML development has been driven by the
International Genetically Engineered Machines (iGEM) com-
munity. This year, as part of the iGEM interlaboratory study,
teams will exchange DNA constructs and run measurement
assays to assess the reproducibility of the protocol. For this
purpose, we have encoded several PAML protocols for cali-
brated fluorescence measurement in 96-well microplate cul-
tures. This year students will be executing “paper protocols”
generated as Markdown from PAML source. This “crowd-
sourcing” will serve as practical validation of PAML’s ability
to capture and describe relevant details for experimental
execution and reproducibility.
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Figure 1: The PAML common protocol language was developed to support needs of diverse users, including experiment designers,
bench scientists, driver developers, laboratory managers, data scientists, investigators, and publishers (top). The data model
represents the flow of activities and participating elements, including organisms, reagents, labware, scientific instruments,
laboratory automation, and datasets (bottom). PAML enables users to communicate about the operations involving these
elements and partially or fully automate their design, execution, analysis, and interpretation (middle).

Looking forward to iGEM in 2023, our goal is to vali-
date cross-platform execution of PAML by running these
same protocols on Opentrons machines. Toward this end,
the “Friendzymes” iGEM team, which represents an inter-
national, distributed, open science collaboration developed
an Opentrons execution engine. Protocols for PCR and cali-
brated fluorescence measurements have since been encoded
and successfully executed on Opentrons robots in the lab.

Another iGEM initiative related to protocol-sharing has
grown out of a prior collaboration between the Imperial Col-
lege London, Paris-Bettencourt, and Costa Rica teams. These
teams have developed an automated Golden Gate assembly
protocol with Beckman Coulter Echo™ 525 / 550 acoustic
liquid handlers. These teams are currently encoding their
protocol in PAML and implementing a new cherry-picking
listener to the execution engine.

Eventually, these common molecular biology protocols
will be disseminated as PAML on the iGEM Technology Re-
sources web page for use among future iGEM teams and
future members of the remote automation collaborative net-
work.

Our working group has also been collaborating with the
consortium for Standardization in Lab Automation (SiLA).
To demonstrate PAML capabilities for industrial control, we
have developed a pH calibration protocol. This protocol il-
lustrates the capability to adapt a base protocol with variable
inputs (such as the volume of solution to produce) to multiple
scales. It relies upon computational and physical primitives
that calculate quantities, select appropriate labware and in-
struments, mix materials, and alter execution based upon
instrument telemetry.

These ongoing efforts to develop executable PAML proto-
cols for a variety of platforms provide an initial demonstra-
tion that this emerging standard can address many diverse
use cases and challenges faced by existing interlaboratory
collaborations.

4 FUTURE DIRECTIONS
We hope these initial demonstrations will convince others in
the broader community of the value and utility of PAML and
encourage others to contribute. To this end, our Bioprotocols
Working Group is open to any organizations and individuals
with an interest in standardized representation of biological
protocols. We are currently drafting a formal organization,
governance, and fundraising strategy for this community.
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Metabolic networks have largely been exploited as 

mechanistic tools to predict the behavior of a strain in 

different environments. However, the performance of 

this constraint-based modeling approach relies on labor-

intensive experiments to determine media intake fluxes. 

In this paper, we show how neural methods can 

surrogate constraint-based modeling, make a metabolic 

network suitable for backpropagation, and consequently 

be used as an architecture for machine learning. We 

showcase the performance of our hybrid - mechanistic 

and neural - model, fitted with an experimental dataset 

of Escherichia coli growth rates in different media 

compositions, reaching a regression coefficient of 0.76 

on cross-validation aggregated test sets. We expect 

Artificial Metabolic Networks to provide easier discovery 

of metabolic insights and prompt new biotechnological 

applications. 

 

1 ABSTRACT 

The increasing amounts of data available for biological 
research bring the challenge of data integration with 
machine learning (ML) methods, and Synthetic Biology 
and Metabolic Engineering make no exception to this 
trend [1–4]. Metabolic Engineering relies on models that 
predict the phenotype of a strain from its genotype and 
environment. In the past three decades, constraint-
based Metabolic Flux Analysis (MFA) has been the main 
approach to study the relationship between the uptake 
of nutrients and the metabolic phenotype (i.e., the 
steady-state fluxes distribution) of a given organism [5]. 
In some cases, data integration of several -omics 
methods is possible, constituting a state-of-the-art multi-
omics data integration for MFA [6–8]. Naturally, ML 

approaches were developed in order to efficiently 
integrate the data and enhance the predictive power of 
constraint-based models. However, as described by Sahu 
et al., [9] the interplay between MFA and ML is still 
showing a gap: some approaches use ML as input for 
MFA, others use MFA as input for ML, but none of them 
can do both. 

An emerging field, Scientific Machine Learning (SciML), 
aims to develop hybrid models that bridge the gap 
between ML and Mechanistic Modelling (MM) [10]. The 
main advantage of hybrid modeling is to offer models 
that comply well with experimental results via ML, but it 
also takes mechanistic insights from MM (i.e. the stiff 
computations from defined equations). Several recent 
pieces of work developed this kind of hybrid model for 
biological data [11–13]. 

The hybrid model shown here fits in the emerging SciML 
field. Artificial Metabolic Networks (AMNs) bridge the 
gap between ML and MFA by solving linear programming 
(LP) problems for metabolic flux models with a recurrent 
neural network (RNN) that has the same topology as the 
metabolic network itself. By doing so, our model is a 
mechanistic model, determined by the stoichiometry and 
other constraints of classical MFA, but also an ML model, 
as it can be used as a learning platform, with any MFA 
suitable data.  

The use of RNNs for solving optimization problems is a 
long-standing field of research [14] inspired by the 
pioneering work of Hopfield and Tank [15]. In the present 
work, we use one of the most recent and advanced 
pieces of work to solve LP with RNNs [16]. We first show 
the basic design and functioning of AMNs and their ability 
to surrogate MFA, by using simulation data generated 
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with Flux Balance Analysis (FBA) on CobraPy [17] as a 
reference, with different models of different sizes, with 
different inputs (i.e., sets of upper bounds on uptake 
fluxes). Figure 1 demonstrates that in all tested cases 
AMNs produce fluxes close to those computed by FBA.  

We next show that surrogating FBA with neural 
architectures can be exploited for gaining predictive 
power on experimental data. Indeed, after 
demonstrating that AMNs were giving the same results 
as FBA for simulated medium, we next used AMNs for 
characterizing and predicting the growth of E. coli on 
many different real media compositions. To that end, we 
grew E. coli DH5-alpha in 70 different media 
compositions, with M9 as a basis and 10 different carbon 
sources that can be added, between 1 and 4 
simultaneously. Since AMNs rely on neural methods, 
they are compatible with gradient descent methods. By 
back-propagating (through the metabolic network) the 
errors between experimental measures and the model’s 
predicted values, we can fit a set of experimental data to 
a single model. To show the utility of such gradient 
descent on AMNs, the model learned the relationship 
between each medium element concentration and the 
AMN’s input (upper bounds on uptake fluxes) with the 
objective of minimizing the mean squared error between 
AMN-predicted biomass and the actual measured growth 
rate. A classical ANN is the model used to pass medium 
concentrations to uptake fluxes. Figure 2 shows that 
good predictive power is obtained for the growth rate, 
with a Q² of 0.78 on cross-validation sets, these 
performances far outperform those obtained by the 
CobraPy FBA solver (Fig. 2C). 

In classical MFA, plausible flux distributions can be found 
by measuring fluxes and imposing constraints on them. 
With AMNs, we avoided costly experimental flux 
determinations and found plausible flux distributions by 
learning the consensual metabolic behavior of an 
organism in response to a set of environments. We also 
learned the relationship between medium nutrient 
concentrations and the actual nutrient uptake by the 
bacteria, eventually revealing complex regulations from 
E. coli’s environment to its ideal metabolic phenotype. 
Added to the possible unveiling of biological mechanisms 
linking an organism’s environment to its metabolic 
phenotype, AMNs can also be exploited for industrial 
applications. Indeed, since one can design any objective 
function to optimize with AMNs, they can be used to 
search optimum media for the bioproduction of 
compounds of interest as well as new decision-making 
devices for the multiplexed detection of metabolic 
biomarkers or environmental pollutants. 

More details about this abstract can be found on bioRxiv. 
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Figure 1. AMNs accurately surrogate FBA by iteratively propagating fluxes through the metabolic network.  (A) A toy network 

is composed of 4 metabolites and 5 fluxes. (B) Schematic iterative unrolling of an AMN at the start (l0) only v1 (TPI) intake 

fluxes is populated (C) AMNs predicted biomass vs. FBA calculated biomass on the same inputs. (D) Validation set regression 

coefficient R² improves logarithmically with the number of iterations (t), with upper bounds (UB) or exact values on uptake 

fluxes as inputs (No UB).

Figure 2. Experimental growth rate fitted with AMNs.  (A) An AMN is coupled with a prior-ANN (with weights W) for predicting 

the steady-state fluxes distributions (including the growth rate) from medium elements concentrations. (B) Regression coefficient 

on cross-validation test sets for the architecture depicted in (A) trained on 73 experimental nutrient concentrations and 

corresponding growth rates. (C) Regression coefficient obtained with a FBA approach for same experimental nutrient 

concentrations (nutrients uptake fluxes’ upper bounds are set to an arbitrary large value. 
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1 INTRODUCTION
Data formats for representing DNA sequences differ in the
complexity of the information they can encode. While FASTA
and GenBank are ubiquitous within fields ranging from ge-
netic engineering to molecular biology, these can only rep-
resent limited information and the static nature is counter
productive to the iterative nature of synthetic biology. For
instance, these formats cannot capture non-DNA elements,
connections (e.g., repression between a regulator and a pro-
moter sequence) and hierarchical information. However, the
Synthetic Biology Open Language[5] (SBOL) is a data format
specifically developed to represent all of the types above
(and more), which are highly relevant to synthetic biology
efforts. SBOL is not commonly used, partly due to the lack of
methods to bridge existing representations (e.g., GenBank)
to more information-rich formats (e.g, SBOL). This issue un-
derpins our work, where we present a user-friendly method
to bridge that gap.

Several methods and tools exist for the specification of
new designs, such as SBOL Visual[1], ShortBOL[2] and many
programming language packages[6]. However, processes to
retroactively enhance existing data have been explored much
less. Currently, the most common approach for bringing ex-
isting non-standard designs into a standardised workflow is
converting the data into a basic standard representation, for
example, translating Genbank into SBOL. However, these
processes require considerable pre/post-processing because
certain data elements will be partially encoded or missing
as they cannot be specified within older formats. For exam-
ple, a hierarchical design structure fundamental to synthetic
biology cannot be encoded within Genbank because of the in-
herent flat layout. A recent tool, SYNBICT [8], aims to enrich
genetic designs by matching and swapping elements with
existing and known templates. Our approach infers data by
expanding user-provided input and uses network methods
to automatically modify designs accordingly.

Networks are at the core of our approach because, unlike
the free-text-based formats, networks are dynamic structures,
resulting in much higher levels of interrogation, manipula-
tion and integration of multivariate data. In order to build
networks out of circuit designs, data is represented in the
form of nodes (individual points of data) and edges (rela-
tionships between the data) [4]. For example, when building
networks from circuit designs, a repression relationship edge

links two nodes representing a regulator protein (e.g. aTc)
and its cognate promoter (pTet)[3].

When design data is represented, the network is multi-
variate, i.e. multiple types of information are captured in
a single network. Therefore, the data must be structured
according to a known model because the relevance of con-
nections between data cannot be quantified computationally.
Knowledge graphs are networks that model a real-world en-
vironment. Practically where metadata comprises semantic
labels and rules are established around how nodes can con-
nect. The ability to capture noisy real-world information in
a structured domain allows more abstract and unanticipated
questions to be asked, resulting in the ability to perform a
more comprehensive analysis.

Here, we explore the specification of genetic designs via a
network-centric approach. The focus is on integrating addi-
tions into the original dataset, including the method to infer
new data automatically when using abstract projections.

2 RESULTS
Network Representation
Before any inference or integration of new data can be ap-
plied to the design, the data is represented as a network. No
inference of information that is not explicitly defined in the
original data is made; instead, the approach simply restates
the current data into a knowledge graph. To display the pro-
cesses involved, we will take an existing GenBank encoded
design (0x87 [7]) as an example to illustrate graph-centric
data integration. Figure1A translates GenBank annotations
into a set of unconnected nodes, including metadata. Cur-
rently, the resultant graph contains the same information as
the Genbank but can be edited more efficiently.

Integrating new data from multiple projections
Networks are dynamic and can be manipulated to present
particular aspects of a dataset, allowing the individual editing
of specific aspects of the data. Two examples follow.

Adding structural information. Figure 1A is the result of
translating the design from Genbank into a network and
does not contain information on how entities are physically
or conceptually structured. Therefore, the first additions will
specify the hierarchical tree of conceptual entities (devices
and circuits) and physical entities (biological parts). Figure
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1B displays the output of adding edges denoting possession;
for example, Betl-NOR contains the part Ptet. The addition
of structure will be automatically applied to the underlying
SBOL structure, and therefore the enhancements are inte-
grated without requiring manual input.

Adding functional information. Another type of data that
Genbank designs cannot capture is functional data, i.e. how
entities interact. Figure 1C is the output where protein, in-
put regulation and non-genetic entity nodes are added and
combined with interaction data such as regulatory and tran-
scriptional processes. Like the structural additions, the data is
automatically integrated into the underlying SBOL structure.

Inferring data. The key advantage of developing genetic
designs when represented as a knowledge graph is that net-
work analysis can be performed to infer data. Knowledge
graphs follow structural rules on what data (nodes) can con-
nect and what data must be present. However, not all the
information is relevant to all representations, but the infor-
mation must be added to ensure consistency of the underly-
ing model. Therefore, required elements of the design can be
added automatically despite this information not explicitly
being defined. Graph traversal is a fundamental process in
network science and finds the path between two or more
nodes or assesses the availability and quality of paths. Here
graph traversal is used to find the most likely object an addi-
tion is targetting. If a protein interaction graph is projected,
the interactions between proteins are not direct and are im-
plicit, i.e. a protein affects previous regulatory mechanisms.
Therefore, pathfinding is required to find the most likely ele-
ment the subject protein affects. Figure 2 illustrates a simple
example of this. The protein interaction graph is projected.

(1) A repression edge between BM3R1 and SprR is stated.
(2) Project interaction graph in reverse.
(3) Perform a breadth-first search from SprR to find closest

Activators (pBM3R1).
(4) Create a repression relationship between BM3R1 and

pBM3R1.
(5) Project interaction graph in reverse.

During this exercise, 68 manual additions were provided, but
the overall dataset grew from 39 nodes and 0 edges to 514
nodes and 1314 edges via inferences made.Therefore the final
amount of automatically inferred data is considerably higher
than the small pool of manual inputs.

3 METHODS
A Genbank encoded design file was used as input for this
example. The GenBank is then automatically translated into
a graph representation where a user would then pick a graph
representation based on the what aspect of the data is being
developed. A user can manually add new edges based on the

projection, which will then be automatically integrated into
the underlying data ensuring the structure is maintained,
and inferences are applied where relevant. Once all additions
are made, the graph can be automatically exported into the
SBOL format.

4 DISCUSSION & FUTURE WORK
Here, we present a process to specify genetic designs via
a network approach focused on inferring data. The ability
to present the design in several ways depending on what
aspect is being developed provides a specification method
that abstracts unnecessary complexity. These specifications
are an initial effort to explore a more automated approach
to design enhancement. A network and knowledge graph
approach can be leveraged to enhance data quality and bio-
logical completeness.

Future
Referential standardisation refers to each biological entity
having a virtual analogue. These external analogues must be
manually embedded within designs, which is seldom done.
Network analysis can identify these virtual analogues by
comparing graph elements within the design to virtual el-
ements. Knowledge graphs do not inherently ensure infor-
mation is biologically accurate i,e, a design may be struc-
turally correct but semantically false. However, design agnos-
tic knowledge graphs can be used to capture and evaluate
correct information, which can then be used to enhance
designs.
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Figure 1: A) Genetic circuit with name 0x1C from Nielsen et al. directly translated from a GenBank file into a network structure.
No connecting information is derived; flat layout by default. B) Adding hierarchical structure by creating groups and connecting
the related physical parts into modules. C) Specifying functional information by adding Protein, non-genetic elements and
mechanisms to regulate input and interactions between physical entities, i.e., transcription and regulation.
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Figure 2: A) Starting with a protein interaction map, the user adds a connection: BM3R1 represses SprR. B) The previous modifi-
cation (adding a repression interaction) modifies the underlying data structure automatically. Network analysis (pathfinding)
is performed on a full interaction graph to find the activators of SprR. The following elements are targets for BM3R1. All this
information is modified and saved into the new design.
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1 INTRODUCTION 
Biosynthesis is a multi-step, enzyme-catalyzed 

process where substrates are converted into more 
complex products in living organisms. Biosynthetic 
pathways refer to the series of biochemical reactions 
that connect two different metabolites. Introducing 
heterologous pathways into an organism allows it to 
produce non-native metabolites. Thus, the design and 
construction of biosynthetic pathways have gained 
attention given their potential to produce valuable 
chemicals at scale. However, due to the huge 
combinatorial possibilities of enzymes and reactions 
that convert one chemical into another, selecting the 
optimal combination of enzymes becomes an arduous 
task.  Computational tools could aid in the experimental 
process at the design stage of engineering to screen for 
the best-performing pathways and downsize the 
pathway candidates pool for wet-lab experiments.  

The enumeration of possible biosynthetic pathways 
has been enabled by the expansive reaction and enzyme 
databases of experimentally elucidated biochemical 
reactions, such as Metacyc [1]. Using such databases, 
we can iteratively apply reversed chemical 
transformation starting from a target product to reach 
precursors native to the host and to discover all possible 
combinations of reactions leading to the target product 
– a concept called retrosynthesis.  

Genome-scale models (GEM) are mathematical 
representations of an organisms’ gene-reaction-
metabolites networks using matrices. Constraint-based 
modeling (CBM) enabled us the quantitatively analysis 
of the reconstructed metabolic networks with 
physiological relevance [2]. By introducing a novel 
pathway into existing GEMs, we can evaluate its impact 
on the biochemical network, as well as the metabolic 
flux channeled towards the production of the target 
metabolite. 

Here, we introduce an automated computational 
design tool integrating retrosynthesis and constraint-

based genome-scale modeling to identify promising 
biosynthetic pathways.  
2 CONTENTS OF THE ABSTRACT 

The design and construction of de novo biosynthetic 
pathways require careful consideration of the metabolic 
context of the host organism. We built an automated 
design tool to guide the construction and engineering of 
de novo biosynthetic pathways to improve the 
production of valuable chemicals through metabolic 
engineering. Here, we’ve developed a user-friendly 
software and interface, SynPath, that integrates the 
retrosynthesis pathway discovery algorithm with the 
analysis of these pathways using genome scale 
modeling and constraint-based flux analysis (Figure 1). 
The pathways are evaluated from theoretical yields, as 
well as from the metabolic burden that the 
heterologous pathways could incur upon the host 
organism. High metabolic burdens lead to undesirable 
physiological changes, placing hidden constraints on 
host growth and productivity [3]. SynPath suggests 
pathway designs that have been experimentally 
validated pathways, such as those for 1,4-butanediol 
and 3-hydroxypropionate. Furthermore, the program 
evaluates multiple pathways simultaneously, allowing 
for the ease of comparing nuances between pathways. 
In the example of 1,3-propanediol synthesis in 
Escherichia coli, the software identified the difference 
using NADP+ and NAD+, a subtle difference that was 
experimentally confirmed[4]. By providing meaningful 
analysis of co-factor balance, the software provides 
additional dimensions to guide the design de novo 
biosynthetic pathways and strain optimization. Finally, 
our software is compatible with the Synthetic Biology 
Open Language, a standardized format for the 
electronic exchange of information of biological designs. 
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Figure1: An overview of the SynPath workflow.  

  

Figure 2: Output page example for the synthesis of farnesene with a maximum of 8 steps. Pathways are listed and indexed, followed by a 
table summarizing calculation results, in which users can sort according to their desired parameter.  There is also an option to download 

pathway information as SBOL documents. 
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Introduction
Diagnostic technologies using knowledge of Clustered Regu-
larly Interspaced Palindromic repeats (CRISPR) and CRISPR-
associated (Cas) proteins are growing in popularity [2]. In
particular, CRISPR Cas12 and CRISPR Cas13 technologies
have generated interest because they are able to act as RNA-
guided sensors for specific nucleic acid sequences. This has
resulted in detection assays for a variety of pathogens [1]
[5]. CRISPR technologies have been the subject of extensive
design and optimisation research for applications in genome
editing [3]. However, limited work has been undertaken to
develop design tools for CRISPR Cas12 diagnostics. In this
abstract, we showcase our process for identifying optimal
CRISPR Cas12 diagnostics through the development of a
scoring system for guide RNAs (gRNAs). We use Hepatitis B
Virus as a test case and report our initial results using this
workflow.

Assay design
We use Cas12’s collateral cleavage activity to generate a sig-
nal when target DNA sequences are present. Figure 1 shows
a pictorial representation of Cas12 collateral cleavage. To
activate collateral cleavage, Cas12 forms a complex with a
gRNA designed to be complementary to the target DNA.
Upon complex formation, this gRNA binds to a complemen-
tary DNA sequence and brings Cas12 into close contact with
the DNA strand. A structural change occurs in the complex
and collateral cleavage is activated due to the exposure of
a nuclease domain. The activity of this nuclease domain is
known as collateral cleavage activity. It is where the Cas12
cleaves nearby DNA, regardless of their sequence. To gen-
erate a signal from collateral cleavage, reporter molecules
made from fluorophore and quencher molecules are joined
by a short ssDNA linker. When there is no collateral cleavage
activity, the proximity of the fluorophore to the quencher
means that minimal fluorescence is observed. However, once
collateral cleavage is activated, the reporter linker is cut and
a fluorescent signal can be measured using the correct exci-
tation/emission spectra. In this way the fluorescent signal
observed can be used as a proxy for the presence of a specific
DNA sequence.

Figure 1: Schematic of Cas 12 collateral cleavage.

Our workflow
To design an optimal diagnostic using CRISPR Cas12, se-
lecting the gRNA used is extremely important. While many
papers detail the use of the CRISPR Cas12 system, we found
that details of how gRNAs were chosen were often lacking.
We propose a workflow (Figure 2) looking at three features
that we believe are essential in creating an optimal diagnos-
tic: conservation of the target DNA, selectivity of the target
DNA and the collateral cleavage efficacy of a gRNA target
DNA pairing. Ideally, we want to combine these three met-
rics so that proposed gRNAs are assigned a score so they can
be ranked against each other in silico.

Our methodology
Conservation scoring. Conservation is the degree to which
the target DNA sequence of a gRNA remains the same across
variants of the target genome. A target with a high conserva-
tion score would be able to detect multiple genomic variants
of the same target. To quantify the degree of conservation
for a particular sequence, we use BLAST to align the target
DNA sequence against variants of the target genome. Af-
ter performing this alignment we score conservation by the
following calculation:

𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = 1 −
∑𝑁
𝑖=1 𝑀𝑖

𝐿𝑁𝑡
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Figure 2: Pictorial representing of the workflow for our scor-
ing system

where M𝑖 is the number of mismatches in alignment i, L is
the length of the target DNA and N𝑡 is the total number
of target organism genomes that the target DNA is aligned
against.

Selectivity Scoring. Selectivity is the degree to which the
gRNA targets the target DNA sequence in the intended target.
A high selectivity score ensures that any collateral cleavage
activity is a true positive result. DNA sequences from non-
target genomes in the sample may trigger collateral cleavage
activity due to sequence similarity with the target DNA and
result in false positive results. We want to minimise this by
choosing gRNAs with high selectivity scores. To quantify
the degree of selectivity of a particular guide, we align the
target DNA for a gRNA against genomes that are likely to
be in the sample. We then calculate:

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
∑
𝑖=1

𝑁𝑀𝑖

𝐿𝑁𝑛𝑡
where M𝑖 is the number of mismatches in alignment i, L is
the length of the target DNA and N𝑛𝑡 is the total number of
genomes of a non-target organism that was aligned that the
target DNA is aligned against.

Efficacy scoring. Efficacy tells us how effective a gRNA is
in generating collateral cleavage. In the absence of existing
theoretic models, we decided to use the fluorescence curves
from collateral cleavage assays as an indicator of the efficacy
of a given gRNA and therefore required experimental data.
From the theoretical model proposed by Metsky et al [4], the
cleavage of the reporter follows first-order kinetics in the
form of:

𝑑 [𝑅]
𝑑𝑡

=
𝑘𝑐𝑎𝑡
𝐾𝑀

[𝐸] [𝑅]
where [R] is the concentration of the not-yet-cleaved re-
porter, [E] is the concentration of the Cas12 gRNA -target

DNA complex, 𝑘𝑐𝑎𝑡𝐾𝑚
is the catalytic efficiency of the particular

guide-target complex, and t is time. We combine 𝑘𝑐𝑎𝑡
𝐾𝑚

into one
term,𝑘 , as a proxy for the efficacy of a gRNA:target DNA pair-
ing. We used automation to perform CRISPR Cas12 collateral
cleavage assays at high throughput using gRNAs designed
for the World Health Organisation reference genome for
Hepatitis B Virus, which generated a data set of 127 gRNAs
for the predictor to be trained on.

Preliminary Results: Hepatitis B Virus case study
Here we show the results for conservation and efficacy of
Hepatitis B Virus. We are currently working on identifying
an optimal selectivity screen for Hepatitis B Virus. As ex-

(a) Efficacy scoring (b) Conservation scoring

Figure 3: Results for gRNA screens for Hepatitis B Virus

pected, we see a range of efficacy and conservation scores.
This highlights the importance of gRNA selection when de-
signing new diagnostics.

Current work
We are currently undertaking a new gRNA screen using the
Salmonella serotype Typhi genome to validate the method
on an independent dataset. This is a good test of the ability
of our efficacy predictor to generalise across target genomes.
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1 INTRODUCTION
The complexity of biotechnological processes has prevented
so far the systematic adoption of the biomanufacturing ap-
proach to bio-based production for many targets of indus-
trial interest [8, 9]. In order to tackle such complexity, some
progress has been achieved through the application of in-
dustrial manufacturing optimization techniques such as 𝐷-
optimal design of experiments (ODoE). Such approaches
have been incorporated into DBTL pipelines [5] to improve
the efficiency of the optimization process. ODoE techniques
are agnostic about the mechanism, and therefore conve-
nient to address design problems in contexts with null or
very scarce a priori mechanistic knowledge. On the contrary,
Model-based Optimal Design of Experiments (MBODoE) re-
lies on the mechanistic model of the process, and ensures
optimality of the design (for a given model and set of param-
eters) [1]. MBODoE, in its original formulation [3], is still too
costly and unsuited for the optimization of biomanufacturing
processes, due to their high levels of uncertainty and com-
plexity. We work on a combined approach for experimental
design that exploits the dynamic mechanistic knowledge
available on the process with statistical methods, being our
ultimate goal finding the global optimal design. As a first
step in this direction, we develop here a comparative method
between a 𝐷-optimal DoE strategy [4] and a MBODoE, and
illustrate it through case studies of relevance to synthetic
biology and biomanufacturing.

2 METHODS
Optimal design of experiments refers to a set of methodolo-
gies that aim to find the experimental conditions, admissible
in their design space, that maximize the information nec-
essary for the estimation of the parameters of predictive
models, while keeping the number of experiments relatively
small, which is often the case in biomanufacturing. To find
these optimal experiments, the Fisher matrix is widely used
in the literature, being a measure of the information con-
tained in an experimental design. Given a response model
with the form:

𝑦 = 𝑦 (𝜉, 𝑝) (1)

where 𝜉 ∈ R𝑘 (𝑘 = number of factors considered) represents
the support point (experimental conditions) and 𝑝 ∈ R𝑛𝑝
(𝑛𝑝 = number of parameters in the model) the parameters to
estimate, the Fisher matrix is defined as:

𝐹 (Ξ, 𝑝) = 1
𝜎2
𝜖

𝑛∑︁
𝑖=1

𝑠𝑦 (𝜉𝑖 , 𝑝)𝑠𝑇𝑦 (𝜉𝑖 , 𝑝) (2)

where 𝜎2
𝜖 is the variance of the error in the estimation, typ-

ically assumed as a Gaussian density independent of the
experimental conditions; Ξ is the matrix of support points,
in which the i-row is the support point 𝜉𝑖 of each of the 𝑛
experiments to do; and 𝑠𝑦 (𝜉, 𝑝) is the sensitivity vector:

𝑠𝑦 (𝜉, 𝑝) =
[
𝜕𝑦 (𝜉,𝑝 )
𝜕𝑝1

, 𝜕𝑦 (𝜉,𝑝 )𝜕𝑝2
, · · · , 𝜕𝑦 (𝜉,𝑝 )𝜕𝑝𝑛𝑝

]
(3)

being 𝑛𝑝 the number of parameters to estimate. Among the
possible metrics, the D-Optimality criterion will be used in
this study, given its good results and ease of calculation.
According to this criterion, the optimal design of experiments
is the result of the optimization problem:

Ξ𝑜𝑝𝑡 = 𝑎𝑟𝑔{ max
Ξ∈Ξ𝑎𝑑

{𝐷𝑒𝑡 [𝐹 (Ξ, 𝑝)]}} (4)

where Ξ𝑎𝑑 corresponds to the experimental design space. It
can be seen that, without losing any generality, the Fisher
matrix depends on the value of the parameters to be esti-
mated. Depending of the structure of the response model
selected, the methodology used is either ODoE or MBODoE.

Optimal Design of Experiments (ODoE). In this case,
the response model is a linear combination of functions
that only depends on the experimental conditions, being
the coefficients the parameters of the model to estimate (LP-
structure). In general, this models can be written:

𝑦 (𝜉, 𝑝) = 𝑝𝑇 𝑓 (𝜉) = [
𝑝1, 𝑝2, · · · , 𝑝𝑛𝑝

]


𝑓1 (𝜉)
𝑓2 (𝜉)
...

𝑓𝑛𝑝 (𝜉 )


(5)

The Fisher matrix that results of the use of this kind of model
only depends on the experimental conditions and can be
computed analytically, with sensitivity vector:

𝑠𝑦 (𝜉, 𝑝) = 𝑠𝑦 (𝜉) =
[
𝑓1 (𝜉), 𝑓2 (𝜉), · · · , 𝑓𝑛𝑝 (𝜉)

]
(6)
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Model Based Optimal Design of Experiments (MBO-
DoE). In contrast with the above, this methodology accepts
all kind of models, independent of its structure with respect
to the parameters, allowing its implementation with complex
models that take into account the mechanistic knowledge
of the problem. In the case of a Non-LP structure model, the
Fisher matrix depends on the value of the parameters and
maybe can not be possible to obtain an analytical expression
of it (as before), being necessary to calculate it numerically.

Implementation. To solve the optimization problem for
ODoE, a quadratic model with bifactor interactions has been
chosen, and the Coordinate Exchange algorithm [6] has been
implemented so that the design of experiments matrix is
traversed element by element, increasing the value of the
D-optimality criterion until some termination criteria are met.
On the other hand, in the case of MBODoE, a mechanistic
approach that approximates the case study by means of a sys-
tem of ordinary differential equations is used. The DETMAX
algorithm [7] has been employed to find the local optimal
design of experiments, taking several initial values of the
parameters in order to achieve (or at least get close) to the
global optimum. Codes implemented in MATLAB are avail-
able at https://github.com/pablocarb/mbodoe and we plan
to make also available a Python version.

3 RESULTS AND DISCUSSION
In order to perform the comparison between ODoE and MBO-
DoE in practical scenarios, we have considered two synthetic
biology and metabolic engineering applications. As a first
case study, we considered a protein expression system where
the dynamics of activated transcription and translation by
an inducer 𝐼 (𝑡) were modeled by the following ODEs [2]:

¤𝑚(𝑡) = 𝐾𝐼 𝐼 (𝑡)
𝐾𝑑 + 𝐼 (𝑡)

− 𝑑𝑚𝑚(𝑡) (7)

¤𝑃 (𝑡) = 𝐾𝑃𝑚(𝑡) − 𝑑𝑃𝑃 (𝑡) (8)
where 𝐼 (𝑡),𝑚(𝑡), and 𝑃 (𝑡) are the concentrations of the acti-
vator, the RNA messenger, and the protein, respectively.

By setting a fixed number of experiments from 5 up to
30, 100 experimental runs were performed for each case
by adding ±10% of Gaussian noise to the output signal. As
shown in Figure 1, mean relative error of the estimated model
in the ODoE decreased with the number of experiments to-
wards the combined effect of noise filtering and the approx-
imation error of the assumed quadratic model. Mean error
results for the MBODoE case, in turn, were mainly influenced
by the noise signal.

As a second case study, we considered a multi-step meta-
bolic pathway where in addition to gene regulation, enzyme
kinetics parameters were introduced into the model. The goal
was to obtain an optimal design, starting from a collection of
enzyme variants with different Michaelis Constant (𝐾𝑀 ) and

turnover rates (𝑘𝑐𝑎𝑡 ). The mechanism for the MBODoE is
represented by a system of Ordinary Differential Equations
based on [4].

In both case studies evaluated, the results show how the
use of a mechanistic model, which attempts to approximate
the phenomenology present in the experiment, greatly im-
proves the quality of the model obtained and therefore can
dramatically reduce the number of required experiments.
MBODoE allows us to extract models from which we can
draw much more accurate conclusions than what would be
obtained with ODoE, for a similar number of experiments to
be performed. As a drawback, MBODoE is more computation-
ally expensive (and might result prohibitive for increasing
complexities with the current implementation). The paral-
lelization and time efficiency of MBODoE are the subject of
ongoing work. As an initial step, here we aimed at a system-
atic comparative to assess the performance of each method,
and our future goal is to advance towards a combined ap-
proach for optimal experimental design.
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I(t) P(t)

Figure 1: Mean relative error per number of experiments for
the ODoE and MBODoE approach for a protein expression
system with inducer activation (central inset).
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 Introduction 

As well as expandability of natural biological systems, 

that of synthetic biological system is derived from huge 

combinatorial search space of biological components 

such as protein coding sequences and regulatory 

sequence. Due to this huge space, in turn, adequate 

design strategy is required in implementation of 

synthetic genetic circuit in cells. One strategy is 

combination of sub-circuit designed in collaborations 

between biology-background and control engineering-

background researchers. Although we had actually 

achieved designed behavior of cells by combination of 

synthetic circuits [1, 2], most area of huge 

combinatorial space was not examined, due to limited 

search performance either of human being or brute 

force search by electrical computer. 

 

Results and Discussion 

 Here, we tried to combine inference machine and 

deep learning to generate and select candidates of 

synthetic genetic circuits.  From synthetic biologist 

view point, a logic programming language such as 

Prolog allows to break down a designed cellular 

behavior into combinations of biological components 

when adequate rule base was prepared.  Furthermore, 

when multiple rules share the same head, variations of 

circuits for the same designed behavior can be 

generated.  Minor variation can be a gene 

overexpression either by addition of an inducer for a 

corresponding transcription activator or addition of 

inhibitor for a corresponding transcription repressor. 

Variation can be at a higher layer of circuit design 

(Figure 1).  In our previous work, inner state of cells 

having a toggle switch was set on a separatrix of the 

potential landscape of the toggle switch by gene over 

expression of both of the repressors of the toggle switch 

[2].  We also found that cells can be set on the 

separatrix by inhibition of expression of the both of the 

repressors.  The strong point of such rule base is that it 

can be expanded by accumulating cases of synthetic 
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biology.  We actually started semi-automatic collection 

of synthetic genetic circuit in synthetic biology 

literatures as described in the last part of this abstract. 

Those literatures are going to be used not only for 

expansion of the rule base, but for the screening of the 

generated candidate. 

Although combinatorial explosion had known to be a 

weak point for generation by inference machine, we 

think that recent development of machine learning will 

allow appropriate screening of genetic circuit generated 

as candidates. Figure 2 shows our design process. Step 

1: generation of candidates. Step 2: Screening by 

comparison of features between a designed circuit and 

each of combat proven circuits in data base. Step 3: 

numerical calculation for various sets of parameters for 

a topology of circuit. This step requires highest 

computational cost in the whole process.  Thus pruning 

or ranking of candidates at step2 is important. Step 4: 

Corresponding to parameters of the screened candidate, 

appropriate biological components are selected from 

database. Step 5: Not only DNA sequence of the 

designed circuit, but design rules used by the Inference 

machine can be read by researchers. 

  Towards the construction of the database for genetic 

circuits, we started collection of network topology 

figures in synthetic biology articles.  For semi-

automated collection of articles, we used machine 

learning of network topology figures of related studies.   

As positive examples, we picked up 116 topology 

figures from 70 articles in ACS synthetic biology.  As 

negative examples, we used figures of 85 ACS 

synthetic biology articles not related to genetic circuits. 

In order to avoid bias, we used similar number of 

negative articles to the positive ones.  After training, 46 

genetic circuit articles from other journals, as well as 

185 negative example papers from ACS synthetic 

biology, were evaluated (Table 1).  Further 

developments will allow more accurate classification. 

Future Directions 

We also started implementation of Prolog code to 

generate candidate circuits and parameters in Figure 1.  

Accumulation of such codes will allow biology- 

background researcher to write new rules for the rule 

base and to implement new circuits showing what life 

could be.  

 
Table 1: Classification of genetic circuit papers 

 percentage 

correctly 

classified 

Positive example 

papers 
61.8 

negative example 

papers 
63.3 
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1 INTRODUCTION
Synthetic biology (SynBio) aims to engineer biological sys-
tems in a predictable and reproducible way. To this end,
software tools are needed to aid researchers to iterate the
design–build–test–learn (DBTL) cycle. The Synthetic Biology
Open Standard (SBOL) is a free and open-source standard
for the representation and electronic exchange of informa-
tion on the structural and functional aspects of biological
designs [1]. The SBOL community has developed an ecosys-
tem of tools for automating and connecting different stages
of the DBTL cycle, such as SBOLCanvas [5], iBioSim [7],
LOICA [6], pySBOL3 [4], SynBioHub [3] and Flapjack [8].
Two of these tools, SynBioHub and Flapjack, are connected
by the software application, the Experimental Data Converter
(EDC), described here.

One critical aspect of the development of synthetic biol-
ogy applications is experimental workflow automation (EWA).
EWA is a set of software tools to capture the underlying in-
formation needed to build and test genetic circuits in a repro-
ducible manner. The use of software is essential to manage
the development of complex SynBio applications. Experimen-
tal data repositories are used to increase the reproducibility
of DBTL iterations. There are several types of experimental
repositories including ones focused on experimental meta-
data and ones focused on experimental measurement data.
They overlap in some ways however they are generally not
connected.

Experimental data repositories that support the build and
test iterations of experimental workflows include SynBio-
Hub [3] and Flapjack [8]. SynBioHub is a web application
that provides a repository for DNA sequences, biological
∗Both authors contributed equally to this research.
†GV, CVC, GYF and TR are supported by the Newcastle University School
of Computing, ANID PIA Anillo ACT192015 and ANID Fondecyt Regular
1211598.
‡SS, JM, and CM are supported by the National Science Foundation Grant
No. 1939892. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the funding agencies.

parts and devices, strains, experimental setup information,
and other metadata (https://synbiohub.org). Flapjack is a
data management system that enables researchers to store,
visualize, analyze, and share genetic circuit experimental
data, including measurement data and corresponding meta-
data (http://flapjack.rudge-lab.org/). Both SynBioHub and
Flapjack are accessible by API frameworks to facilitate de-
velopment and integration with the wider computational
synthetic biology environment.

The current Synbiohub-Flapjack workflow is a manual,
time-consuming process that requires new data imports for
each new experimental context. This is partially due to the
fact that Flapjack’s front-end interface has not yet imple-
mented a bulk upload functionality. Thus, having more than
one assay implies uploading each Excel file individually.

Here we present a new software tool, EDC, for experimen-
tal data capture using Excel, Flapjack, and SynBioHub. The
EDC provides researchers with an Excel template to capture
both experimental results and contextual metadata. These
data are then converted to a uniform data representation
for the SBOL standard and Flapjack’s data model. Through
SBOL, users of the EDC can store experimental results with
sequence, part, and other metadata information. Additionally,
they can retrieve the data and share with others, improving
reproducibility and collaboration.

2 RESULTS
EDC, illustrated in Figure 1, has two parts, the template
spreadsheets and the converter software. The template spread-
sheets are a set of spreadsheets that are designed to fit a wide
range of experimental SynBio data. The spreadsheets are ag-
nostic to the equipment that generated the data allowing the
use of plate readers from different brands, flow cytometers,
or any other equipment. The spreadsheets map all their fields
to standardized metadata represented using SBOL [1] and
the Flapjack data model [8]. The mapping can be modified
by changing the column definitions on the first sheet.
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The converter software was developed to read the spread-
sheets, which upload both the metadata and measurement
data into Flapjack. The metadata in the spreadsheets can also
be converted using the existing Excel-to-SBOl converter [2]
(https://github.com/SynBioDex/Excel-to-SBOL) to a stan-
dard SBOL format. If both pieces of software are used then
the metadata stored in SynBioHub can be linked to study
designs and measurement data stored in Flapjack in future.
The converter software creates Flapjack objects with the
SBOL data representation, pyFlapjack (https://github.com/
RudgeLab/pyFlapjack) and excel2flapjack module (https://
github.com/SynBioDex/Experimental-Data-Converter).

An improved workflow for capturing and representing
experimental data and metadata will be established using
the EDC. An example of this workflow could be as follows: a
researcher designs an experiment with different promoters
to measure gene expression. The researcher builds the neces-
sary plasmids, transforms into a chassis, and tests them mea-
suring fluorescence on a plate reader. Then, the researcher
enters the experimental measurement data and metadata in
the template spreadsheets, manually or in a semi-automated
way. Researchers can then relate experimental measurement
data to the conditions of the experimental study including,
how the DNA was built, the parts used to create the DNA, the
original developer of the parts, and other additional metadata.
Next, the researcher uses the converter software to both build
standardized SBOL objects and upload them to Flapjack. The
same spreadsheet maybe used as the input for Excel-to-SBOL
which supports metadata outputs as standardized SBOL ob-
jects. The SBOL is uploaded to SynBioHub. Representing the
metadata in SynBioHub alongside the measurement data in
Flapjack through the converter enables the analysis of the
measurement data in Flapjack to be more reproducible with
the capture of the study setup, sample designs and other
design data. In this way, the user is able to both identify
the implementations of DNA parts employed in the study,
and access the underlying experimental data results through
links which may be developed for measurement and analysis
data in Flapjack.

3 DISCUSSION
EDC is a new tool that utilizes an Excel template for creat-
ing and uploading standardized experimental measurement
data and metadata. It enables the use of digital data stor-
age through multiple repositories, such as Flapjack and the
associated standards by a wide range of researchers, par-
ticularly those with limited coding skills. Finally, the tool
supports the use of the SBOL standard to capture build and
test experimental data without prior knowledge of SBOL.

EDC supports the creation of new versions of the spread-
sheets that can convert the data into SBOL3 and upload data

to future versions of Flapjack, or other repositories. The ini-
tial spreadsheet templates (for metadata and measurement
data) are provided to researchers in the EDC repository (https:
//github.com/SynBioDex/Experimental-Data-Converter). Fur-
ther information on the development of the spreadsheets is
described in prior work [2].
EDC provides a semi-automated workflow to assist re-

searchers with the transition from the test to the learn stage.
However, more tools and workflows are needed to fully con-
nect the DBTL cycle. In the future, we plan to expand linkage
between SynBioHub and Flapjack repositories by incorpo-
rating an SBOL URI field to all the Flapjack objects and vice
versa to enable more robust storage and sharing of data. We
envision a more connected and automated DBTL cycle in
research laboratories and industry applications. Automation
tools like the liquid handling robots and lab management
systems will automatically capture relevant metadata. This
workflow will coexist with spreadsheet metadata and mea-
surement data capture to improve the reproducibility of ex-
periments.
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Figure 1: Diagram of the existing workflow (A and B) and the new proposed workflow (C) for capturing and connecting
experimental data. A. Workflow for storing experimental data in Flapjack. The data is captured from a plate reader which
delivers the readings in an Excel (xls) file, which is modified to incorporate the missing metadata necessary to be uploaded to
Flapjack, this is then converted to the Flapjack data model and uploaded to the platform through the front-end and stored on
the server. Once the data is stored, it can be viewed or shared. B. Workflow for storing data in SynBioHub. Genetic information
is captured either through sequences obtained from text, GenBank or by using an Excel file. This file is then converted to
an SBOL file by using the Excel-to-SBOL Converter, which allows it to be stored in SynBioHub and subsequently shared. C.
Workflow using the Experimental Data Converter. Data can be obtained from various sources including a plate reader and
fluorescence cytometer, which are then captured in an Excel file. This file is converted using the Experimental Data Converter,
which in turn uploads and stores the experimental measurement data into Flapjack and at the same time generates an SBOL
file with the experimental measurement data and metadata with genetic information that can be stored in SynBioHub.79
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1 ABSTRACT

Automated design of synthetic gene networks relies math-

ematical modeling frameworks used to characterise gene

expression and transcriptional control. Simple deterministic

models such as Hill equations are useful but ignore infor-

mation about population heterogeneity and gene expression

noise. Finding models which faithfully capture such infor-

mation and have mechanistic interpretations that link them

to the underlying genetic processes is still a challenge for

synthetic biology. Here we t probabilistic models to ow

cytometry data to capture information encoded in the noisy

uorescence signals that cannot be captured deterministi-

cally. The models have rough physical interpretations and

we apply these to study context-circuit dependencies with

promising results.

2 INTRODUCTION

Synthetic gene networks have been used to construct genetic

logic circuits from smaller networks known as genetic logic

gates. Combinatorial design using these synthetic networks

can be automated, so long as mathematical models of the in-

dividual gates are available and tted to experimental data[5].

The automated design process therefore relies on signicant

eort in collecting data on the performance of individual

gates in the library, and on the mathematical model chosen

to characterise them.

The robustness of models and characterisations is funda-

mental to the design of genetic logic circuits and the libraries

fromwhich they are built. However they are not robust to the

context to which they are deployed[6]. This is a bottleneck in

the construction of libraries since experimental eort spent

in the optimisation and measurement of the genetic parts

must be repeated for each context in which the library is

used. Model choice also aects robustness, even when using

the library in the context in which it was rst characterised.

Past approaches to characterisation have used determinis-

tic models based on point estimates of data, for example by

tting Hill equations to the medians of samples[5]. This ap-

proach ignores information about population heterogeneity

and noisy gene expression[2], even though these are critical

factors in failures of synthetic gene networks to perform as

expected.

Models accounting for gene expression noise have previ-

ously been developed. Models based on Gamma distributions

can be derived from the Master equation and enjoy phys-

ical interpretations of their parameters [3]. However the

applicability of these models to synthetic gene networks is

challenging because of the broad range of expression levels

they exhibit. In the case of strong transcription the parame-

ters of these Gammamodels do not reect our understanding

of the mechanisms of gene expression [1].

Here probabilistic programs [4] characterise synthetic

gene networks from experimental data obtained in three

dierent contexts. The program adapts previous Gamma

models[3] to include population heterogeneity. These pro-

grams capture information about gene expression noise and

can provide insight into dierences in gene expression pa-

rameters between identical synthetic gene networks in three

dierent plasmid vectors. We present how the inclusion of

population heterogeneity addresses some of the problems

associated with modeling synthetic gene expression using

Gamma distributions while retaining the physical relevance

of the parameters of the model. We aim to investigate how

to use these insights to predict performance dierences be-

tween contexts without experimental data, and to use this

workow for combinatorial design of genetic circuits, using

condence intervals as part of the optimisation.

3 RESULTS

Constitutive expression network

A synthetic gene network was previously designed to consti-

tutively express yellow uorescent protein (YFP), placed into

three dierent SEVA plasmids (pSeva221, pSeva231, pSeva251

in Figure 1A) and transformed into P. putida KT2440[6].

Twelve replicate ow cytometry experimentswere performed

to measure YFP expression from these three dierent syn-

thetic genetic constructs.

The probabilistic program of Equations 1-3 adapts the

Gamma distributed model as a mixture model which include

population heterogeneity in the parameters from Figure 1A.

Markov Chain Monte Carlo methods were used to estimate
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parameters from the ow cytometry data. Fitted models pre-

dict probability distributions of expression and are readily

embedded into other probabilistic programs for combinato-

rial design of more complex networks.

 ∼ LogNormal(1,1) (1)

 ∼ LogNormal(2,2) (2)

 ∼ Gamma( ,  ) (3)

Figure 1B shows the estimates for themeans of the Gamma

distribution parameters for all 36 dierent ow cytometry

experiments. These estimates cluster according to SEVA plas-

mid, and since the parameters have physical interpretations

as the number of expression bursts per cell cycle and the size

of the bursts, these clusters potentially represent informa-

tion on the contextual eects of SEVA plasmids on the gene

network [3].

Induced expression network

Previous networks were modied to express YFP in response

to induction by IPTG[6]. Flow cytometry was again used to

measure expression the three SEVA plasmids and in the pres-

ence of twelve dierent IPTG concentrations, corresponding

to levels of induction of the network. Figure 2A shows the

results of tting of the model to these experiments. It can

be seen that 1
2

increases with IPTG as expected, since tran-

scription rate 1 should increase upon induction. A potential

issue highlighted previously is that 2
1

is also seen to vary

with induction under Gamma distribution models [1], where

intuitively this should not be the case. Here the introduction

of population heterogeneity seems to mitigate this problem,

while retaining the physical interpretation for the parameters

of Figure 1A.

Figure 2A was used to propose the following probabilistic

program for induced gene expression, in which 2
1

is identi-

cally distributed for all IPTG concentrations, and the mean

of 1
2

increases with IPTG concentration according to a Hill

function.

 ∼ LogNormal(1,1) (4)

 ∼ LogNormal(2,2) (5)

 ∼ LogNormal(3,3) (6)

 ∼ LogNormal(4,4) (7)

 () = /( + ) (8)

 ∼ Gamma( ( ) +  ,  ) (9)

Where  is a vector of log transformed IPTG concentra-

tions,  and  are the maximum transcription rates and

the half maximal induction concentration for the ℎ sam-

ple. This model is similar to the constitutive model in that

it is a Gamma distribution, but the shape parameter of the

distribution increases with IPTG concentration.

Fitting produces a probabilistic program predicting the

distribution of gene expression for any IPTG concentration.

An example is shown in Figure 2B for the case of the net-

work in pSEVA251. We suggest this model is more useful for

predicting the eects of noise in combinatorially designed

gene networks.

4 DISCUSSION

Probabilistic programming provides a framework for model-

ing the distributions of synthetic gene networks that makes

full use of available ow cytometry data. The approach also

lends itself well to building complexity by composition of

dierent probabilistic programs to model more complex net-

works. Previously statistical models based on Gamma distri-

butions have been found unsuitable for modeling synthetic

gene networks with transcriptional repression. The networks

have a broad range of expression levels, and it is suggested

that stochasticity of transcription may not be the dominant

source of noise [1] in these cases. Here we modify a Gamma

distribution model to capture heterogeneity in gene expres-

sion parameters at the population level, and t the model to

inducible (rather than repressible) synthetic gene networks

that also exhibit a broad range of expression levels. The re-

sults are more promising in this case, and have reasonable

physical interpretations using the analytical derivation of

the Gamma distribution model from the schematic of Fig-

ure 1A[3]. This physical interpretation is important to make

sense of the dierences in genetic processes between dif-

ferent contexts, which manifest as the context dependent

clusters of parameters identied using the models presented

here.
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Figure 1: A simple synthetic genetic network which constitutively expresses YFP is modeled under a simple scheme shown in
A. It is from this model that the Gamma distribution model of constitutive gene expression is derived. The gene network is
placed in three dierent SEVA plasmids with high, medium and low copy numbers shown in B. The constitutively expressed
YFP from the network is measured in twelve dierent ow cytometry experiments in each of these three contexts. In C the
model of Equations 1-3 is tted to samples from each ow cytometry experiment. Plotted are the parameters 1 and 2, which

correspond to the population means of 1
2

and 2
1

from A. These are coloured according to SEVA plasmid, revealing clustering

of parameter values that can be attributed to the contextual eects of the plasmids.

Figure 2: A synthetic gene network which expresses YFP and is induced by IPTG. This network is placed in three dierent SEVA
plasmids and expression measured under 12 levels of IPTG induction. In A the model of Equations 1-3 is tted to samples from
each ow cytometry experiment, and again 1 and 2 is plotted for each. Three distinct response curves emerge for each of the

SEVA plasmids, where 1
2

(number of transcription bursts) increases with the level of induction. B uses the model in Equations

4-9 tted to the network in pSEVA251 to predict the distribution of YFP expression for any induction level and interpolate
between the particular IPTG level observed in experiment.
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1 INTRODUCTION
Microfluidic devices represent a powerful tool for minia-
turizing processes in the life sciences, including biosensor
deployment and therapeutics screening. These devices are
proposed to reduce the cost, time, and difficulty of automat-
ing experiments. To increase the benefit from small-scale ex-
perimentation, researchers try to parallelize multiple tasks in
a single microfluidic device. However, this process increases
the difficulty of correctly designing, in-silico validating and
controlling the devices. Compared with the traditional itera-
tive procedure, this proposal provides a new conceptual inter-
active workflow for designing and controlling microfluidic
devices. This workflow has lower costs and fewer iterations
using an explicit “simulation” module. The new workflow
can provide feedback to help refine the biochip design in the
interactive design stage. For the interactive control stage, the
workflow provides manual control instructions, automatic
software for controlling hardware pumps, and real-time con-
trol responses so that users rely less on microfluidic expertise
and experience. In general, this workflow and future sup-
porting software will benefit researchers with reproducible
experiment control instructions, confidence, and less costs.

2 MOTIVATION
The quality of a microfluidic device design depends on many
conditions, like the geometric parameters of the components
inside, the layout of microfluidic components, etc. The tradi-
tional iterative procedure includes 7 steps:

(1) Start the experiment with a problem
(2) Specify the ideal microfluidic device architecture
(3) Design the microfluidic device for experiments
(4) Build the device
(5) Testthe physical version of it
(6) Execute experiments on it
(7) Archive the final design for future use

Researchers published many different approaches to help
solve some specific problems in the 7-step procedure, like
auto-design algorithms [2] for the Design stage, fabrication-
aid design tools for the Build stage [3], and control tools [1]
for the Execute stage, etc. However, the lack of an in-silico
validation stage makes it hard to find the potential logic error
inside a complex design before testing the fabricated device.

After physical validation, the researchers have to redesign
the devices if they find an unacceptable error inside the de-
vice, which makes a costly DBT loop among the 3 stages:
Design, Build, and Test (Figure 1). To reduce the cost and
increase the confidence with the microfluidic experiments,
we propose a Simulation module for the traditional proce-
dures to provide a visual check prior to the Build stage and
a real-time control approach to the devices.

3 METHOD
In this conceptual workflow, the Simulation module only ac-
cepts 3 types of input files: Design, User requirement (UR) and
Constraint. A UR describes the goal of an experiment on the
biochip as a starting and ending location. Constraint specifies
the state of a single Control-layer Component or logical rela-
tionship between multiple Control-layer Components. From
the figure 1, there are two bi-arrow connections between
the Simulation module and the traditional workflow, we call
them pre-fabricate (interactive design) and post-fabricate
(interactive control).

We make interactive design possible by providing verifi-
cation feedback according to the UR and Constraints when
users want to check their current design. Users will get an
error feedback if the Simulation module finds conflict among
Constraints, Design, and UR (CDR Conflict). If no CDR Conflict
appears, to make the verification result more convincing, it
will provide a visual simulation result on the GUI for the user
to check. After the users accept the result(s), the Simulation
module can generate an automated hardware script and man-
ual control instructions to the Execute stage. Thus, users can
reduce the cost by figuring out the operation details before
fabricating and validating the physical device.

For the post-fabricate interaction, the Simulation module
can provide a real-time actuation response on the Control-
layer Component when the users modify the device on the
GUI after connecting hardware, software and microfluidic
devices together. All the changes are transformed as mod-
ified UR and Constraints, then the Simulation module will
perform the verification and simulation again. If a CDR Con-
flict appears, users can identify and correct it on the GUI. If
not, users can visualize the simulation result on the GUI and
the same physical changes on the device.
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Figure 1: The black box shows the traditional procedure of doing an experiment on a microfluidic device. Some stages in the
black box can go back and forth in practice, but the sequence in logic is shown as above. The red box shows additional analysis
coming after we import a new module called “Simulate”. To reduce the cost in the DBT loop (shown as a cycle), we add the
Simulation module into the traditional procedure. The interaction between the traditional stages and the Simulation module is
through file transfer. The detailed I / O information between the two boxes can be found in Figure 2.

Figure 2: I/O Details in the workflow. I: input for the Simula-
tion module, O: output of the Simulation module. Only two
stages have interactions with the Simulation module.

4 CONCLUSION AND FUTURE WORK
This proposal provides a new conceptual interactive biochip
design workflow to reduce the cost, increase user confidence,
and improve experiment robustness, even if users are not
experts in microfluidics. Similar to the pre-silicon test in elec-
tronic chip design, this workflow provides possible experi-
ment results or errors given the Design, User requirement, and
Constraints. Users can check their designs in this workflow
and make changes according to the feedback. Additionally, it
provides an automated hardware script and manual control
instructions to help the users complete their experiment,

which also makes the whole workflow reproducible and ro-
bust. After connecting software, hardware, and devices to-
gether, users can get real-time responses on the device when
they make changes on the GUI. Finally, we will build a system
to implement this interactive design and control workflow.
We believe this system can benefit both inexperienced and
experienced researchers. Our newbie-friendly system allows
inexperienced users to make mistakes and practice at a lower
cost. Experienced microfluidic researchers can use it to learn
more about their experiments before fabricating the devices.
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1 MOTIVATION
One of the most common tasks in synthetic biology is build-
ing genetic constructs by assembling smaller parts. Despite
this commonality, however, there is often much confusion
when practitioners communicate about parts, sequences, and
build plans. Parts often go through many stages during a
build process, each with a different sequence. For example,
a fragment of DNA may be synthesized as an insert into
a vector backbone, then digested out of that backbone and
assembled together with other fragments to produce a final
construct. At present, without a shared standard for describ-
ing build plans, it is often difficult to tell which stage a given
sequence is describing, leading to frequent confusion, errors,
difficulty sharing information, and waste.

We address this problem with a standard vocabulary for
describing build plans, which we have further mapped into
a concrete representation using the SBOL 3 standard [4].
Specifically, we target representation of assembly based on
digestion and ligation, supporting at least BioBricks As-
sembly [6] and Type IIS assemblies like GoldenGate [1],
MoClo [7], and GoldenBraid [5]. The resulting vocabulary
should be useful to practitioners no matter what tools or
representations they may be using, while representation in
SBOL 3 provides full details for use by software tool builders.

2 STANDARDIZING TERMINOLOGY
Our first target of standardization is the terminology used
for describing DNA at different stages of build planning.
Developing this vocabulary was motivated by challenges
in developing the iGEM 2022 distribution, where we found
many miscommunications between collaborators about how
sequences related to our build plans (e.g., did a sequence
already include flanking sequences, was this what should
be synthesized or what it would look like after insertion
into a backbone, etc.). To this end, we have proposed the
following definitions, cleaving as closely as possible to pre-
existing patterns in descriptions, and aligning with typical
digestion/ligation build planning as shown in Figure 1:

• Part: Design for a single contiguous linear DNA con-
struct with a completely specified sequence.

• Unitary Part: Any part that is not designed with ref-
erence to an assembly, often but not always having a
well-defined role such as a CDS or promoter.

• Composite Part: A part designed as the composition
of two or more other parts through an assembly plan.

• Assembled Part: A part, plus any 5’ or 3’ flanking
scars, in the post-assembly context of a composite part.

• Scar: A sequence that is produced by the combination
of flanking sequences in an assembly.

• Backbone: A DNA construct into which parts are
intended to be inserted at one or more designated in-
sertion sites (often, but not always, a circular plasmid).

• Drop-Out Sequence: A portion of a backbone at an
insertion site that is removed when a part is inserted
at that site. Some backbones include drop-out parts
while others do not.

• Part Insert: A part, plus any 5’ and 3’ flanking se-
quences, that is intended to be placed into a designated
insertion site of a backbone.

• Part in Backbone: A backbone with at least one in-
sertion site where a part insert has been incorporated.

• Part Extract: A part, plus any 5’ or 3’ flanking se-
quences, that has been extracted from a part in back-
bone as part of an assembly process.

• Assembly: A plan for combining a set of parts in order
to build one or more composite parts.

In the iGEM Engineering Committee, we found that agree-
ing on this common terminology greatly reduced the amount
of confusion, and use of these terms has become common-
place in our multi-institution collaboration.

3 REPRESENTING ASSEMBLY PLANS IN SBOL
To facilitate better tool support for planning and commu-
nicating build information, we mapped the vocabulary and
build plans shown in Figure 1 onto the SBOL 3 standard [4],
which we found to provide all of the concepts necessary
for a succinct representation. Here we present a summary
of key points; full details are available as SBOL Best Prac-
tice Proposal (BPP) 001 in the SBOL Examples collection at
https://github.com/SynBioDex/SBOL-examples/pull/4.
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Figure 1: Proposed build terminology, illustrated on a typical digestion/ligation build workflow: a unitary part is extended with
flanking sequences needed for assembly to create a part insert that can be synthesized or assembled into an insertion point on
a backbone to produce a part in backbone ready for assembly. Digestion produces a part extract that can be ligated together with
other part extracts to produce a composite part in backbone, including the original part as an assembled part in its final context.

In this representation, each part is an SBOL Component,
and the distinction between a unitary part and a compos-
ite part can be made by using the prov:wasGeneratedBy
property to link any composite part to a prov:Activity
representing an assembly plan, as described below. An as-
sembled part within the composite part is represented by an
appropriate Feature (typically a SubComponent), and sim-
ilarly a scar is a SequenceFeature with its role set to the
Sequence Ontology (SO) term for assembly scar.

A backbone is also represented by an SBOL Component,
but has a role indicating its use as a backbone, such as
SO:plasmid_vector. An insertion site or drop-out sequence
is indicated using a Feature with the corresponding role,
respectively SO:insertion_site and SO:deletion. Part in
backbone and part insert are much the same, represented
with a Component that includes a SequenceFeature for each
restriction site (with SO restriction site terms), while a part
extract will typically have features for overhangs.

Finally, an assembly plan is represented by a prov:Activity
with appropriate typing and a link to an SBOL Component
describing the network of digestion and ligation reactions for
the assembly. Each reaction can be described by an Interaction,
with each reactant, enzyme, and product a Participant. Di-
gestion uses type SBO:cleavage, with the part in backbone
and enzyme having role SBO:reactant and the part extract
having role SBO:product. Ligation uses type SBO:conversion,
with the part extracts and ligase being the reactants and the
composite part in backbone being the product. Many com-
posite parts will be described with just one digestion/ligation
stage, but a more complex assembly may have multiple di-
gestion and ligation stages and may have multiple products.

4 FUTURE DIRECTIONS
The proposal has met with general consensus during commu-
nity review and is currently in process of being adopted as a
best practice officially endorsed by the SBOL community. A
full supporting Python API is currently being implemented
for the SBOL Utilities library (https://github.com/SynBioDex/

SBOL-utilities). This implementation is intended to form the
basis for integration of these representations with laboratory
automation. Finally, while the current proposal has been
worked out specifically with regards to Type IIS and Bio-
Bricks assembly methods, we believe it is likely to extend
well to other assembly methods as well, such as Gibson As-
sembly [2] or Ligase Cycling Reaction Assembly [3], though
certain details will likely need to be adjusted.
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1 MOTIVATION
As DNA synthesis becomes cheaper and more accessible,
there is a corresponding increase in opportunities for syn-
thesis of dangerous pathogenic sequences by either mali-
cious or careless actors [2–4, 6, 8]. To mitigate this threat,
major DNA synthesis providers screen sequence orders for
pathogenic content, following guidance from the US Depart-
ment of Health and Human Services [9] and the International
Genome Synthesis Consortium (IGSC) [7].

Current methods for screening, however, have been un-
able to scale sufficiently to keep up. The current dominant
method for screening is to evaluate sequence homology, us-
ing BLAST (or similar) to test if the sequence’s best alignment
is with a controlled pathogenic organism [2, 5, 8]. This ap-
proach produces a high rate of false positives, estimated at
more than 4% from a survey of IGSC member companies [2],
worsened by the fact that these methods generally search
for all genes in an organism, including harmless “housekeep-
ing” genes and others that have no functional relationship to
pathogenesis. Moreover, the rate of false positives increases
markedly as sequence length shortens [6]. Due to the cost of
resolving false positives, synthesis providers thus typically
only screen dsDNA sequences that are at least 200 bp long
and do not screen oligonucleotides at all [2, 5].

We hypothesized that these challenges could be addressed
by adapting methods for detection of malware in network
traffic, which faces even greater challenges of scale. To this
end, we adapted the Framework for Autogenerated Signature
Technology (FAST) signature extraction method [10] for use
with nucleic acid sequences, producing the FAST for Nucleic
Acids (FAST-NA) method for DNA screening. Our resulting
implementation of FAST-NA is able to detect DNA sequences
far faster than BLAST-based methods, and with equivalent
sensitivity and significantly improved specificity, even while
reducing the minimum scanning window from 200bp to 50bp.

2 DEVELOPMENT OF FAST-NA
FAST begins by breaking collections of target and contrast
material into small “signature” fragments. FAST stores the
contrast signatures in a Bloom filter [1], a highly efficient
data structure for testing set membership. The Bloom filter is
then used to remove all target signatures that match any con-
trast signature, leaving only signatures that are diagnostic
of threats. This proves highly effective for malware detec-
tion: even though polymorphic malware constantly mutates
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Figure 1: FAST-NA architecture: diagnostic signatures are
identified by comparing target sequences to contrasting ma-
terial, then applying these signatures in a matcher that scans
sequence orders to assess their threat content.

itself to try to evade detection, there are generally still some
conserved sequences required for its function, which FAST
is able to identify. Matching software using these signatures
can then identify malware extremely rapidly and with high
sensitivity and specificity.

Adapting this method for FAST-NA (Figure 1), we use nu-
cleic acid and protein sequences from public databases such
as NCBI as the source material, taking the target material
from clusters of threat taxa to be detected and the contrasting
material from other taxa that are closely related but not con-
trolled. For example, SARS and MERS are in the coronavirus
threat cluster, while the more benign human coronaviruses
229E and NL63 are in the coronavirus contrast collection.
For signatures, we use k-mers, ranging from 26-42 base pairs
for nucleic acids and 14-20 residues for amino acids.

Just as with malware, this process identifies signatures
for conserved sequences defining the nature of a biological
threat. These signatures, along with metadata on their ori-
gins, can then be given to a matcher that scans sequence
orders to assess their threat content. With appropriate tun-
ing and curation, this produces a signature collection that is
both highly sensitive and highly specific.
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(a) Threat Identification

(b) False Positives

Figure 2: Sensitivity and specificity of FAST-NA signatures for
controlled viral pathogens: (a) probability of correct identifi-
cation of threat sequences, (b) probability of false positives
for closely related non-controlled sequences.

Figure 2 shows an example of FAST-NA performance, in
this case for the set of all viral threats in the IGSC Regulated
Pathogen Database. When comparing all 50+ bp viral threat
sequences from NCBI and from close contrasting taxa, we
find the signatures are highly sensitive, producing no false
negatives. They are also highly specific: mean per-taxa like-
lihood that a threat is multiply identified is 0.039%, while the
mean per-taxa likelihood of a false positive is 0.55%. Other
kingdoms are not as clean as viruses—particularly the bac-
teria, which are highly prone to horizontal transfer—but
the average all-threat rate for multiple identification and
for false positives are both less than 2%, far lower than the
typical 4% rate for BLAST-based screening despite the much-
reduced screening window. Moreover, because it focuses
only on diagnostic signatures, FAST-NA is able to scan >10
kilobases/second (orders of magnitude faster than BLAST)
and with far less required computing resources.

The distribution of sequences in commercial synthesis or-
ders is, of course, quite different than that found in sequences

in NCBI. We have found, however, that the performance is
maintained when applied to synthesis orders. A commercial-
ized version of the system, named FAST-NA Scanner, is now
deployed at IDT, and is seeing similar or better results when
used against live customer data.
3 APPLICATIONS AND FUTURE DIRECTIONS
At present, the primary application of FAST-NA remains
DNA synthesis order screening, with FAST-NA Scanner avail-
able from BBN as a commercial software product. In addition
to the improvements in false positive rate, the high speed and
low computational cost of FAST-NA can also enable other
workflows that are impractical with BLAST-based scanning,
such as online pre-order screening, secure on-site screening
(e.g., in a benchtop synthesizer), and combinatorial screening
of oligo assemblies. Finally, beyond synthesis order screen-
ing, we aim to further develop FAST-NA for other types of
biosecurity applications, such as interpretation of sequencing
data, incorporation of biosafety and biosecurity considera-
tions into design tools, and threat scanning in information
systems and laboratory management processes.
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1 INTRODUCTION
Cell colonies provide a suitable environment for the exe-
cution of costly algorithms, as they offer a large degree of
parallelism. Nowadays, this is an important feature, since
Artificial Intelligence (AI) algorithms require a high amount
of computational processing power. In fact, cell-based AI al-
gorithms have been reported recently [1, 2, 4, 6, 10, 11], and
establish a starting point for developing in-cell automation
of synthetic cell circuit organization and evolution. Meta-
heuristics are one type of AI techniques in which inspiration
is drawn from physical and/or biological phenomena and
translated into algorithm mechanics. This type of algorithms
is well suited to be implemented in cell colonies, since many
of the general tasks involved in these algorithms are already
undertaken by cells and ease their interpretation. In-cell au-
tomated design for metaheuristic algorithms was reported
in the form of a framework [10]. An implementation based
on this work and oriented towards improving the fitness of
the cell population itself was also recently published [9]. In
this work, we adapt the bat algorithm, a swarm-based meta-
heuristic to integrate it into an existing framework. We also
map the elements of the algorithm and test the implemen-
tation on simple instances of the set covering problem. An
example of how this could be applied is in the identification
of conditions for releasing programmable antibiotics (given
conditions evaluated by this algorithm) as an alternative to
other methods [7].

2 THE BAT ALGORITHM
The bat algorithm (BA) [12] is a bio-inspired metaheuristic
algorithm oriented toward solution search and continuous
optimization, inspired by the echolocation of bats. In this
algorithm, each solution is encoded as a single bat, and this
solution changes its position according to: 1) the direction
found in which the fitness of the solution improves and 2) the
best solution attained so far among all bats. This is modelled
through frequency and velocity values associated respec-
tively to the bat movement and the echolocation signal. The
main idea driving this algorithm is to attempt an approxima-
tion towards a local maximum/minimum using these cues.
It has been proved that this algorithm is able to outperform

well-known algorithms, such as genetic algorithms and par-
ticle swarm optimization [12]. However, the original form
of this algorithm is not well suited for binary problems. For
this reason, in this work we use a discrete version of the BA,
known as binary BA (BBA) [8]. The main difference from
the original proposal is that the position of a bat is mapped
to a discrete space by using transfer functions, such as sig-
moids or v-shape functions. This version of the algorithm is
implemented to faithfully map to the existing metaheuristic
framework.

3 MAPPING WITHIN THE METAHEURISTICS
FRAMEWORK

Following the paradigm established in the metaheuristics
framework [10], the problem solutions are encoded as bac-
teria holding plasmids expressing proteins associated to a
given bit value in the solution. The plasmids can be conju-
gated, for solution evolution, and its rate defines how fast
the solution is updated. Echolocation is mapped to a Quo-
rum Sensing (QS) signal. Bacteria are more sensitive to the
signal when the solution is “far” from being a good one, to
promote evolution. However, upon complying with more
constraints, sensitivity decreases. This sensitivity is tied also
to the growth of bacteria: if the bacterium contains a “bad”
solution, it grows slowly, but upon approaching a better
solution, it grows faster. This aids in identifying and replicat-
ing better solutions, but also indirectly speeds up bacterial
conjugation since division time is faster. In the gro imple-
mentation built for this proof-of-concept, the division times
chosen for different stages of evolution of solutions were:
0 plasmids contained - 1200 hours division time, 1 plasmid
contained - 12 hours division time, 2 plasmids contained
- 1 hour division time, 3 plasmids contained - 20 minutes
division time. Also, mutations can be implemented at each
circuit in the gro simulations to improve realism.

4 EXPERIMENTS AND RESULTS
The proof-of-concept mapping was implemented in gro [3, 5]
simulations, but also in its original version using C++ to as-
sess both implementations side by side. The problem solved
by both implementations is a unicost binary set covering
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problem. In the C++ implementation, each solution is rep-
resented as a binary array and evolution is carried out by
mutating the array one element at a time, and assessing the
direction and velocity through the fitness function

∑𝑛
𝑖=1 𝑥𝑖−𝜙 ,

where 𝑥𝑖 ∈ {0, 1} and 𝜙 is a penalty function with respect to
the number of unsatisfied constraints. In the gro implemen-
tation solutions and their evolution are encoded as described
in the previous section. We worked on a small instance of
the problem covering 3 elements of a set and in which the
goal is to reach a set in which all elements are present. A
comparison of such tests was made based on the number of
generations it takes to reach the optimal solution, as was
done in the metaheuristic framework [10] is shown in Tables
1 and 2, and visual execution of the gro version is shown
in Figure 1. More simulation results can be found at data
repository link.

Table 1: C++ Simulation results for measuring convergence
generations for different values of echolocation signal fre-
quency.

Frequency Optimal value generations

25 2
50 2
100 2

Table 2: gro Simulation results for measuring convergence
generations for different values of QS detection threshold
(parameter mapping for echolocation frequency).

QS lower threshold Optimal value generations

0.00005 0.29395897904
0.0001 0.27929299074
0.005 0.19029879164

5 CLOSING REMARKS AND OBSERVATIONS
Both solutions implement the bat algorithm, and the gro ver-
sion makes use of the massive parallelism of cells in the sim-
ulation, along with native cell processes such as cell growth
and intercell communication. In spite of further experiments
needed to fully characterize the bat algorithm implemen-
tation, our first observation is that a cell-based version of
the algorithm is able to operate in a similar manner to the
original abstraction of the algorithm, shown by our proof-of-
concept. Also, the bacterial version of the algorithm can be
tuned by altering parameter values such as conjugation rate,
growth rate and QS thresholds, making the algorithm gen-
eral. Values in the tables are faster in the gro implementation
due to two reasons: 1) initially there are 1000 cells evolving

the solution, exhibiting a large amount of parallelism and,
2) heterogeneous division times and large amounts of cells
account for faster convergence to optimal solutions.
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Figure 1: Visual representation of the simulation of an instance of the unicost binary set covering problem in gro. Black cells
carry no plasmids, cells expressing RFP carry a single plasmid, cells with YFP have two plasmids and cells expressing GFP
contain the optimal solution: all three plasmids (this can be related to the original fitness function through

∑𝑛
𝑖=1 𝑃𝑖 , where

𝑃𝑖 ∈ {0, 1}: 0 represents absence of plasmid 𝑃𝑖 , and 1 represents its presence. Also, for this case 𝑖 ∈ {1, 3}, as we evaluate presence
of all plasmids). The purple signal is QS, which represents the echolocation in the algorithm mapping. Parameters for this run
were the following: conjugation rate 0.2 conjugations per life cycle (this accounts for the bat change in location related to the
original algorithm) and a range of [0.0001, 0.16] QS signal units per second (this relates to the echolocation frequency value of
the original version of the algorithm). The first optimal solution is obtained at around t = 360. It should also be noted that as
solutions get better in fitness, its division time decreases, leading to better exploitation and marking a spatial zone of good
solutions.
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1 BACKGROUND
Synthetic biology aims at the targeted design or redesign and
construction of new biological and bio-based parts, devices,
and systems to perform desired functions [5, 6]. Not only is
going up in this hierarchy (DNA, part, device, and system) the
final objective of synthetic biology but also its main challenge
[1]. To successfully accomplish it, engineering principles and
methodologies are to be used. The engineering design-build-
test-learn (DBTL) cycle is the common paradigm used in
any engineering discipline where the design is made from
the bottom by combining basic biological parts into devices
and these into systems [2]. Essential for the success of this
inherently modular approach of bottom-up synthetic biology
is the need of starting from well-characterized parts [3]. A
nested approach, consisting of a small DBTL cycle inside
a larger one is an interesting option to tackle the lack of
characterization some of the involved biological parts have.
Here, we perform a nested DBTL cycle for the development
of a bacterial population oscillator.

2 DESIGN
The design proposed to realize the population oscillator is
a lysis circuit based genetic circuit based on [4]. The lysis
circuit model was designed employing quorum sensing prop-
erties; the LuxR-AHL transcription factor activates when
sufficient amounts of cells in the population produce AHL,
which activates the expression of GFP and the lysis protein
PhiX174E as it can be seen in Figure 1.

Previous to the construction of the device in the labora-
tory, a mathematical model was made. To create the model, it
is necessary to determine the components of the system and
how they are correlated. First, it is necessary to represent the
system’s different components, products, and interactions
in the system. Afterward, the reactions of the system and
corresponding stoichiometry were written, and applying the
law of mass action; the ODEs were obtained. The Ordinal
Differential Equations (ODE) model confirmed that the de-
sign was able to produce the desired oscillation. This model
has seven states, N is the number of cells growing in the
culture, and GFP is the system output. Ae is the number of
molecules in the culture medium, and the remaining species

are intracellular ones. The computational simulation with
the model confirms that the designed gene circuit shows an
oscillatory behavior since cells die when the lysis protein is
activated.

𝑑 [𝑁 ]
𝑑𝑡

= 𝜇𝑁 (𝑁0 − 𝑁 ) − k𝐿𝑛
L0
𝑛 + 𝐿𝑛 𝑁

𝑑 [𝐴𝑒 ]
𝑑𝑡

= 𝐷 (−𝑁Vc [𝐴𝑒 ] + 𝑁 [𝐴]) + k𝐿𝑛
L0
𝑛 + 𝐿𝑛 𝑁 − dAe [𝐴𝑒 ]

𝑑 [𝐴]
𝑑𝑡

= 𝐷 (Vc [𝐴𝑒 ] − [𝐴]) + kA [𝐼 ] − dA [𝐴] − 𝜇 [𝐴]
𝑑 [𝑅]
𝑑𝑡

=
CR kR pR
dmR + 𝜇 − dR [𝑅] − 𝜇 [𝑅] (1)

𝑑 [𝐼 ]
𝑑𝑡

=
CI kI pI
dmI + 𝜇 − dI [𝐼 ] − 𝜇 [𝐼 ]

𝑑 [𝐿]
𝑑𝑡

=
CL kL pL
dmL + 𝜇 𝛼 +

𝛽 [𝑅 ] [𝐴]
𝐴0

4

1 + [𝑅 ] [𝐴]
𝐴0

4 − dL [𝐿] − 𝜇 [𝐿]

𝑑 [𝑉𝑒]
𝑑𝑡

= Cve kve − dmve [𝑉𝑒] − 𝜇 [𝑉𝑒]

Figure 1: Schematic of the genetic circuit.

Using this model and a preliminary set of parameters, we
perform computational experiments, i.e. simulation, to deter-
mine the behaviour of our genetically engineered bacteria
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carrying the proposed genetic circuit. The results, shown in
Figure 2, clearly demonstrate the circuit is able to oscillate,
giving us sufficient knowledge to pass to the next step of the
DBTL cycle.

Figure 2: Simulations from the Design stage of the DBTL

3 BUILD
Using the information from the Design stage, we start our
Build stage. The engineered Escherichia coli DH5 carrying
the plasmid pARKA1-O1 was used in this work. This plas-
mid, containing the entire genetic circuit to give E. coli the
oscillatory population behaviour, was constructed using a
Golden Braid assembly method with three levels to build
our genetic circuit. First, combining BBa_K2656122, a Level 1
transcriptional unit (TU) expressing GFP, and BBa_K2656114,
a Level 1 transcriptional unit expressing luxR gene, we cre-
ated part BBa_K3893028, a level 2 TU. Afterwards we com-
bined BBa_K3893026, a Level 1 TU expressing luxI gene, with
BBa_K3893027, a Level 1 TU expressing PhiX174E, to make
BBa_K3893029, a level 2 TU. Finally, combining the two Level
2 TU we constructed BBa_K3893030, our genetic circuit as
shown in Figure 3.

4 TEST
We designed a temporal experiment to measure absorbance
and fluorescence data from the gene circuit to test the cell
lysis. The absorbance and fluorescence data from the genetic
circuit collected from laboratory experiments show how the
bacteria cell population decrease after the population reaches
a threshold that activates pLux promoter to express GFP and
the lysis protein.

Figures 4A and 4B show cells when the lysis protein is
activated by the lux promoter. The number of cells was cali-
brated using standardized particle units from Engineering
Committee (Measurement Committee) and iGEM Interlab
study 2018-2019.

The total GFP fluorescence expressed by the population
and a single-cell is shown in Figures 4C and 4D, respectively.
After cell lysis, the molecules of GFP are released into the
surroundings, increasing the concentration shown in the
figure. We used MEFL/Particle (molecules of equivalent fluo-
rescein per particle) as a standardized unit to quantify GFP
expression per cell.

5 LEARN
Using the experimental data obtained in the Test stage and
in order to characterize the pLux promoter, we first did a
small DBTL cycle inside the larger one, a nested DBTL cycle.

Inner DBTL Cycle
First, we (D)esign and (B)uilt a genetic circuit composed of
BBa_K26561224 expressing GFP and BBa_K2656114, consti-
tutively expressing luxR gene (Figure 5). This circuit was
(T)est with different AHL inductions, and the results allow
us to (L)earn and adjust our model (Figure 6).

Using the information acquired from the experimental
data in the (T)est stage and with the things we (L)earned
from the nested DBTL cycle, we adjusted the model of our
system and performed new computational simulations. By
comparing the in silico vs in vivo results, our model captures
the temporal dynamics of the oscillator. The newly adjusted
ODE model can be used to redesign the device by predicting
outcomes in silico instead of building a new set of circuits to
see which one performs better than the original.

6 FUTURE APLICATIONS
The oscillation pattern of the system and its versatility can
have applications like localized drug delivery, the design of
synthetic microbial communities to understand biofilm for-
mation, chemical production from biomass, or the prevention
of biofilm formation by other bacteria.
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Figure 3: Schematic in visualSBOL of the constructed genetic circuit showing the different assembly levels.

Figure 4: Experimental data from the Test stage of the DBTL
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Figure 5: Circuit build for the nested DBTL cycle: AHL induced expression of GFP protein and luxR constitutive expression.

Figure 6: Learn stage within the nested DBTL cycle. Model and experimental data of the circuit construted.
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Figure 7: Learn stage of the DBTL. Incorporating informationfrom both principal and nested DBTL cycles we achieve a better
representation of the experimental results with our model
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1 INTRODUCTION 

Networks have emerged from many biological studies as 
researchers try to capture correlations and causation 
between different components of studied systems. As a 
graph representation, visually depicting the entities (often 
as nodes) and their connections (often as edges), network 
can provide a systematic view for researchers and 
facilitate the scientific process of query, explanation, 
hypothesis, and verification. One typical task when dealing 
with biological networks is to detect among all molecules 
those that are “influencers”, narrowing the analysis scope 
and allowing for modularity and abstraction. The 
sensitivity analysis of biological networks aims to fulfill this 
task and identify and explain the influences of internal or 
external changes. 

Currently the identification of influential nodes in 
complex networks largely relies on the network topology. 
Topological metrics of influence study range from simple 
ones like in-/out-degree, to more elaborate attributes like 
centralities [1]. The main shortcoming of analyzing 
influence of biological networks via topological attributes 
is that they fail to capture influences associated with 
semantic meaning assigned to nodes, in other words, the 
rules and dynamics of state change are ignored. 

Network physicists have recently begun developing new 
influence metrics to accommodate networks with 
enriched knowledge representations, such as percolation 
centrality [2]. However, these metrics still fail to fully 
leverage the benefit of the abstracted update rules of 
state change. The rules which govern the dynamics of 
biological networks via mathematical equations can 
provide detailed insights since they are synthesized using 
knowledge from literature, data mining and expertise. 

As of now, there have been few discussions about 
developing a node influence metric that not only takes 
network topology and dynamics into account, but also 
exploits the closed-form rules of state change. In this 
work, we propose a new metric assigned to edges and 
develop a unified framework to study node influence. 

Though rooted in simple partial derivative quantifying the 
influence of function to change of one variable, our 
proposed metric is enriched and modified to fit discrete 
state representations and account for the state biases 
resulting from network dynamics. When analyzing 
influences across remote connected elements, our metric 
also explores the advantages of topology-based 
techniques, by summing the influence propagation across 
all possible paths. Given that the assembly of many 
biological networks relies on prior information and evolves 
in a self-learning manner, the design of our influence 
metric accommodates this feature via its dependence on 
joint state distributions. Our metric is applicable to 
networks without or with prior information of initial state, 
and extendable upon network modification as a result of 
new knowledge.  

Although our framework is applicable to discrete 
models with different function types, we focus here on 
Boolean functions. Previous research on Boolean 
difference-based influence analysis explored several 
directions. The authors in [3] only studied “local” 
sensitivity of a model element and the influence of its 
regulators on this element, while authors in [4] focused on 
the “global” long-run sensitivity of how likely a mutation is 
to change the converging attractor of a biological network. 
In addition, prior analysis has been mainly applied on two 
types of biological networks, i.e., the probabilistic Boolean 
networks which are usually inferred from gene expression 
profiles, and random Boolean networks. In this work, we 
conduct an influence and sensitivity study on Boolean 
networks that were created to capture known influence 
mechanisms, with applications in both modeling and 
design of biological circuits.  

Here, we first define a quantity to measure immediate 
influence between directly connected elements, then we 
extend it to remote influences between indirect ones. 
Given the quantity defined under certain distributions, we 
analyze it under uniform versus scenario-dependent 
distributions of joint element states. We implemented two 

Dynamic Behavior Alters Influences and 

Sensitivities in Biological Networks 
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methods for computing influences, namely, the function-
based and hybrid-based methods, both of which have 
been rigorously tested in a human-machine-interface 
platform designed for open access. Overall, these different 
types of analysis constitute a universal framework to parse 
any rule-based model and systematically and 
quantitatively evaluate causal influences between 
elements. Using our framework, in a model of naïve T cell 
differentiation [5] we identified the most influential 
elements and investigated how the difference between 
uniform and scenario-dependent analysis can affect our 
sensitivity results. 

2 METHODOLOGY 

We use an element rule-based modeling approach, which 
allows for simulation of state transitions, feedback loops, 
integration of both prior knowledge and data, as well as 
analysis of large hybrid networks that include protein-
protein interactions, gene regulation and metabolic 
pathways. All components and interactions are 
represented as a directed graph 𝐺(𝑉, 𝐸), with a set of 
nodes 𝑉 = {𝑥1, … , 𝑥𝑁}  where 𝑁  is the number of 
elements in the model, and a set of directed edges 𝐸 
denote regulatory interactions between elements. We 
also define the number of discrete values representing 
different levels of the element’s activity, 𝑛𝑖, such that 𝑥𝑖 ∈
𝑋𝑖 : {0,1 … , 𝑛𝑖 − 1}. By assigning values to all elements in 
the model, we obtain the model state, a vector 𝒗 =
(𝑥1, … , 𝑥𝑁). We assign a state transition function to model 
elements, defining a state change of the element, given 
the states of its regulators. We refer to these functions as 
element update rules and to the model with update rules 
as an executable model 𝑀(𝑉, 𝐹) , with functions  𝐹 =
{𝑓1, … , 𝑓𝑁} for 𝑉 = {𝑥1, … , 𝑥𝑁}, respectively. In the case of 
Boolean variables representing element states, the basic 
operations are AND, OR and NOT.  

The immediate influence of element 𝑥𝑖 on function 𝑥𝑗 =

𝑓𝑗(𝑥1, … , 𝑥𝑁) where 𝑖, 𝑗 ∈ {1, … , 𝑁}, 𝛼𝑖
𝑗, is defined: 

𝜕𝑓𝑗

𝜕𝑥𝑖

= (𝑓𝑗|𝑥𝑖=0) ⊕ (𝑓𝑗|𝑥𝑖=1) = 𝑓𝑗𝑖(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑁)

𝛼𝑖
𝑗 = 𝐸 (

𝜕𝑓𝑗

𝜕𝑥𝑖

) 

 

Given that 𝛼𝑖
𝑗  is defined as expectation under certain 

distribution, we refer to this analysis as uniform when 
assuming uniform distributions among all possible states, 
and as scenario-dependent when distributions are 
estimated from simulation context. 

If there is a regulatory directed pathway between a 
source node 𝑥𝑠 and a target node 𝑥𝑡, we assign pathway 

score to the 𝑝𝑎𝑡ℎ: {𝑥𝑠, 𝑥𝑝1
, … , 𝑥𝑝𝑚

, 𝑥𝑡  }: 

𝑠(𝑝𝑎𝑡ℎ) = exp [− (∑ 𝑤𝑝𝑖𝑝𝑖+1

𝑚

𝑖=0
)],         𝑤𝑖𝑗 = −𝑙𝑜𝑔(𝛼𝑖

𝑗) 

The remote influence of element 𝑥𝑠 on element 𝑥𝑡, 𝑟𝑠
𝑡, 

the remote sensitivity of element 𝑥𝑡 , 𝑠𝑒𝑛𝑠𝑖𝑡  and the 
remote impact of element 𝑥𝑠 , 𝑖𝑚𝑝𝑡𝑠 are defined as 

𝑟𝑠
𝑡 = ∑ 𝑠(𝑝)

𝑝

,      𝑠𝑒𝑛𝑠𝑖𝑡 = ∑ 𝑟𝑠
𝑡

𝑠

,      𝑖𝑚𝑝𝑡𝑠 = ∑ 𝑟𝑠
𝑡

𝑡

 

3 RESULTS AND DISCUSSIONS 

As our case study, we use the model of the circuitry that 
controls differentiation of naïve T cells into regulatory 
(Treg) and helper (Th) cell phenotypes presented in [5] 

(the studied network circuitry is also shown in [5]). 
Previous research has shown that these two types of T-
cells have different functions and can be distinguished by 
expressions of several key markers. For example, in the 
Treg type, the transcription factor forkhead box P3 (Foxp3) 
is expressed, and Interleukin-2 (IL-2) is inhibited, while in 
the Th type, Foxp3 is inhibited, and IL-2 is activated. 
Besides the list of elements, and their update functions, 
we also defined scenarios for conducting scenario-
dependent analysis. We explored three scenarios: (1) high 
antigen dose (TCR=2), (2) low antigen dose (TCR=1), and 
(3) toggle (TCR=2 initially and changed to TCR=0 at a 
defined time step). 

Figure 1(A) shows remote sensitivity versus impact 
gains of all elements under the three scenario-dependent 
analyses, compared to uniform analysis. The majority 
point distribution in first quadrant suggests both 
sensitivity and impact increase for most elements, while 
the scenario of high dose reveals an even higher growth. 
Figure 1(B) contrasts the changes across three scenarios 
and highlights elements with significant variations. For 
example, elements like AP1 and JAK3 exhibit more 
sensitivity in high dose scenario, but less sensitivity in low 
dose. These results emphasize the importance of including 
dynamic conditions when exploring sensitivities and 
impacts in both natural and synthetic biological networks, 
especially in the context of automation when generating 
explanations or designing biological circuits and 
interventions.    
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Figure 1: (A): the remote sensitivity gains versus remote impact gains (i.e., scenario-dependent analysis minus uniform analysis) of 52 nodes in 
model [5] across three studied scenarios; the highlighted scatter points (larger marker size with black border) of each scenario denote the average 
gain in that scenario. (B): the sensitivity analysis results of 16 elements whose remote sensitivities and impacts are significantly altered across 
scenarios, their uniform analysis results are shown as stationary points, while arrows of different styles correspond to change trends of different 
scenarios; Arrows are all 15% scaled to avoid graph overlap but directions are preserved; Element TCR_HIGH, TCR_LOW, CD28 are intentionally 
moved off the y-axis slightly for clear plots.  
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1 INTRODUCTION
NP-Hard problems are a class of computationally complex
problems. This class of problems cannot be solved in reason-
able time, making it difficult to attempt their solution. As
early as 1994, alternative approaches based on DNA comput-
ing for tackling such problems were reported [1, 5]. Later,
a different approach using protein filament networks was
also reported [6]. The key property of such solutions lies in
the large parallelism that biology-based solutions have to
offer. However, to the best of the authors’ knowledge, no so-
lution including a spatial resolution has been proposed. This
work shows a spatial-resolution based solution for Graph
3-Coloring problem simulated in gro [3, 4].

2 GRAPH 3-COLORING PROBLEM AND ITS
MODEL IN GRO

The Graph Coloring problem refers to the assignation of col-
ors to all nodes in any graph so that no neighbor nodes have
the same color assignation. This problem is NP-complete
starting from 3 colors (Graph 2-Coloring is in P). A graph
consists both of nodes to be colored and edges that define
the links between nodes, making them neighbors. In a gro
implementation, a cell colony is a landscape for a graph in
which a Quorum Sensing (QS) signal limits a “node zone”,
which represents the traditional node as a zone inside the
colony that is marked and identified based on band detec-
tion circuits [2, 3], and assigned a certain color. Within this
zone, a leader cell is a single one that selects the color to be
assigned to the node zone and is responsible for limiting the
zone area. Follower cells are the ones expressing the color
selected by a leader and compose the larger part of the node
zone. Edges are not visible in the colony, but instead they
are denoted by borders between each zone that defines a
node. Thus, the expected representation of a correct spatial
solution is to have color zones, separated by borders, that
are never adjacent to a different zone with the same color.

3 PROBLEM ELEMENTS AND SOLUTION
The solution for the Graph 3-Coloring problem usually works
by steps, which is a problem in bacterial colonies, since bac-
teria grow and evolve in parallel. This setback was tackled
by adding delays in activation times, achieved by sending

two QS signals - a first one that selects the color for the
zone, and a second one that enables a CRISPR-Cas9 system
to eliminate part of the circuit and prohibit the selection of
the same color. Thus, only the cells that are closer will be
able to choose the color indicated by the first signal and a
node zone will be formed. Beyond the node zone, this will
force the selection of different colors for adjacent regions of
the colony (also in a limited zone, applying the same logic as
previously). The global circuit design is shown in Figure 2.

Circuit operation is started by two bacteria -initiators- that
establish the initial interaction between two different color
bands. Once these two regions are adjacent and touch each
other, color selection for adjacent nodes to these two zones
is executed. As explained previously, difference in activation
times will result in some bacteria selecting a color for the
zone before others. Once the zone has selected and expressed
its color, the second signal is sent to avoid having adjacent
node zones selecting the same color. The delays in activation
times is crucial here, since they allow each node’s color to be
established correctly, preventing the activation of multiple
coloring circuits creating a mix.

The result is a greedy algorithm in which each node zone
converges to a color, and never changes its selection. Upon
generation of the new node zone color, it will establish a
signal range. When two of these node zone ranges intersect,
the selection of a new leader and therefore color selection for
the adjacent node zone will be initiated. This step is repeated
until all node zones are assigned a color.

This approach allows each cell inside a colony to deter-
mine -through bacterial communication- the optimal color
output. This is, how it contributes in the formation of the
graph while coloring it according to restrictions that dynam-
ically create a graph with nodes of the same color apart from
each other. Our solution was designed to color node zones
and then select a leader to continue adding a new node zone
to the colony without relating to a specific graph and only
considering the cell colony as a coloring landscape. How-
ever, to encode a graph into a cell colony, spatial resolution
is needed and the following rules determine a mapping to a
given graph: 1) A leader cell accounts for a node zone, which
represents a node in a given graph. 2) The QS signal and its
range complete the node zone definition, but also configure
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the edges of the graph. 3) Any non-adjacent nodes should be
placed furthest apart, but taking into account existing node
connections in the graph.

4 TEST RESULTS
Several implementations of the algorithm were tested, and
different results obtained. A first variant of the algorithm
was designed to activate when a global environment signal
is present. Upon activation, the circuit allows for selection
of one or more colors for each bacterium, leading to an in-
determinate color value. A picture of the execution of this
version is shown in Figure 1a.

An improvement over this implementation leads to more
specific constraints on when to assign a color, and band
intersection zones restrict the amount of colors in such zones
to one. The effect of these constraints is that now single
color zones are well differentiated and set apart, although
zone boundaries are mostly unlimited and depending on
their location and surroundings. An example of the second
implementation is shown in 1b.

The next implementation enforces all constraints estab-
lished in the second design, and establishes node zones by
restricting cell growth. Also, color is fixed as the design uses
CRISPR-Cas9 to eliminate other possible colors and commit
to the selected color choice. The sequence of solution calcu-
lation for this implementation is: 1) The circuit initiates by
instantiating two leaders that are assigned different colors.
2) A third color is added to a different leader adjacent to
the previously selected ones. 3) Leaders keep being chosen
and assigned a color of which they do not receive signals,
completing the colony coloring. A depiction of the result of
this algorithm implementation is shown in Figure 1c.

Communication between cells was improved to allow
growth inside the colony while trying to maintain the solu-
tion acceptable, giving rise to new implementations of the
algorithm. The results for these implementations are repre-
sented by the nodes within the graph expanding unevenly,
losing their shape and usually forming long lines of cells,
which makes the edges between nodes harder to recognize.
An sample execution is shown in Figure 1d. This leads to two
main problems inside the node representation: the first one
is that bacteria are split into chains, creating the previously
mentioned lines that expand outwards of the formerly de-
fined node zone, thus reconstructing the node into a fringe
shape; the second reason is the growth rate. If it is higher
than the speed at which the colony is colored, it is locked
into a stationary state. This is due to the nodes expanding
faster than the rate at which the signal calling for a new color
node is transmitted, so the farthest bacteria never receive
the signal.

5 FINAL REMARKS AND FURTHER WORK
The proposed algorithm is based on cell-cell communication
and CRISPR-Cas9 system to color node zones in a pattern
such that it can solve the Graph 3-Coloring NP-Complete
problem. Further investigation is required to assess whether
this technique can be extended to Graph N-Coloring prob-
lems where N > 3. One limitation of our solution is given
by the availability of QS signals and potential crosstalk that
could occur between them. However, studies on orthogo-
nality of QS signals was done in [7] and establishes a good
starting point. The initial designs account for several patch
patterns that adjust to multiple graph morphologies and
therefore successfully color them according to an appropri-
ate solution to the Graph 3-Coloring problem. Our solution
currently handles planar map graphs, as gro is a 2D simula-
tor. More research is needed to verify whether this proposal
extends to 3D situations.

In our simulations, the coloring of the graph within the
colony cannot be predicted from the beginning, although
by analyzing the simulations step by step, it is possible to
assume what the color assignation in the next step will be.
This is because the definition of the coloring process in the
colony is conditioned by its environment and the bacterial
communication happening within the colony (graph). This
means that if we take the colony as a whole, its execution
for solving the coloring problem is non-deterministic. Each
cell is intended to exhibit a determined output depending on
its own environmental state, which is possible thanks to QS,
and the set of plasmids that encode their logic.
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Figure 1: All tested versions of the circuit: a. First design of the solution: the oscillation of colors leads to a vague solution in
which node zones can be set apart, but no clear boundaries are found. b. Color constraints are enforced in the second design.
Single color well differentiated zones are obtained. c. Static version of the colony (without growth) in which well defined color
patches are placed and describe a correct solution for the Graph-3-Coloring problem. d. While the calculated solution is still
correct, sometimes gaps and shape deformities are introduced when the algorithm takes growth into account.

Figure 2: Global circuit design. The circuits presented are the same for each color, where ‘X’ refers to the color itself, while ‘Y’
and ‘Z’ are referring to the two remaining colors. The algorithm implementation starts by selecting leaders, which is correlated
to the ‘pLeader’ plasmid (that activates a leader), and therefore, it removes both the plasmid that allows the cell to express a
given color and the one who represses the leader signal, thus allowing the transmission of this signal. The cells that are closer
to the leader will receive this signal and activate the ‘pBand’ plasmid matching the specified color, causing color expression
while also activating the ‘pDead’ plasmid. It removes the circuits associated with the possibility of becoming a leader, the color
repressor and ‘pDead’ itself, thus keeping the cells expressing the color protein constantly. Finally, through the activation of
the ‘pBand’ plasmids corresponding to colors ‘Y’ and ‘Z’, it is possible to determine when there is an intersection between the
bands and then a new leader for the ‘X’ color is selected.
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1 INTRODUCTION 
Computational modeling is an important part of 

studying complex systems and it plays a critical role in 
interpreting biological experiments and behaviors. It can 
also provide a guideline for biologists when designing 
time-efficient and low-cost experiments.   

Several modeling approaches have been applied in 
biological system studies. Ordinary differential equations 
(ODEs) can be used to model biochemical reactions when 
kinetic parameters are available [1]. Also, reaction rule-
based modeling allows for modeling interactions 
between different molecules in cells, and this modeling 
approach is usually specified in the BioNetGen language 
(BNGL) [2]. However, quantitative modeling approaches 
mentioned above might not be suitable when the 
systems are too large, since it is challenging to find all 
kinetic parameters for building the model. Additionally, 
when the collected data or information about the system 
is uncertain or missing, these methods will become 
impractical. Therefore, logical and discrete modeling was 
introduced to solve these problems. In logical models, 
only Boolean variables and logic state transition 
functions (i.e., element update rules) are needed. 
Interactions between model elements can be simply 
represented by a logical rule between regulators and the 
regulated element. However, some large systems may 
require more than two values to represent their states, 
thus making logical modeling less practical. To address 
this issue, the DiSH (Discrete, Stochastic, Heterogenous 
model simulation) simulator was proposed [3], extending 
the logical modeling to multiple levels with several new 
features and notations.  

In this study, we mainly focus on the utility of discrete 
modeling introduced by DiSH simulator and compare the 
simulator outcomes with simple Boolean network and 
ODEs.  

In DiSH simulator, discrete rules and score are applied 
to the model and its elements if they have multiple levels 
of value. These rules are different from normal logical 
rules. For example, 𝑁𝑁𝑡𝑡ℎcomplement is used to represent 
logical NOT in the discrete domain where 𝑁𝑁  is the 
maximum discrete value that a variable can take. AND 
and OR logical operators are replaced by maximum and 
minimum functions. Additionally, if the element has both 
activators and inhibitors, scores for activation and 
inhibition will be calculated using their logical function 
and if activator score is greater than inhibitor score, the 
next value of this element will increase by 1 compared to 
its current value. On the contrary, the value will decrease 
by 1 if the inhibitors take the higher score [4]. 

For comparison with other modeling methods, we 
translate the rule-based BNGL model to lists of ODEs by 
Copasi [5] and then convert these ODEs into a 
spreadsheet format, which is required by DiSH simulator 
as an input. These models created using different 
modeling approaches are then simulated using DiSH 
simulator and other tools.  

2 METHODS 
To evaluate the efficiency of discrete modeling in DiSH 

simulator and compare the outcomes with other 
modeling methods, we used the following as inputs: (1) 
A simple binding model (ABC) in BNGL using unstructured 
molecules to represent each species; (2) Basic disease 
outbreak model (SIR) used in 2020 BioNetGen Workshop 
Tutorial [6]; (3) A simple Ras pathway model (RAS) built 
from a diagram described in [7]. Simple network 
structures for these three models are shown in Figure 2 
(left) using Cytoscape [8] to draw, and the positive 
regulation from source node to target node is indicated 
with arrow shape, while the negative regulation is the T 
shape edge. 
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We first import the BNGL model into SBML format and 
then use Copasi to extract the ODEs using its 
mathematics related functionality. Next, we create the 
discrete model based on the Jacobian matrix of the ODEs 
and this conversion consists of several steps: (1) 
Regulation type of element in ODE is determined by signs 
of the Jacobian elements and these elements are 
classified into positive and negative regulators. Also, the 
element itself is considered and assigned to one of these 
two classification groups. (2) The order of elements in 
ODE should remain the same in both positive and 
negative regulators. (3) If one term of ODE is formed by 
element multiplication, the logical function between 
them is defined as AND gate, while the addition of each 
term is defined as OR gate. (4) If the regulation of one 
element is represented as the denominator of a function 
and multiplied by other elements, we put this element in 
positive regulators and use NOT logic to represent it. (5) 
The initial values in ODE are rescaled to discrete level. For 
example, Figure 1 shows the ODEs created from the SIR 
BNGL model. Table 1 shows the corresponding discrete 
model in the format supported by DiSH simulator, 
“Positive” and “Negative” columns denote the positive 
and negative regulators of each element respectively, 
and the rescaled initial values are filled in the “initial” 
column. 

 
Figure 1: Equations of SIR model translated from BNGL model 
 

Table 1: SIR model in the format supported by DiSH 
Element Positive Negative Initial 

S  (S, I) 10 
I (S, I) I 1 
R I  0 

3 RESULTS 
For the first two models, we use BioNetGen to run 

the simulation with a built-in ODE simulator and the 
simulation step is set to 200. The corresponding discrete 
models are simulated using DiSH simulator with random 
update scheme and we simulate them with 200 steps and 
200 runs. For the Ras pathway model, we use Scipy 
python package [9] to run the ODE simulation and also 
the discrete version of this model is simulated by DiSH 
simulator. Additionally, we set the levels of discrete 
model as 11, which means the range of value is [0, 10]. 

Figure 2 shows a plot summary of simulation results. For 
the two simple BNGL models, we find that the trend of 
the trajectories of discrete modeling is almost the same 
as ODE. The third model simply illustrates the signal 
transition in Ras pathway from the activation of RTKs to 
the downstream elements, and due to the feedback 
effect, the value of RTKs, RAF and ERK is suppressed by 
its negative regulators. Discrete modeling for this 
pathway shows the similar feedback regulation, but the 
steady states of elements are different with the ODE 
approach, due to the complex kinetic parameters we 
used for ODE models. 

4 CONCLUSIONS 
The conversion between BNGL, ODE and discrete 

models that we describe here demonstrates that logical 
models can be enhanced into discrete models with 
similar functions, capable of predicting the biochemical 
network’s dynamics. Our results show that for small 
models with simple reactions, but intertwined feedback 
loops, this modeling method can nearly reproduce the 
same dynamic behavior as differential equations. Our 
next step is to further investigate the combination of 
logical functions and explore new logical rules to 
optimize this discrete modeling method and test with 
larger networks.  
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Figure 2: From left to the right: simple network figures (left), simulation results for three models using ODEs (middle) and discrete modeling 
approach (right). It is worth noting that y-axis of ODEs (middle) shows the concentration levels of different molecules, while in discrete 
modeling (right), it is the percentages of maximum possible level.  From top to the bottom: Three models in this study, ABC (Top), SIR 
(middle), and RAS (bottom). 
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1 INTRODUCTION
Synthetic biology seeks to design and build biological sys-
tems which perform useful functions, typically following
a Design-Build-Test-Learn (DBTL) cycle. There have been
many efforts to improve the DBTL cycle, such as through
standardisation and automation [1, 4]. However, the design
process remains particularly difficult to standardise. A major
difficulty is in acquiring and evaluating knowledge of the
vast numbers of potential design strategies and genetic parts
available, from which many candidate designs could produce
the intended functionality. Attempts at predictive design are
further confounded by contextual issues: the same synthetic
genetic construct can give a different functional performance
in the context of a different host cell background, or even
using the same host cell genotype but grown in a different
physical or chemical environment. Many of these effects
have previously been identified and characterised [2], but
a unified, user-friendly framework for the consideration of
contextual issues in the synthetic biology DBTL cycle has
yet to be developed.

Here, we present the “context matrix” [5], a database of
input factors and design principles to help users navigate
contextual considerations in synthetic biology workflows.

2 THE CONTEXT MATRIX
The context matrix is a multi-dimensional list of input factors,
categorised into the contexts of synthetic genetic construct,
host cell and environment (Figure 1). The matrix describes
the known contextual effects of each input factor on the
output state of a biosystem, and can be used to quickly learn
about factors which were previously unknown to the user.
The organisation is intended to help users identify the key in-
put factors for their biosystem, and ultimately aims to equip
users with the knowledge to be able to consider context as
another tool for synthetic biology design, rather than as an
obstacle to be avoided. Here we present a “function-centric”
view of synthetic biology, where the biosystem function is
considered in the context of the synthetic construct, host and
environment. We believe this to be a more helpful framing for

∗Both authors contributed equally to this research.

context-aware synthetic biology than the more traditional
construct-centric view, as it draws attention away from the
construct and towards a more holistic view of the biosys-
tem, where all three aspects are considered in concert to
achieve the desired functional performance. The position of
a biosystem within this contextual space is defined by the full
combination of all input factors, which we term the “input
landscape”. The input landscape maps to a phenotypic output
state, from which qualities of interest to the user can be mea-
sured, such as host cell fitness, or functional performance.
An appreciation of the position of a biosystem within con-
text space enables both better prediction (at the design stage)
and troubleshooting (at the learn stage) of failure modes and
output performance.

3 CONTEXT-AWARE SYNTHETIC BIOLOGY
The context matrix can be used as a tool to assist in the
design, test and learn phases of the DBTL cycle.

At the design stage, the context matrix represents a data-
base of known design strategies, and showcases that there
may be many available routes to a desired function. In prac-
tice, this means there can exist very different biosystems
in terms of the construct, host and environment used, but
that perform the same function, and we term these “anal-
ogous engineered biosystems”. The context matrix allows
for comparison between analogous systems at the design
stage, such that the most appropriate design for the required
function can be chosen. This comparison will consider time
and material constraints in light of the intended goal, and
for industrial applications will need to be balanced against a
rigorous techno-economic and life cycle assessment analysis.

At the test stage, the aim is often to compare many differ-
ent engineered biosystems, which differ by construct, host
or environment, and to evaluate which biosystem will give
the best performance. Each of the three components of the
context matrix is organised by input factors. This allows the
experimenter to choose which factors to change, while si-
multaneously acting as a list of all other input factors which
may need to be controlled. This quality of the matrix also
makes it accessible to Design of Experiments (DoE) methods,
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which offer advantages for the efficient exploration of large
input parameter spaces [3].

At the learn stage, the knowledge of previously studied
contextual issues in the matrix can aid in troubleshooting
failed designs and in the interpretation of experimental data.

4 COMMUNITY DEVELOPMENT
It is our aim for the context matrix to become a community-
built resource, where its structure, contents and standards
continually evolve and improve to meet the needs of the
synthetic biology community. By maintaining and growing
a repository of knowledge pertaining to the design, charac-
terisation and understanding of engineered biosystems, the
challenges presented by contextual issues may in time be
overcome. The context matrix is hosted on GitHub
(https://github.com/camos95/context_matrix). We welcome
feedback on the context matrix to improve its structure, con-
tent and interface. To contribute, please contact us by email
or submit a GitHub pull request. Contributions could include
the submission of new input factors (or expanding or edit-
ing existing ones) and suggestions or code to improve the
structure and usability of the matrix, but are not limited to
this.

5 CONCLUSION
The field of synthetic biology has given rise to a wealth of
knowledge for the design of biological systems. However, the
complex interplay between the many components of biolog-
ical systems often presents unexpected problems, and these
are broadly defined as contextual issues. Here, we present
a holistic framework to categorise known contextual issues
and their solutions, which we call the context matrix. As the
understanding of contextual issues in the field continues to
grow, we envisage the context matrix to develop from a list
of design principles into a full database, capable of taking a
combination of input factors and predicting the performance
of an engineered design. Ultimately, the context matrix aims
to help develop an understanding of contextual issues which
takes context from a challenging and unpredictable prob-
lem to an opportunity for the creation of novel designs with
robust performance.
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Figure 1: The three primary contexts of the function of an engineered biosystem. (A) The construct context can be divided into
intragenic and intergenic contexts. Part tuning allows us to choose different genetic parts, and hence control some aspects of the
intragenic context. Relative gene orientation is an example of intergenic context, and can significantly affect gene expression
[7]. (B) The host context involves considerations of genetics, resource competition and the cell state. One genetic context is
the genome integration location, which can significantly affect gene expression due to differing transcriptional propensities
around the genome [6]. (C) The environmental context considers the chemical composition and physical conditions of the
biosystem, and any ecological effects present. Several cultivation processes are shown, the choice of which can affect gene
expression and population growth. Acronyms: TU = transcription unit, RNAP = RNA polymerase, RBS = ribosomal binding site.
Figure from Moschner et al. [5].
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1 BACKGROUND
One of the most common sources of information in Syn-
thetic Biology (SynBio) is the bulk data of fluorescent pro-
teins expressed in microorganisms. A plate reader is one of
the measuring devices used for collecting and quantifying
fluorescent measurements. But these data are highly depen-
dent on the experiment characteristics, or the device features
such as the gain setup for that experiment. Although some
studies have proposed fluorescein as a robust green fluores-
cent calibrant [2], the gain dependence of the measurements
remains unsolved. Also, the rising automation of the Design-
Build-Test-Learn (DBTL) cycle is demanding the use of plate
readers for monitoring synthetic gene circuits. Therefore,
laboratories are generating tons of experimental data that
can not be easily compared according to every lab protocols
In this context, new data and calibration standards should en-
courage the exchange of information between labs because
it is crucial to overcome both gene circuits characterization,
and reproducibility problems [3].

Here, we propose PLATERO as Matlab Toolbox for calibra-
tion of fluorescence measurements (in this case for a green
fluorescent protein-GFP) collected by the plate reader, which
provides standardized data that also are independent of the
instrument gain (see Figure 1). PLATERO’s main features
are (1) it allows us to compare data between experiments
that have been carried out at different gain levels, and (2) it
provides us with a quantification of the measurement uncer-
tainty based on linearity and bias analysis (not fully showed
here) [4]. Nevertheless, this pipeline can be easily modified
and extended to other type of calibration model or other
measurement instruments, or it can be adjusted to another
colors using the appropriate dyes [1].

2 GAIN CALIBRATION MODEL
As in Figure 1A, the gain of a plate reader is one of the key
parameters to set up before measuring a fluorescent protein.
If the gain (𝐺) is too low, small levels of fluorescence will

not be detected by the instrument. Conversely, if 𝐺 is too
high, the measurement will be above of the upper limit of the
sensor’s range and leading to its saturation, so fluorescence
cannot be measured either. Firstly, we assume that every
𝑘 − 𝑡ℎ measurement of a fluorescent protein 𝐹𝑟𝑒𝑎𝑙 expressed
by cells includes the background fluorescence (𝐹𝐵𝐿𝐾 ) of the
culture medium, and the fluorescence of the protein itself
(𝐹𝑝 ). That is, 𝐹𝑟𝑒𝑎𝑙 (𝑘) = 𝐹𝐵𝐿𝐾 (𝑘) + 𝐹𝑝 (𝑘). Since this study is
not working with living cells, the cell auto-fluorescence has
been neglected. Then, 𝐹𝑚 is the fluorescence measured by a
96-well plate reader that follows an exponential function of
𝐺 , and it depends on the 𝐹𝑟𝑒𝑎𝑙 as 𝐹𝑚 (𝑘) = 𝐹𝑟𝑒𝑎𝑙 (𝑘) ·𝑒𝑏1 ·𝐺+𝑏2 ·𝐺2 .
A linear model did not correctly adjust the gains in the 𝐹𝑚
data. To obtain the true value of fluorescence 𝐹𝑝 accounting
several experiments performed at different gain levels:

𝐹𝑝 (𝑘) =
(
𝐹𝑚 (𝑘) − 𝐹𝐵𝐿𝐾,𝐺 (𝑘)

) · 𝑒−𝑏1 ·𝐺−𝑏2 ·𝐺2 (1)

where 𝐹𝐵𝐿𝐾,𝐺 is the background fluorescence at any gain
𝐺 , 𝑏1 and 𝑏2 are the coefficients of the linear and the qua-
dratic terms of the gain, respectively (see Table 1). These
coefficients are statistically significant and they have been
validated in a previous study. In PLATERO TOOLBOX, The
function gaincfs.m computes these coefficients, and the func-
tion checkblk.m provides a fast analysis of the blank wells (
potential outliers were excluded from 𝐹𝐵𝐿𝐾 estimation).

3 STANDARIZATION OF UNITS
PLATERO also converts the arbitrary units of the 𝐹𝑝 data
(units of any plate reader) to standard equivalent concentra-
tion units of fluorescein (𝐶𝑝 ). We used a reference fluorescein
solution to calibrate the concentration levels of the green
fluorescence measurements (see Figure 1B). The equivalent
concentration units are similar to the Molecules Equivalent
of Fluorescein (MEFL) using a conversion factor that con-
siders the relationship between the number of molecules
and the concentration (not included here). Therefore, for the
𝑘 − 𝑡ℎ we assumed a linear model between the fluorescence
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𝐹𝑝 and the concentration level 𝐶𝑝 knowing the volume of
every well in the 96-well plate:

𝐶𝑝 (𝑘) = 𝑐0 + 𝑐1 · 𝐹𝑝 (𝑘) (2)
where 𝑐0 is the intercept, and 𝑐1 is the scale factor for the con-
version (see Table 1). One might expect a calibration curve
containing the (0,0) point (no fluorescence measured at a
concentration of 0 nM, i.e. 𝑐0 = 0). However, it is important
to have 𝑐0 ≠ 0 to capture the offset introduced by the plate
reader. These coefficients were estimated using the cfcoeff.m
function, and they have been validated as statistically sig-
nificant in a previous study. cfcoeff.m also returns further
information about the quality of the fitting. All the PLATERO
functions are fully available in the open access repository
https://github.com/sb2cl/PLATERO.

4 QUANTIFYING PREDICTION UNCERTAINTY
The accuracy of a measurement instrument (specifically re-
ferred to as Bias) reflects the difference between the observed
measurements and their corresponding true values. We con-
sider a simple model for the relative bias:

𝐵𝑖𝑎𝑠 · 1
𝐶𝑇 (𝑘) =

𝐶𝑝 (𝑘) −𝐶𝑇 (𝐾)
𝐶𝑇 (𝑘) = 𝑑0 · 1

𝐶𝑇 (𝑘) + 𝑑1 (3)

where 𝐶𝑇 (𝑘) is the true value of the 𝑘 − 𝑡ℎ measurement of
concentration 𝐶𝑝 (obtained from a master or gold standard),
𝑑0 the intercept, and𝑑1 the slope of the model. All terms from
Equation 3 can be estimated by the function biasanalysis.m.

Once the measurements have been calibrated as in sections
2 and 3, PLATERO also estimates the standard deviation of
the plate reader’s 𝐵𝑖𝑎𝑠 (𝑠𝐵𝑖𝑎𝑠 ). The degrees of freedom (𝐷𝐹 )
of the 𝐵𝑖𝑎𝑠 error from Equation 3 together with the 𝑠𝐵𝑖𝑎𝑠
are used to calculate the (1 − 𝛼) · 100% confidence interval
(𝐶𝐼𝐶𝑝 (𝑘)) for a given concentration 𝐶𝑝 :

𝐶𝐼𝐶𝑝 (𝑘) = 𝐶𝑝 (𝑘) ± 𝑡𝐷𝐹,𝛼/2 · 𝑠𝐵𝑖𝑎𝑠 ·𝐶𝑇 (𝑘) (4)
where 𝐶𝑇 is the concentration value that undoes the scaling
of the bias and gives the amplitude corresponding to a par-
ticular concentration level to the confidence interval. Ideally,
this should be the true concentration level𝐶𝑇 . However, if𝐶𝑇
remains unknown in model exploitation, the𝐶𝑝 will be used
instead. The function cipred.m quantifies the 𝐶𝑝 prediction
uncertainty.

5 USING PLATERO TO CALIBRATE A PLATE
READER

The PLATERO protocol has been constructed and statistically
validated using a data set of 1509 fluorescein samples coming
from a serial dilution with at least five (5) concentrations
(see Figure 1B). In each experiment, eight (8) replicates for
each concentration were measured by two plate readers. PL1:
the BioTek Cytation 3 plate reader at four different gains

(starting with the smallest gain allowed by the instrument)
𝐺 =50, 60, 70, and 80; and PL2: the TECAN infinite 200 plate
reader at four different gains 𝐺 =60, 70, 80, and 90.

After analyzing the data, we found that some of the sam-
ples were out of range for some of the gains as we expected.
So, we excluded them from the model building step, but
they were part of the validation data later on. From the non-
excluded data, we used 70% for model building, and 30% for
the model validation step that follows a randomly-selection
of the samples coming from the 96-well plate. This avoids
possible location effects due to the selection of wells in a spe-
cific order of rows or columns. The plate reader calibration
generates the coefficients values listed in Table 1.

Table 1: Estimated coefficients (for any gain 𝐺)

Coefficients Median PL1 Median PL2

𝑏1 0.24298 0.19789
𝑏2 -9.933·10−4 7.0272 ·10−4

𝑐0 -1.1185·10−3 9.7161·10−4

𝑐1 1.0576 19.01

Validating the plate reader calibration was the final step.
We used PLATERO to predict the fluorescein concentration
levels 𝐶𝑝 of the measurements that were excluded from the
calibration procedure (including the non-used samples and
the non-used concentrations 𝐶𝑝𝑛𝑢 ). Then, we calculated the
concentration predictions 𝐶𝑝 related to the real concentra-
tion values showed in the X-axis of Figure 2A. Even for the
samples excluded from the model construction (Figure 2A-
left panel), we obtained good prediction quality, where the
ratio 𝐶𝑝/Realconcentration is approximately 1.
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Figure 1: A) The PLATERO protocol brings the experimental measurements into a common gain-independent domain using
standard fluorescence units as well. It also incorporates an instrument analysis that provides an estimate of the uncertainty
that can be expected in the predicted fluorescence value. B) Schema representing the Model building and the Model validation
steps of the PLATERO protocol. Particularly, eleven out of the sixteen wells (≈ 70%) for each concentration level were randomly
selected for the gain calibration model. The remaining data were used only for validation.
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Figure 2: A) Model validation (with samples and concentrations 𝐶𝑝𝑛𝑢 not used in the calibration) finds good performance and
quality of the resulting gain calibration model. The box-plot illustrates the ratio between the predicted concentrations and the
real ones. In each box, the center line indicates median, top and bottom edges show 25th and 75th percentiles, and whiskers
extend from 9% to 91%. B) For the uncertainty quantification𝐶𝐼𝐶𝑝 , the bias and the degrees of freedom obtained after validation
were 𝑠𝐵𝑖𝑎𝑠 = 0.0022472 and 𝐷𝐹=1045, for PL1 and 𝑠𝐵𝑖𝑎𝑠 = 0.086015 and 𝐷𝐹=1758 for the PL2, respectively. Confidence intervals
obtain with PLATERO for the concentrations used in the model construction. 100% of the real values lie into the corresponding
𝐶𝐼𝐶𝑝 for each prediction (wells D3, D5, A9, B10, A3, C10). Moreover, the non-used concentrations 𝐶𝑝𝑛𝑢 that were estimated by
PLATERO (wells A2, G2, A4, B3) are within the confidence interval with a confidence level 95%. This demonstrates PLATERO’s
high predictive capacity.
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1 INTRODUCTION
While synthetic biology has made great progress in meth-
ods for modular assembly of genetic sequences and in engi-
neering biological systems with a wide variety of functions,
current paradigms entangle sequence and functionality in a
manner that makes abstraction difficult, reduces engineering
flexibility, and impairs predictability and design reuse. Func-
tional Synthetic Biology [1] proposes a roadmap to overcome
these limits by focusing on behavior descriptions, predictabil-
ity, flexibility, and risk reduction, so synthetic biologists can
more effectively share successes and avoid failures.

The iGEM community, like other synthetic biology com-
munities, faces challenges in effective sharing and reuse of
biological devices. These are particularly acute for iGEM,
since iGEM teams need to execute projects in only a few
months and many team members have little prior experi-
ence. At the same time, barriers for adoption are lowered
by the culture of openness, sharing, and reuse that is en-
couraged by iGEM. For these reasons, the iGEM Engineering
Committee has been working to implement the early phases
of the Functional Synthetic Biology roadmap in the context
of iGEM’s annual DNA distribution.

2 AGILE CURATION OF DNA DESIGN PACKAGES
As a first step, we have deployed an agile data curation work-
flow for community development of DNA design packages,
leveraging distributed version control and continuous inte-
gration tooling. Each year, iGEM sends teams a distribution
of DNA parts expected to be useful for their projects. For
the 2022 season, iGEM developed an all new distribution,
enlisting a larger community to aid in its design. To sup-
port the community design process, we built on work from
the DARPA SD2 program [6] to deploy an agile data cura-
tion workflow on GitHub (Figure 1). With this workflow,
contributors submit DNA design packages developed with
spreadsheets and design files. These undergo community
review and revision using the Gitflow workflow, while com-
plementary automation tests packages for errors and collates
package contents to produce a distribution plan and synthe-
sis orders.

Gitflow Agile workflow: Pull requests & change review

GitHub Actions

Validation 
pipeline

Collation & 
extraction

Figure 1: iGEM distribution agile data curation workflow.

Workflow automation is implemented using GitHub Ac-
tions, an integrated continuous integration and continuous
delivery (CI/CD) framework. In our usage, continuous inte-
gration maps to checking specifications for coherence and
correctness, while continuous deployment maps to compi-
lation of all designs together into a complete plan for the
distribution and the synthesis orders for building it.

Figure 2 shows details of this workflow. Excel templates
provide a user-friendly interface to specify “packages” or-
ganizing groups of related parts (e.g., a collection of fluo-
rescent reporters), and the build plans for how to combine
part sequences into composites, flank them with prefixes
and suffixes for BioBricks or Type IIS assembly, and insert
them into plasmids for propagation and dissemination.

The workflow first exports Excel into two formats: CSV for
git diff review, and SBOL3 [4] that specifies the parts (SBOL
Components) and combinatorial build plans (SBOL Combina-
torialDerviations). Parts are either fetched from public data
sources by their identifiers (e.g., NCBI accession, BioBrick
part number) or imported from files in the same directory
as the sheet. The build plan is then validated to ensure it
is coherent and fully specified. After validation, build plans
are compiled to a full specification for each package. Each
CombinatorialDerivation is expanded into a list of specific
composite parts to produce, sequences are calculated for
each construct, and a human-readable README file is gen-
erated summarizing the package and its contents. Finally, all
packages are collated to produce the complete distribution,
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Figure 2: Production of synthesis orders from DNA package plans, as used by the iGEM Distribution repository: packages are
specified in Excel sheets, from which are extracted SBOL3 documents specifying libraries of plasmid build plans. Each build
plan is expanded into a list of all of the specific composite parts to produce. A sequence is then calculated for each construct,
and the portion of each construct to be synthesized is exported to FASTA for placing a synthesis order.

and the SBOL is exported to GenBank for compatibility with
other design tools, and to FASTA for ordering the plasmid
inserts that are to be synthesized.

This workflow was able to be used effectively by the iGEM
Engineering Committee in developing the iGEM 2022 distri-
bution (available at https://github.com/iGEM-Engineering/
iGEM-distribution), supporting a rapid pace of development
and review by a large group of contributors. During the main
development period of the distribution, from January 1st to
February 16th, 2022, 15 contributors at 11 institutions in 8
different countries produced 571 commits, which were re-
viewed and merged in 87 pull requests, an average of nearly
2 contributions per day. The resulting distribution contains
16 packages organizing several hundred parts into thematic
collections such as “CRISPR-Cas”, “Fluorescent Reporters”,
“Small Molecule Inducers”, and “Plant Parts.” Critically, the
learning curve also proved reasonable: most contributors
were not programmers, and many had never used git before.

3 WORK IN PROGRESS
We are continuing to work towards the Functional Synthetic
Biology vision, building on the lessons from the 2022 distribu-
tion. First, automated validation is being extended to include
biological considerations, using pydna [5] to check assembly
compatibility and using synthesis company APIs to check
synthesizability. We have also been improving biologist-
focused documentation for package development and use of
git-based workflows, to support adoption of these methods
by iGEM teams and the larger synthetic biology community.

Next, we are implementing a dependency management
system for DNA design packages based on SBOL Enhance-
ment Proposal (SEP) 054 (available at https://github.com/
SynBioDex/SEPs). Analogous to software package manage-
ment systems, this will allow DNA design packages to be
broken out into their own repositories and maintained sep-
arately, then imported for use in the distribution or other
packages. This is required for scalability to a large commu-
nity and to minimize duplication and forking of materials.

Finally, we are running interlaboratory studies to develop
reliable transcriptional toolkits. Prior work shows transcrip-
tional regulators can be effectively insulated from genetic

context (e.g., [2, 3]), but these results are not readily accessi-
ble or joined with predictive models. The committee is thus
running studies to produce models quantifying insulated
systems in replicable ERF/cell units. The first targets are
constitutive promoters (for consistent expression levels) and
fluorescent reporters (for debugging and quantification), to
be followed by inducible promoters (for adjustable regulation
and sensing). If successful, these will be collected in pack-
ages for distribution, making it simple for iGEM teams and
other users to test new devices with known-reliable sensors,
adjustable inputs, and reporters.
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