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Foreword

Welcome to IWBDA 2019!
The IWBDA2019 Executive Committeewelcomes you to Cambridge, UK, for the Eleventh
International Workshop on Bio-Design Automation (IWBDA). IWBDA brings together
researchers from the synthetic biology, systems biology, and design automation com-
munities. The focus is on concepts, methodologies, and software tools for the computa-
tional analysis and synthesis of biological systems.

The field of synthetic biology, still in its early stages, has largely been driven by ex-
perimental expertise, and much of its success can be attributed to the skill of the re-
searchers in specific domains of biology. There has been a concerted effort to assemble
repositories of standardized components; however, creating and integrating synthetic
components remains an ad hoc process. Inspired by these challenges, the field has seen
a proliferation of efforts to create computer-aided design tools addressing synthetic
biology’s specific design needs, many drawing on prior expertise from the electronic
design automation (EDA) community. IWBDA offers a forum for cross-disciplinary dis-
cussion, with the aim of seeding and fostering collaboration between the biological and
the design automation research communities.

IWBDA is proudly organized by the non-profit Bio-Design Automation Consortium
(BDAC). BDAC is an officially recognized 501(c)(3) tax-exempt organization.

This year, the program consists of 19 contributed talks and 12 poster presentations. The
talks are organized into 6 sessions: Design Automation, Machine-Learning, Computa-
tion in Genetic Circuits, Modelling, Data standards and visualization, and Microfluidics.
In addition, we are very pleased to have two distinguished invited speakers: Prof. Luca
Cardelli from Univeristy of Oxford and Dr. Traci Haddock-Angelli from the iGEM Foun-
dation.

We would like to thank all the participants for contributing to IWBDA. We would also
like to thank the Program Committee for reviewing the abstracts and everyone on the
Executive Committee for their time and dedication. Finally, we would like to thank
NSF, BBN Technologies, Lattice Automation, Agilent, and ACS Synthetic Biology for
their support.
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Keynote Presentation
Integrated Scientific Modelling and Lab Automation

Luca Cardelli

Speaker Biography
Prof. Luca Cardelli is a Royal Society Research Professor at the University of Oxford since 2013. He
has an M.Sc. in computer science from the University of Pisa, and a Ph.D. in computer science from the
University of Edinburgh. Heworked in the USA at Bell Labs,MurrayHill, from 1982 to 1985, and at Digital
Equipment Corporation, Systems Research Center in Palo Alto, from 1985 to 1997, and at Microsoft
Research, in Cambridge UK from 1997 to 2018 where he was head of the Programming Principles and
Tools and Security groups until 2012. His main interests are in programming languages and concurrency,
and more recently in programmable biology and nanotechnology. He is a Fellow of the Royal Society, a
Fellow of the Association for Computing Machinery, an Elected Member of the Academia Europaea, and
an Elected Member of the Association Internationale pour les Technologies Objets.

Keynote Abstract
The cycle of observation, hypothesis formulation, experimentation, and falsification that has driven sci-
entific and technical progress is lately becoming automated in all its separate components. However,
integration between these automated components is lacking. Theories are not placed in the same formal
context as the(coded) protocols that are supposed to test them: neither description knows about the other,
although they both try to describe the same process. We develop integrated descriptions from which we
can extract both the model of a phenomenon (for possibly automated mathematical analysis), and the
step carried out to test it (for automated execution by lab equipment). This is essential if we want to carry
out automated model synthesis, falsification, and inference, by taking into account uncertainties in both
the model structure and in the equipment tolerances that may jointly affect the results of experiments.



Keynote Presentation
Setting Standards in Synthetic Biology

Traci Haddock-Angelli

Speaker Biography
Dr. Traci Haddock-Angelli earned her doctorate in marine microbiology from the University of Rhode
Island in 2010. She then joined the CIDAR lab under the guidance of Prof. Douglas Densmore at Boston
University as a postdoctoral researcher in synthetic biology and later served as the Executive Director
of the Center of Synthetic Biology. During her time at Boston University, Traci mentored over 40 under-
graduate and graduate students and also ran the university’s iGEM team for four years. Traci joined the
iGEM Foundation in the spring of 2015 as a Science and Technology Fellow, was later promoted to the
Director of Technology, and now serves as the Director of the Competition. In this role, Traci oversees
all aspects of the iGEM Competition and works to ensure that every team from around the world has a
successful and fulfilling iGEM experience.

Keynote Abstract
Since 2003, the iGEM Foundation has been working on setting standards in synthetic biology. From the
early days of BioBricks, we have worked to introduce the idea of engineering standards to young syn-
thetic biologists through the competition and to the rest of the synthetic biology community through
the Registry of Standard Biological Parts. Recent work has focused on introducing a new assembly stan-
dard to the Registry and on the development of standard protocols to promote the use of absolute units
for fluorescence measurements. Through the development of these standards, we know that community
involvement is crucial to the creation and adoption of new standards, and invite you all to join us as we
work towards creating a strong, responsible, and visionary synthetic biology industry.
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Diego Portales, Chile, where he taught all branches of Computer Science and specialized in AI tech-
niques and meta-heuristic algorithms. Later, Martín completed his Ph.D. thesis from 2012 to 2017, under
the supervision of Prof. Alfonso Rodríguez-Patón at the AI Lab at Universidad Politécnica de Madrid,
Spain. During this period, his research was focused on Agent based Model bacterial colony simulators,
synthetic gene circuits, bacterial conjugation, and spatio-temporal patterns in bacterial colonies. The
main contribution of his thesis was extending the gro simulator. Dr. Gutiérrez briefly continued his work
as a Postdoctoral researcher at the AI Lab of Universidad PolitÃľcnica de Madrid before returning to
Universidad Diego Portales in 2018. He is currently the Assistant Professor at Escuela de Informática y
Telecomunicaciones, where he continues his research on automation techniques applied to bacterial/cell
colony simulators, interplay of AI and synthetic biology, spatio-temporal patterns and inter-cell commu-
nication based circuits.

The fifth annual Allan Kuchinsky scholarship is generously sponsored by Agilent.
Previous recipients
2018 - Dr. Steve Shih

2017 - Dr. Curtis Madsen
2016 - Dr. Nicholas Roehner
2015 - Dr. Swapnil Bhatia



Oral Presentations
1 DNAWeaver: optimal DNA assembly strategies via supply networks and shortest-path algorithms

Valentin Zulkower, The Edinburgh Genome Foundry Team, and Susan Rosser . . . . . . . . . . . . . . . . . . . . . . . 16

2 An automated QC pipeline for libraries with high degree of variants
Ernst Oberortner, Robert Evans, and Jan-Fang Cheng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Automated Design and Characterization of Large Toolboxes of Highly Non-Repetitive Genetic Parts
Ayaan Hossain and Howard M. Salis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 The Operon Refactoring and Construction Assistant (ORCA): Streamlined gene cluster refactoring
Ernst Oberortner, Nathan J. Hillson, and Jan-Fang Cheng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Towards a framework for implementing evolutionary algorithms in bacterial colonies
Javier Carrión, Yerko Ortiz, and Martín Gutiérrez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Combining metabolic modelling with machine learning accurately predicts yeast growth rate
Christopher Culley, Supreeta Vijayakumar, Guido Zampieri, and Claudio Angione . . . . . . . . . . . . . . . . . . . . . 26

7 Towards Detection of Engineering in Metagenomic Sequencing Data for Yeast and Other Fungi
Sancar Adali, Aaron Adler, Joel S. Bader, John Grothendieck, Thomas Mitchell, Anton Persikov, Jonathan Prokos, Richard
Schwartz, Mona Singh, Allison Taggart, Benjamin Toll, Stavros Tsakalidis, Daniel Wyschogrod, Fusun Yaman, Eric Young,
and Nicholas Roehner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Biophysical Analysis for Implementing Neuro-inspired Computing in Living Cells
Ramez Danial, Luna Rizik, Ximing Li, and Raghd Abu Sinni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9 Analyzing Genetic Circuits for Hazards and Glitches
Pedro Fontanarrosa, Hamid Hosseini, Amin Espah Borujeni, Yuval Dorfan, Chris Voigt, and Chris Myers . . . . . . . . . 32

10 An automated model reduction tool to guide the design and analysis of synthetic biological circuits
Ayush Pandey and Richard M. Murray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11 Estimating Biologically Relevant Network Structures from Time-series Data
Zoltan A. Tuza and Guy-Bart Stan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

12 Model-driven design of genetic regulatory networks using virtual parts
Göksel Mısırlı, Bill Yang, and Anil Wipat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

13 Stochastic Analysis of an Genetic Sensor
Jeanet Mante, Pedro Fontanarrosa, and Chris Myers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

14 Visualization of Part Use in SynBioHub
Jeanet Mante, Zach Zundel, and Chris Myers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

15 SBOL Visual 2 Ontology
Göksel Mısırlı, Jacob Beal, Thomas E. Gorochowski, Guy-Bart Stan, Anil Wipat, and Chris Myers . . . . . . . . . . . . 44

16 Flapjack: an open-source tool for storing, visualising, analysing and modelling kinetic gene expression data
Guillermo Yáñez, Isaac Núñez, Tamara Matute, Fernán Federici, and Timothy J. Rudge . . . . . . . . . . . . . . . . . . 46

17 A Reconfigurable Digital Microfluidics Platform
Georgi Tanev, Luca Pezzarossa, Winnie E. Svendsen, and Jan Madsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

18 Design Automation of Microfluidic Droplet Sorting Platforms
David McIntyre and Douglas Densmore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

19 Detecting Engineering in Single Cells using Tapestri Microfluidics
Aaron Adler, Adam Abate, Joe Collins, Ben Demaree, Kevin Keating, Xiangpeng Li, Thomas Mitchell, David Ruff, Allison
Taggart, Shu Wang, Daniel Weisgerber, Daniel Wyschogrod, Fusun Yaman, Eric M. Young, and Nicholas Roehner . . . . 52



Poster Presentations
1 A Logic Programming Language for Computational Nucleic Acid Devices

Carlo Spaccassassi, Matthew R. Lakin, and Andrew Phillips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2 CellScanner: a software for extracting physical features from individual cells

Sebastián Antón, Marco Clavero, and Martín Gutiérrez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3 OptBioDes: optimal design for the synbio toolchain

Pablo Carbonell, Rainer Breitling, Jean-Loup Faulon, and The SYNBIOCHEM Team . . . . . . . . . . . . . . . . . . . . 58
4 Integration of Performance Metrics into Microfluidic Design Automation

Radhakrishna Sanka and Douglas Densmore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5 Modular Microfluidic Design Automation Using Machine Learning

Ali Lashkaripour, Christopher Rodriguez, Noushin Mehdipour, David McIntyre, and Douglas Densmore . . . . . . . . . 62
6 Accelerating the Threshold and Timing Analysis of Genetic Logic Circuit Models

Sanaullah, Hasan Baig, and Jeong A Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7 Better research by efficient sharing: evaluation of free management platforms for synthetic biology designs

Uriel Urquiza-García, Tomasz Zieliński, and Andrew J. Millar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8 A method for compiling arbitrary transfer functions to molecular circuits

Iuliia Zarubiieva, Francesca Mantellino, Andrew Phillips, and Vishwesh Kulkarni . . . . . . . . . . . . . . . . . . . . . 67
9 The Morphogen Circuit Builder & Compiler

Bryan Bartley, Brian Basnight, Jesse Tordoff, Jacob Beal, Ron Weiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10 Machine Learning Algorithms for Robust Meta-Analysis of Gene Expressions

Vishwesh Kulkarni, Xinwu Yu, and Weikang Qian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11 Mutation of synthetic constructs in E. coli

Duncan Ingram, Mark Isalan, and Guy-Bart Stan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12 Parallel Binary Sorting and Shifting with DNA

Tonglin Chen and Marc Riedel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



DNAWeaver: optimal DNA assembly strategies via
supply networks and shortest-path algorithms

Valentin Zulkower
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School of Biological Sciences
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1 MOTIVATION
Synthetic Biology applications often require the assembly
of large DNA sequences from smaller fragments. This can
be a long and expensive process, involving the careful de-
sign of many fragments sequences and multiple assembly
steps. While software can help alleviate these challenges, ex-
isting solutions focus on specific scenarios, such as plasmid
assembly from standardized genetic parts [1], and chromo-
some synthesis from commercially ordered DNA blocks [2]
or oligonucleotides [6]. However, assembly projects may use
different combinations of cloning methods (e.g. Gibson As-
sembly, Golden Gate assembly, recombination in yeast) and
DNA sources (parts repositories, genomic DNA, commercial
providers), depending on the desired DNA sequence and the
researcher’s preferences.
We present DNA Weaver, an open-source Python frame-

work1 andweb application2 to compute cost- and time-optimal
assembly strategies from user-specified DNA sources and
cloning methods. DNA Weaver combines supply-network
models with shortest-path algorithms to return either perfect
solutions or quick approximations to a variety of problems.
This makes it suitable to plan routine cloning in a research
laboratory, to automatically evaluate the costs and complex-
ity of projects submitted online to a biofoundry, or to auto-
matically optimize the design of novel sequences towards
better manufacturability.

2 METHODS
Problem definition via supply networks
Users define an assembly problem either via Python scripts
or the web interface, by providing the desired final sequence
and designing a supply network representing all available
cloning options (Figure 1A). Each node of the supply network
represents a DNA source, e.g. a commercial provider, a parts
repository, a PCR station which extracts DNA from existing
constructs or genomes, or an assembly station which assem-
bles supplied fragments into a larger one. Each source can

1https://github.com/Edinburgh-Genome-Foundry/DnaWeaver
2https://dnaweaver.genomefoundry.org

be extensively parametrized to reflect its capabilities. For in-
stance, DNA vendors can have custom sequence acceptance
rules (see [5] for examples), pricing policies, and lead times.
PCR stations can have a range of acceptable oligo primer
lengths and annealing temperatures, as well a BLAST data-
base of available constructs and genomes. Assembly stations
can implement different cloning methods defined by param-
eters such as fragments overhangs, restriction sites used,
acceptable size ranges of the fragments and final assembly,
forbidden sequence patterns, etc.

Each edge of the supply network indicates a client-supplier
relationship between two DNA sources. If a PCR station
needs a primer oligonucleotide, or an assembly station needs
a particular DNA fragment, they request the sequence from
all of their direct suppliers. Each supplier indicates whether
it can provide the sequence, at which price, and with what
lead time. The client station then retains the best offer as the
fragment price. This chain of competitive bidding between
members of the network ensures that each DNA fragment
of each assembly is obtained using the cheapest (and most
adapted) vendors and assembly methods.
The variety of possible supply network layouts enables

DNA Weaver to solve various cloning problems, from multi-
step assembly (Figure 1A) to site-directed mutagenesis or
the auto-completion of parts library assemblies with com-
mercially ordered sequences (interactive examples of such
scenarios are provided in the web application). In addition,
the use of supply networks makes it easy to plug in new
classes of DNA sources with different behaviors (which users
can define using the Python language), for instance sources
connected to remote sequence databases or vendor APIs.

Graph-based sequence decomposition
To provide a sequence at the best price, an assembly station
must find the cheapest possible set of fragments which can
be assembled into the desired sequence. This often amounts
to identifying which regions of the sequence can be inexpen-
sively obtained from DNA repositories or from the cheapest
vendors. The sequence decomposition algorithm starts by
building a costs graph (Figure 1B) where each edge repre-
sents a possible sequence fragment, and an edge’s weight is

16
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Figure 1: DNA Weaver’s web interface, sequence decomposition algorithm, and output. (A) Web interface screenshot of a
user-defined supply network modeling a multi-step assembly protocol. The final sequence is assembled via recombination in
yeast (bottom station) from large fragments obtained either via Gibson assembly, Golden Gate assembly, or via PCR of the
Escherischia coli (E. coli) chromosome. The Golden Gate and Gibson stations assemble fragments originating either from two
commercial providers (cart icons), or from oligonucleotide assembly. (B) Simplified representation of the costs graph used
by the yeast recombination station in panel A to decompose a 50kb sequence. The highlighted shortest path indicates the
cheapest solution, where lateral fragments are obtained from assembly stations, and the central region’s homology to E. coli
is exploited to obtain cheap DNA fragments via genomic PCR. (C) Assembly plan for the 50kb sequence in panel B, from oligo
assembly (bottom level) to the final assembly in yeast (top level), returned in under 10 seconds by the web application.

the fragment’s cost (accounting for the addition of assembly
overhangs). The shortest graph path from the first nucleotide
to the last can be computed using the Dijkstra algorithm [3]
and gives the cost-optimal sequence decomposition.
The computational complexity to cost all edges is O(L2)

(where L is the sequence length). DNA Weaver also imple-
ments approximate resolution approaches such as the A*
path-finding algorithm [3] or nucleotide-skipping, which
can reduce the number of edges to compute by orders of
magnitude, allowing quasi-real-time sequence editing with
manufacturability feedback.
Further graph operations allow to model the limitations

of a cloning method, e.g. by limiting the number of parts
in an assembly, constraining fragments sizes, forbidding in-
compatible overhangs to be used in a same cloning step,
or preventing high-GC regions to be used as overhangs. It
is also possible, by filtering graph edges based on supplier
lead time, to obtain the cheapest cloning strategy under a
time constraint, or the fastest assembly plan within a given
budget.

Output and use for sequence optimization
DNA Weaver generates comprehensive assembly planning
reports featuring plots of the final assembly plan (Figure 1C),
PDF documents summarizing all sequence ordering assembly
steps, and spreadsheets listing all sequences to order.

For design optimization purposes, DNAWeaver can return
an analysis of the cost graph pinpointing the sequence loca-
tions susceptible to impact assembly cost. This information
can then be used to iteratively re-design the desired sequence

towards lower costs and manufacturing complexity, possibly
taking into account other application-specific objectives and
constraints, via existing DNA optimization software such as
DNA Chisel [4].
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INTRODUCTION
The U.S. Department of Energy (DOE) Joint Genome Institute
(JGI) provides DNA sequencing and synthesis services to
scientific users via community science programs. The DNA
synthesis program1 covers all aspects of the synthetic biology
design-build-test cycle, enabling users to engineer biological
systems that are relevant to their own research roadmap and
the DOE mission.

One particular product type, among others, that the DNA
synthesis program offers is the design and construction of
libraries with a high degree of variants. Applications of such
libraries include genome editing using whole genome guide
RNA (gRNA) libraries or studying structural variations of
genes or regulatory elements (e.g., promoters, terminators or
ribosomal binding sites). At DOE JGI, the workflow for de-
signing and building such libraries include (i) in silico design
of the library variants depending on its application and its
destination vectors, (ii) synthesis of the library variants by
commercial DNA synthesis vendors as oligo pools, (iii) am-
plification of the oligo pool and cloning into its destination
vectors, (iv) transformation into E. coli, (v) quality control
(QC) of the transformed library using high-accuracy, short-
read next-generation sequencing (NGS) technologies and, if
all QC standards are met, (vi) shipment of the library to the
user.
Here, we present our recently established bioinformat-

ics pipeline to QC the transformed libraries. The pipeline
comprises freely available, off-the-shelf bioinformatics tools
to process the short NGS reads as well as newly developed
scripts to visualize the QC results. The QC results depend on
(i) the percentage of NGS reads that contain any library vari-
ant including the 5‘and 3‘vector overlaps and (ii) the equal
representation of all library variants, avoiding bias towards
the over- or under-representation of any variant.

RESULTS & DISCUSSION
The main purpose of this QC pipeline (Figure 1) is to detect
the representation of each library variant. To do that, we (i)
assemble Illumina short paired-end reads, (ii) separate the
reads with perfect matches to the expected variants from

1https://jgi.doe.gov/user-programs/program-info/csp-overview/
synthetic-biology/

reads with mis-matches, and (iii) plot the frequency of per-
fectly matched variants. We normally generate an average
of 100-200 folds assembled read coverage of the variants in
the library to produce a good coverage plot.
We evaluated the QC pipeline with four user projects,

including (i) whole genome gRNA libraries targeted for
organisms including Pseudomonas putida, Clostridium
autoethanogenum and Yarrowia lipolytica and (ii) partial
genome, functional-oriented (eg. metabolic genes) gRNA
libraries for Saccharomyces cerevisiae. The pipeline is,
however, applicable for gRNA libraries for gene suppression,
activation or genome editing.
Currently, we have evaluated our QC pipeline using Illu-

mina MiSeq sequencing data only. The pipeline is, however,
applicable to any high-accuracy, short-read sequencing tech-
nology, such as the Illumina HiSeq or NextSeq systems.

METHODS

Step I: In silico design of library variants
For the design of whole genome gRNA libraries, we utilize
the CCTop CRISPR/Cas9 target online predictor [2]. The
computational design is, however, out of scope in this ab-
stract.

Step II: Oligos synthesis
Oligos of up to 200 bases are commercially available as mixed
oligo pools (Twist Biosciences, CA). The level of variants
and the sequence fidelity of these oligos are suitable for
constructing whole genome gRNA libraries.

Step III: Library assembly and cloning
Although the quantity of the oligos is sufficient for one
cloning attempt, a few cycles of PCR amplification is rec-
ommended to generate enough materials for a few attempts
without introducing significant biases. We have successfully
used both Gibson and Golden Gate assembly and cloning
approaches to construct whole genome gRNA libraries with
over 15,000 variants. A successful library is defined as con-
taining more than 10-fold colony-forming unit (CFU) than
the number of variants. The library is amplified once by
plating it out on large bioassay plates and harvesting cells
in freezing medium. The amplified library can be stored at
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Figure 1: The automated QC pipeline and its integration into the design and build workflows of libraries with a high degree
of variants. All steps, except the synthesis step, are performed at DOE JGI.

−80C or used for DNA preparation and introduction into the
targeted organism.

Step IV: High-accurracy, short-read sequencing
To facilitate high coverage sequencing of the inserted library,
the region of interest is isolated using PCR with minimal
cycling or restriction digest followed by size-selection. The
isolated DNA is then sequenced using an Illumina MiSeq
system.

Step V: Automated QC pipeline
Our pipeline mainly consists of individual bioinformatics
tools, which are available via BBTools2. The user provides
two inputs: (i) a FASTQ file, containing the overlapping
paired-end reads generated by the Illumina MiSeq sequencer
and (ii) a spreadsheet that contains the library variants in-
cluding their 5‘and 3‘vector flanking sequences.
First, we use bbmerge [1] to merge the paired-end Illu-

mina reads. Then, we use seal3 to filter the merged reads
based on the 5‘and 3‘vector overlaps, whose positive and
negative strand sequences are encoded in a FASTA file. Then,
we use bbduk4 to trim the 5‘and 3‘vector overlaps from each
filtered read. The resulting FASTQ file contains the filtered
and trimmed reads that should contain and match the de-
signed library variants. This FASTQ file serves then as input

2https://jgi.doe.gov/data-and-tools/bbtools/
3https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/
seal-guide/
4https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/
bbduk-guide/

to bbduk and seal to respectively generate a textual repre-
sentation of a length distribution histogram of the trimmed
reads and a count summary of how often each library variant
occurs in the trimmed reads.

Step VI: Visualization of QC results
The final step of our QC pipeline is the visualization of the
textual outputs of bbduk and seal. Therefore, we devel-
oped a Python script that imports the length distribution
histogram and the count summary. Our Python script uses
Matplotlib, python’s 2D plotting library, to generate the plots
for visualizing the QC results, helping the current manual
decision making process to either ship the library to the
scientific user or to perform any rework.
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1 SYNTHETIC BIOLOGY REPEAT CHALLENGE
Repetitive design is ubiquitous in modular engineering. Syn-
thetic biologists have previously embraced this design philos-
ophy in engineering multi-input-multi-output logics [3], sig-
nal processing [2] and feedback control [4] - often repeating
genetic parts (including genes) with desired activity multiple
times in a system. This approach simplifies the underlying
physics by eliminating part variability, but, the resulting sys-
tems become repetitive, making them difficult to synthesize
using commercially available DNA synthesis approaches,
and unstable in host organisms that exhibit homologous re-
combination activity. 30-bp repeats in a long DNA construct
can cause complete synthesis failure or exorbitant delays
80% of the time. In popular engineering chassis such as E.
coli and S. cerevisiae 15 to 20-bp repeats are sufficient in trig-
gering detectable recombination, during which sections of
the system flanked by repeats are deleted, and the system
becomes functionally compromised. Collectively, these prob-
lems constitute the synthetic biology repeat challenge. Previ-
ously, synthetic biologists have overcome this challenge by
manually mutagenizing parts [2, 3], or switching to a differ-
ent genetic part potentially compromising system efficiency.
Both approaches are sub-optimal and trial-and-error based.
If we were to engineer large and stable genetic systems, path-
ways, and refactor whole genomes, we would need efficient
approaches to design and characterize very large toolboxes
of different types of non-repetitive genetic parts that are
presently absent in literature (see Table 1).

Available Parts Non-Repetitive
E. coli Promoters 11,049 13
E. coli Terminators 647 154
S. cerevisiae Promoters 23 10
S. cerevisiae 5’ UTRs 5,032 104
S. cerevisiae 3’ UTRs 66 14
Table 1: Availability of non-repetitive (Lmax = 10) genetic
parts in some commonly used toolboxes.
2 THE NON-REPETITIVE PARTS CALCULATOR
To engineer large toolboxes of highly non-repetitive genetic
parts, we developed the Non-Repetitive Parts Calcula-
tor (see Figure 1). Given the highly experimental nature of
synthetic biology, we propose two complementary modal-
ities within NRP Calculator - the Finder Mode and the
Maker Mode. Formally, the Finder Mode algorithm is a
top-down discovery approach in which we assume that a syn-
thetic biologist has access to a large toolbox of characterized
genetic parts, from which she wants to select a large sub-
set of parts, such that no two parts in the resulting toolbox
share repeats of length ≥ Lmax , the maximum allowed repeat
length. We denote such a collection of genetic parts as aNon-
Repetitive Toolbox. To solve this problem, we formulate
the initial toolbox as a repeat graph and connect every pair
of vertex with an edge if their labelled parts share repeats ≥
Lmax . We then eliminate an optimally small vertex cover of
the graph, so that the independent set of the graph encodes a
Non-Repetitive Toolbox. In contrast to Finder Mode, the
Maker Mode algorithm is a bottom-up design approach. We

Figure 1: NRP CalculatorWorkflow. A set of design constraints are input to NRP Calculator which generates non-repetitive
paths in the defined constraint space to produce large toolboxes of genetic parts fulfilling the design criteria. The toolboxes
may then be synthesized, characterized and used simultaneously.
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Figure 2: Measured transcription rates from a subset of 3,500 non-repetitive σ 70 promoters with variable motifs. Black bars
represent 1 standard deviation from mean (n = 2).

assume that a synthetic biologist wants to design and then
characterize a large toolbox of non-repetitive parts, subject
to a set of constraints that ensure the designed parts are
functional. Such design constraints may be an IUPAC degen-
erate nucleotide or IUPAC amino acid sequence constraint,
a proscribed RNA secondary structure, and/or a quantitative
model of part function, along with Lmax , which sufficiently
encode non-repetitive genetic parts with predictable prop-
erties. Given the constraints as input, theMaker Mode al-
gorithm models the design of non-repetitive parts as a path
finding problem in constraint space, and outputs either a
target sized or maximally largest Non-Repetitive Toolbox.
As an analogy to Finder Mode, theMaker Mode algorithm
iteratively generates a single non-repetitive part and adds it
to the recurring Non-Repetitive Toolbox such that with
every addition of a part, the repeat graph corresponding to
the recurring toolbox remains disconnected by design. Per-
formance analysis of NRP Calculator showed that both
Finder Mode andMaker Mode operated in linear time.
3 NON-REPETITIVE PROMOTER TOOLBOXES

FOR E. COLI AND S. CEREVISIAE
To demonstrate NRP Calculator, we designed and charac-
terized thousands of non-repetitive promoters for developing
evolutionarily robust genetic systems composed of hundreds
to thousands of non-repetitive parts in E. coli and S. cerevisiae,
which are popularly used organisms for numerous biotech-
nology applications which often have precise gene regulation
requirements. We first designed 4,350 highly non-repetitive
(Lmax = 10) constitutive σ 70 promoters for E. coli up to 3,550
of which may be used simultaneously without introducing
any 11-bp repeats. We then used a massively parallel reporter
assay to construct and characterize the promoters - combin-
ing barcoding, oligopool synthesis, library-based cloning,
and next generation sequencing (DNA-Seq and RNA-Seq) to
measure their transcription rates. Collectively, our library
spanned a 1.15-million-fold in transcription rate dynamic

range with the transcription rates being inversely propor-
tional to the mutations in the promoter motifs (see Figure 2).
Similarly, we engineered a toolbox of 1,931 non-repetitive
(Lmax = 15) Pol II promoters for concurrent use in S. cere-
visiae, using Rap1, Reb1 andGcr1 transcription factor binding
sites, and optimized them for reduced nucleosome occupancy
thus maximizing RNAP recruitment[1, 5]. Additionally, we
optimized the Pol II promoters to be orthogonal to the S288C
strain genome to enable efficient recombineering. Charac-
terization in four different media condition showed that the
Pol II promoter toolbox spanned at least 1.1-million-fold in
transcription rate in synthetic complete media. Post charac-
terization, we explored combinatorial use cases, studied sta-
tistical associations and sequence determinants of promoter
functionality in order to inform better design constraints,
for future iterations. Finally, we showed that non-repetitive
design in general not only allowed for composing evolution-
arily robust genetic systems, but also enabled robust and
parallel sequence assembly, sequence-to-function modelling,
and efficient analysis of characterization data by maximizing
information content.
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INTRODUCTION
The combination of Next-Generation Sequencing (NGS) and
bioinformatics enables scientists to discover gene clusters
that collectively produce chemical compounds, providing
access to a novel, extended diversity of natural products
for agriculture, fuels, materials, and medicine. A synthetic
biology approach to enhance the biological production of
industrially-relevant compounds is to refactor the wild-type
gene cluster for expression in a heterologous host. Easily
accessible DNA synthesis and assembly services, for exam-
ple provided by commercial DNA synthesis vendors or bio-
foundries, enable the manufacturing of the refactored gene
clusters in a time- and cost-efficient manner.
The design of a refactored gene cluster comprises of var-

ious tasks, such as (i) specifying the pathway and operon
structure to modulate the expression-levels of the genes,
(ii) assigning or calculating the sequences of the regulatory
elements (e.g., promoters, ribosomal binding sites (RBS), ter-
minators), (iii) optimizing the codon usage of genes for ex-
pression in the target host, or (iv) preserving or avoiding any
sequence motifs (e.g., restriction sites, methylation motifs,
internal priming sites) that impact construction and expres-
sion.

We have established the Operon Refactoring and Construc-
tion Assistant (ORCA), which integrates existing and newly
developed biological computer-aided design (bioCAD) tools
to enable a fully automated design process for gene cluster
refactoring. In a web-based UI, the user inputs data and the
values of design parameters according to what design tasks
need to be executed in the specific gene cluster refactoring
process. A workflow engine then executes the design process
according to the user inputs. ORCA outputs the refactored
pathway sequences including annotations, ready-to-order se-
quences for each pathway including instructions about their
assembly and cloning into the designed pathway constructs.
The value added of using ORCA is, if the user wants, the
permanent consideration of synthesis limitations (e.g., %GC
content, repeats, sequence motifs) throughout the automated
design process.

RESULTS & DISCUSSION
At the U.S. Department of Energy (DOE) Joint Genome In-
stitute (JGI), we developed ORCA according to the design

and construction requirements discovered from several user
projects, such as refactoring gene clusters for enhanced bi-
ological production of dipeptides (cyclic dipeptides, MAAs,
and RIPPs), iron-sulfur enzymes, and carboxylic acids. In
the dipeptides project, for example, we mined the Integrated
Microbial Genomes (IMG) database (https://img.jgi.doe.gov/)
and selected an initial set of genes for 20 bacterial pathways
for design and construction.
Currently, ORCA supports the design of a single path-

way, enabling, however, the design of pathway variants with
varying operon structures (see 1). In the near future, we will
enable ORCA for batches of pathways and combinatorial
designs by integrating bioCAD tools, depending on their
applicability, availability, maturity and, moreover, facility for
integration (e.g., the JBEI DIVA platform, Eugene [1] or the
approach described in [3]).

METHODS
STEP I: Input of genetic parts
The user uploads all parts using a spreadsheet that contains,
at a minimum, information about the part’s name, type, and
sequence. The sequences can also be specified in common
sequence file formats (e.g., Genbank, FASTA). In this case,
the user also needs to specify name of the sequence file and
the part’s source location in the referenced file. The ORCA
back-end parses the input data and verifies its correctness,
such as checking that all referenced files are uploaded and
contain the specified locations.

Step II: Design of pathways and operon structures
ORCA supports the following parameters for designing path-
ways and operon structures: (i) the minimum and maximum
number of genes per operon, which determine the number
of possible operon configurations, (ii) the orientation of each
operon, (iii) the maximum length of an operon in base pairs,
and (iv) the number of pathway variants that ORCA should
enumerate. In Figure 1, we provide a screenshot of the ORCA
web UI. To visualize the pathway designs, ORCA integrates
the DNAplotlib library [6], which uses standardized SBOL
Visual glyphs [4].
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Figure 1: Designing pathways and their operon structures in ORCA

Step III: Selection of promoters and terminators
The user can determine what promoter and terminator se-
quences should be assigned to each operon of each pathway
variant. ORCA provides the following options: (i) select any
uploaded promoter and terminator (Step I), (ii) assign any
promoter and terminator automatically (e.g., to ensure mini-
mal violations against synthesis criteria), or (iii) assign no
promoter or terminator to the operon (e.g., when using bidi-
rectional promoters).

Step IV: Calculation of RBS sequences
ORCA integrates existing tools for calculating calculate RBS
sequences [2, 7, 8]. Regardless of what tool the user selects,
the user can specify how many RBS sequences should be
calculated for each gene. Depending on the selected RBS
calculation tool, the user needs to provide the corresponding
inputs. ORCA also supports uploading of RBS sequences
(Step I) and to assign them to the genes in the designed
pathways (Step III).

Step V: Codon-optimization of genes for target host
ORCA integrates the Build-Optimization Software Tools
(BOOST) [9], which allow (i) uploading codon usage tables
or selection among predefined ones and (ii) selecting among
various codon-optimization algorithms.

Step VI: Selection of synthesis criteria and sequence
motifs
The user can select among a list of commercial DNA synthe-
sis vendors or manually specify synthesis constraints (%GC,
repeats). Throughout the automated design process, ORCA
utilizes BOOST to ensure that the pathway sequences con-
tain the minimum number of synthesis constraint violations
of either the selected vendor or the user-specified constraints.
Similarly as for synthesis constraints, the user can specify
sequence motifs that need to be preserved or avoided during
the automated design of the pathway sequences.

Step VII: Specification of build instructions
For this task, ORCA again utilizes BOOST, enabling the user
to specify build instructions (i.e., synthesis, assembly, and
cloning) and to encode them in the Synthetic Biology Open
Language (SBOL) and its W3C Provenance extension [5].
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1 INTRODUCTION
Evolution is a trademark process in biology. Organisms adapt
to an environment surrounding them. This concept has been
studied and used in Computer Science in the form of algo-
rithms. Furthermore, other higher-level biology processes
have also been adapted, and are known as bio-inspired algo-
rithms. Related to this class of algorithms are evolutionary
algorithms. The latter rely on the repeated evaluation of mul-
tiple possible solutions and follow given heuristics inspired
on biological situations to evolve. Oddly enough and to the
best of our knowledge, within the advent of Synthetic Biol-
ogy, these algorithms have been very poorly explored [2, 5].
Massive parallelism, and the dynamics that bacterial colonies
follow to evolve and grow offer a new possible platform to
implement simulations of these algorithms as a means of
achieving an alternative computational paradigm.

2 EVOLUTIONARY ALGORITHMS
Exploration and exploitation mechanisms in search and opti-
mization algorithms are achieved through evolution applied
to potential solutions. These solutions are repeatedly evalu-
ated through a fitness function, to evolve towards good ones.
Two types of such algorithms are introduced below:

Simulated Annealing (SA): The algorithm is based on
a metallurgy annealing process, where the goal is to achieve
the best possible crystallization. This is done through con-
trolled decrease of metal temperature, resulting in increasing
stability of free energy. In algorithmic terms, one solution
is chosen and constantly evaluated within a solution space.
The fitness function maps to the energy in the system and
mutations are applied to iteratively evolve the solution ac-
cording to a gradually decreasing temperature label. The
algorithm keeps track of the best found solution.

Simple Genetic Algorithm (SGA): This algorithm finds
its inspiration in natural selection, where the fittest indi-
viduals in a population survive and reproduce. Computa-
tionally, this is modeled as a pool of evolving individuals
being iteratively evaluated and selected as to persist or to
be eliminated. In this context, reproduction is carried out
by probabilistically combining existing solutions and then
applying mutations on the resulting individuals. The fitter

the individual, the greater the probability of surviving and
reproducing.

3 PROPOSAL AND MOTIVATION
We propose a framework architecture and implementation
to aid in the automation of the generation of evolutionary
algorithm simulations in gro [3, 4]. We believe the frame-
work concept can be extrapolated to the wet-lab context,
and that the associations between operations hold in actual
experiments. In addition, we believe evolutionary algorithms
implemented in bacterial colonies can coexist with Directed
Evolution [1], and be a complement by providing formal
and structured guidelines to configure the process. Another
application of this framework could be towards the construc-
tion and evaluation of evolvable synthetic circuits. Taking
advantage of the versatility in programming cells along with
the native environment involving evolution and the intrinsic
parallelism occurring in cell colonies provides a favorable
environment for implementation. A first approach in this
direction can be to design and implement a tool that gener-
ates gro simulation templates for evolutionary algorithms
in bacterial colonies.

4 DESIGN AND IMPLEMENTATION
The framework includes the high-level definition of evo-
lutionary algorithms. Also, it is based on a proposed map-
ping from typical algorithm operations to biological pro-
cesses used in Synthetic Biology. This mapping establishes
general recommendations for the implementation of exper-
iments/simulations of evolutionary algorithms in bacterial
colonies. Both of these elements are at the core of the frame-
work. Also, a proof-of-concept was implemented to test the
behavior of the algorithms. This is, a generator for gro sim-
ulation specification files of the described evolutionary algo-
rithms was constructed to ease and accelerate the process.
The generator captures the general algorithm logic through
the proposed mappings, and together with the input param-
eters, constructs a template .gro specification file.

Toolkit
At this time, the toolkit includes the definition of SGA and SA
templates. Operations such as mutation and natural selection
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Figure 1: Entire simulation generation process. The user selected parameters and choices integrate into a .gro file that acts
as a template. On the other hand, each algorithm representation includes its computational operations. These operations are
then related to biological processes. Cas9 refers to a protein that triggers sequence editing of genes.

have been conceptually generalized to fit their respective
roles in each of the algorithms. Furthermore, the operations
are mapped to a proposed set of biological processes that can
represent them in an experimental environment. This toolkit
has been designed to be extensible in algorithms and oper-
ations. A summary of the relationship between algorithm
operations and biological processes can be found in Figure 1.

Specification file generator
A tool that generates output gro specification template files
for evolutionary algorithms was implemented. This genera-
tor requires input parameters chromosome length and the
representation of a fitness function in terms of presence or
absence of each component (protein) to operate and con-
figure the template. Additionally, the user must select the
evolutionary algorithm to generate. Specific functions such
as crossover and mutation must be specified by the end user.
However, they are considered within the template.

5 RESULTS
Our simulations are aimed at finding bacteria expressing
GFP proteins: bacteria tagged as good solutions. In both
SA and SGA, this is a boolean function imposing the pres-
ence and/or absence of all control proteins, e.g.: the fitness
function for a bacterium could be the presence of two spe-
cific proteins and the absence of other two proteins, all four
of them different. The parameter modified for each test is
the conjugation rate. In the case of SA, it represents the
mutation rate of the algorithm, as opposed to SGA, where
it represents the crossover rate. Tables 1 and 2 summarize
the mean values over 10 simulations of each kind: data for
number of GFP expressing bacteria, total number of bac-
teria and number of generations of the first occurrence of
GFP bacterium were recorded. Source code can be found at
https://github.com/ jcarrionramos/Bioinspired-framework.

6 CONCLUSION
With this framework, we try to approach scientists who are
not experts in programming, so they can more easily create

Table 1: SA algorithm runs varying mutation probability

Pm GFP Total Number of Generations
0.2 16 9986 2.2
0.1 6 9986 3
0.01 0 9985 N/A

Table 2: SGA algorithm varying crossover probability

Pc GFP Total Number of Generations
0.1 7 9948 7.6
0.01 1 9946 11.6
0.001 0 9946 N/A

evolutionary algorithm simulations in gro. This idea was
condensed into a tool that generates templates for such al-
gorithms. Preliminary results have been shown from the
simulations, demonstrating the functionality of SA and SGA
algorithms. As future work, an interesting direction is to
implement more evolutionary algorithms within the toolkit.
Another possible extension is to link other tools to the frame-
work to aid in the design of initial circuits. All of the men-
tioned algorithms are currently being validated against their
C++ source code counterparts.

REFERENCES
[1] Arnold, F. H. Design by directed evolution. Accounts of chemical

research 31, 3 (1998), 125–131.
[2] Beneš, D., Sosík, P., and Rodríguez-Patón, A. An autonomous in vivo

dual selection protocol for boolean genetic circuits. Artificial life 21, 2
(2015), 247–260.

[3] Gutierrez, M., Gregorio-Godoy, P., Perez del Pulgar, G., Muñoz,
L. E., Sáez, S., and Rodríguez-Patón, A. A new improved and extended
version of the multicell bacterial simulator gro. ACS synthetic biology 6,
8 (2017), 1496–1508.

[4] Jang, S. S., Oishi, K. T., Egbert, R. G., and Klavins, E. Specification and
simulation of synthetic multicelled behaviors. ACS Synthetic Biology 1,
8 (2012), 365–374.

[5] Rolanía, D. B., Font, J. M., and Manriqe, D. Bacterially inspired evo-
lution of intelligent systems under constantly changing environments.
Soft Computing 19, 4 (2015), 1071–1083.

25



Combining metabolic modelling with machine
learning accurately predicts yeast growth rate

Extended Abstract∗

Christopher Culley1, Supreeta Vijayakumar2, Guido Zampieri2, Claudio Angione2,3
1School of Electronics and Computer Science, University of Southampton, Southampton, UK

2Department of Computer Science and Information Systems, Teesside University, Middlesbrough, UK
3Healthcare Innovation Centre, Teesside University, Middlesbrough, UK
cc2u18@soton.ac.uk,{g.zampieri,s.vijayakumar,c.angione}@tees.ac.uk

ABSTRACT
New metabolic engineering techniques hold great potential
for a range of bio-industrial applications. However, their
practical use is hindered by the huge number of possible
modifications, especially in eukaryotic organisms. To ad-
dress this challenge, we present a methodology combining
genome-scale metabolic modelling and machine learning
to precisely predict cellular phenotypes starting from gene
expression readouts. Our methodology enables the identi-
fication of candidate genetic manipulations that maximise
a desired output – potentially reducing the number of in
vitro experiments otherwise required. We apply and vali-
date this methodology to a screen of 1,143 Saccharomyces
cerevisiae knockout strains. Within the proposed framework,
we compare different combinations of feature selection and
supervised machine/deep learning approaches to identify
the most effective model.

KEYWORDS
Genome-scale modelling, machine learning, deep learning,
multi-omics, cellular growth, Saccharomyces cerevisiae.

1 INTRODUCTION
Cellular growth and gene expression are closely related in
unicellular organisms, as they co-participate in mutual regu-
lation. This relationship has yet to be fully understood, and in
general predicting cellular growth following genetic manip-
ulations is still challenging. Understanding and controlling
cellular growth has important applications in biotechnol-
ogy for the development of efficient cell factories, but the
identification of such strains is still a complex issue [10].
We propose a novel multi-view learning framework that

utilises both transcriptomics data and strain-specific meta-
bolic fluxes to predict outputs of bio-industrial interest. To
demonstrate the efficacy of this framework, we target it to
predicting cellular growth of S. cerevisiae, one of the main
eukaryotic platforms for bio-industrial production.

∗Oral presentation

2 METHODS
In this work, we started from 1,143 S. cerevisiae gene expres-
sion (GE) profiles – our first data view – each of which are
sampled from single deletion strains and are coupled with
their corresponding growth rate fold change [8]. We used a
genome-scale metabolic model (GSMM) of yeast metabolism
[6] in conjunction with METRADE [1] – which uses gene
expression to tailor reaction rate bounds – to build an equal
number of strain-specific GSMMs. We next used regularised
flux balance analysis (RFBA) [11] to determine reaction fluxes
for the entire network by maximizing the biomass accumu-
lation rate subject to regulatory and biochemical constraints.
The solutions provide steady-state reaction rates (fluxes) for
each yeast strain and every reaction in the GSMM. We used
the metabolic fluxes (MF) generated in this phase as a second
data view in the following prediction stage.
In the supervised learning phase, we employed the fol-

lowing methods: (i) support vector regression (SVR) [3]; (ii)
random forest (RF) [4]; and (iii) deep neural networks (DNN).
These were selected based on their suitability to build predic-
tive models starting from high-dimensional dataset such as
our transcriptomic and fluxomic profiles. We used the caret
R package for SVR and RF [9], while DNNwere implemented
through the keras Python library [5].
Given the high dimensionality of our data, we explored

whether feature selection can identify relevant genes ormeta-
bolic reactions, to build simpler and more interpretable mod-
els. We focused on three state-of-the-art techniques previ-
ously applied to omics data: (i) sparse group lasso (SGL) [12];
(ii) non-dominated sorting genetic algorithm II (NSGA-II)
[7]; and (iii) iterative random forests (iRF) [2].

3 RESULTS
We developed and evaluated a computational pipeline for
predicting S. cerevisiae growth rate from experimental and
simulated omics data, which is summarised in Figure 1a. In
brief, we used strain-specific GSMMs and RFBA to estimate
the MF activity of 1,143 yeast mutants in log phase, starting
from their GE profiles and optimising the GSMM building
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Figure 1: (a) Workflow of the proposed methodology: starting from GE profiles for different synthetic yeast strains – where
the colour tones represent rates of GE (greens), target doubling time (reds) and MF (blue to orange) – we build strain-specific
GSMMs fromwhich we estimate the MF activity. Next, we build data-driven predictive models using both GE andMF informa-
tion. (b) Correlation between the growth rate simulated by the strain-specific GSMMs and the relative doubling time for the
same strains. This shows that the strain-specific GSMMs correctly capture the metabolic state across strains.

Table 1: Full set of accuracy scores across all dataset-
method combinations tested against an unseen set of strains
to determine model generalisation: mean absolute error
(MAE),median absolute error (MDAE), Pearson’s correlation
coefficient (PCC). The final column indicates the percentage
of fluxomic features (FF%) of the dataset. Here MF+GE cor-
responds to the full data profiles from both the gene expres-
sion and metabolic fluxes.

Dataset Method MAE MDAE PCC FF%
MF+GE SVR 0.080 0.054 0.845 36
MF+GE RF 0.077 0.048 0.867 36
MF+GE DNN 0.072 0.049 0.887 36
iRF data SVR 0.070 0.048 0.886 0
iRF data RF 0.075 0.052 0.869 0
iRF data DNN 0.073 0.048 0.882 0
NSGA-II data SVR 0.072 0.049 0.889 24
NSGA-II data RF 0.078 0.047 0.843 24
NSGA-II data DNN 0.081 0.053 0.861 24
SGL data SVR 0.081 0.057 0.865 34
SGL data RF 0.081 0.052 0.846 34
SGL data DNN 0.084 0.058 0.866 34

based on the simulated growth rate (Figure 1b). Then, we
built and cross-compared machine and deep learning models
predicting yeast growth from integrated GE and MF infor-
mation (MF+GE), with and without feature selection. In this
phase, we tested SVR, RF and DNN in combination with SGL,
NSGA-II and iRF. We thereby created three further datasets
(SGL data, NSGA-II data and iRF data respectively) compris-
ing the features identified by each of these approaches.
Depending on the combination of dataset and learning

algorithm, we observed different trends in prediction scores.
Overall, the best performing methods are SVR combined

with iRF and NSGA-II, and DNN without prior feature se-
lection. We note that in the case of SVR, feature selection
can sensibly improve its prediction accuracy, while there is
an opposite trend for DNN. This could suggest that effective
DNN models embed non-linear relationships among genes
and metabolic reactions that involve a larger set of features.
Importantly, the MF variables selected allow us to mecha-
nistically understand the factors governing cell growth and
further inform potential manipulations.

4 CONCLUSIONS
Our integrative models enable the joint analysis of exper-
imental genetic regulation patterns and knowledge-based
metabolic information to predict yeast cell growth. Our re-
sults suggest that integratingmulti-omics variables andmeta-
bolic modelling can improve yeast growth predictions and
provide mechanistic biomarkers. Finally, our pipeline has
potential applications in metabolic engineering scenarios,
and can be readily extended to other hosts.
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1 INTRODUCTION
While there are many potential benefits of synthetic biology,
including new applications in medicine, energy, and agricul-
ture, these benefits do not come without tangible risks due
to the possibility of accidental release or deliberate misuse
of engineered organisms. Fungal pathogens are already engi-
neered for beneficial lethal ends, such as biopesticides to pro-
tect crops [3], but could have unintended consequences with
respect to the environment. In terms of deliberate misuse,
engineering enhancement of existing pathogens to develop
anti-crop bioweapons is of particular concern. Natural fungi
are among the most common causes of infections in crops
[1], have been successfully militarized in the past, and could
be made more deadly using synthetic biology.
Hindering any effective response to the above is the lack

of technology designed specifically to alert us when a novel
organism (engineered or natural) is present in the environ-
ment. Detection of engineered organisms is challenging due
to a combination of factors: the large space of existing but as
of yet unknown natural DNA, the complexity of the environ-
mental background in terms of mixed species populations,
and the potential subtlety of some signatures of engineering.
Possible solutions include training machine learning systems
to recognize common patterns of engineering, employing
single-cell sequencing to demultiplex metagenomic samples
[2], and integrating the results of multiple approaches that
capture a wide variety of signatures. We are developing a
system called GUARDIAN (Guard for Uncovering Accidental
Release, Detecting Intentional Alterations, and Nefarious-
ness) that combines wetware and software solutions like
these for the purpose of detecting even subtle signatures of
engineering in metagenomic samples.

2 THE GUARDIAN SOFTWARE SYSTEM
The GUARDIAN software system can be divided into five dis-
tinct subsystems that implement approaches in two classes
with different strengths andweaknesses: knowledge-free and
knowledge-rich. Our knowledge-free approaches extract and
classify signatures of engineering using methods from cyber-
security, natural language processing, and machine learning.
Alternatively, our knowledge-rich approaches use methods

Figure 1: GUARDIAN system architecture. Answers are com-
bined via weighted and unweighted voting schemes.

from bioinformatics and genomics to accomplish these tasks.
Figure 1 shows how these subsystems are connected and
share information to determine whether a given sequencing
data set was collected from a sample containing engineered
organisms. Currently, GUARDIAN is targeted towards the
detection of engineering in industrially relevant yeasts and
other fungi such as S. cerevisiae, Y. lipolytica, and P. pastoris,
but could be adapted to other taxa given appropriate train-
ing data. Here we focus on our knowledge-free approaches,
which currently drive GUARDIAN’s overall performance,
and omit the knowledge-rich approaches, which currently
supply additional details about detected engineering.
FAST-NA, a tool originally developed for detecting mal-

ware in network traffic, has since been adapted to screen
DNA synthesis orders for dangerous sequences and screen
natural DNA sequences for signatures of engineering. FAST-
NA uses a probabilistic data structure known as a Bloom
filter to identify regions within tested contigs that resemble
short subsequences of the natural genomes in its training
set. The remaining unidentified regions are then flagged
as regions of interest (ROIs). To produce a yes/no answer
for whether a sequencing data set contains engineering, we
compute statistics over all ROIs detected with FAST-NA and
compare them to those computed for known non-engineered
genomes. For example, max ROI length can be used to detect
engineering features such as large insertions.

Seq2Class is an approach that uses deep learning models
trained on positive examples of engineering, such as plasmid
vectors or insertions of refactored gene clusters, to compute
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engineering scores for a sliding window over tested con-
tigs. We then compute the fraction of these scores that fall
above an arbitrarily chosen threshold and call this fraction
the DF statistic. The final decision on engineered versus not
engineered is made by comparing the DF statistic for a se-
quencing data set to the largest DF statistics computed for
known non-engineered genomes. In order to increase the
sensitivity of these models, we provide the ROIs detected
with FAST-NA as input, thereby focusing on only those se-
quences that are likely candidates for containing signatures
of engineering.

N-gram language models can be used to compute the like-
lihood of the N th base pair given the previous sequence of
N − 1 base pairs. We have trained these models on examples
of non-engineered genomes and used them to compute the
sequence entropy of tested contigs. The higher the entropy
computed for a sequence, the less closely it resembles the
non-engineered genomes in the training set. We use a sliding
window to compute ROIs containing base pairs belonging
to high entropy sequences, and we compute statistics over
these ROIs similar to those produced by FAST-NA. We then
compare these ROI statistics to those for non-engineered
genomes to make the decision of engineered versus not en-
gineered.

3 RESULTS AND DISCUSSION
We tested the GUARDIAN software system on sequencing
data sets for 28 samples of S. cerevisiae (25 engineered, 3 non-
engineered) and 22 samples of Y. lipolytica (10 engineered,
12 non-engineered). Figure 2 shows the accuracy for each
knowledge-free subsystem in GUARDIAN as well as the ac-
curacy for the overall integrated system. Both FAST-NA and
N-Gram had significantly greater accuracy when applied to
S. cerevisiae compared to Y. lipolytica. One likely explanation
for this observation is the smaller volume of negative train-
ing data available for Y. lipolytica versus S. cerevisiae (10s
of genomes versus 1,000 [4]), leading to a greater number
of false positives and decreased accuracy. Overall, the inte-
grated system had 100% accuracy for S. cerevisiae samples,
95% for Y. lipolytica samples, and 98% for all samples.

The Seq2Class subsystem, on the other hand, had greater
accuracy when applied to Y. lipolytica. To better understand
this, we examined the sensitivity (true positive rate) and
specificity (true negative rate) for each subsystem (Figure
3). Besides having slightly greater sensitivity than either
FAST-NA or N-Gram for Y. lipolytica, Seq2Class had much
higher specificity, indicating far fewer false positives. Given
that Seq2Class takes the output of FAST-NA as input, this
suggests that applying deep learning models trained on posi-
tive examples of engineering to regions obtained by filtering
with negative examples is a promising means of increasing
specificity, without necessitating the collection of additional

Figure 2: Accuracy of overall GUARDIAN system and indi-
vidual subsystemswhen applied to S. cerevisiae and Y. lipoly-
tica.

Figure 3: Informedness + 1 of GUARDIAN system when ap-
plied to S. cerevisiae and Y. lipolytica. A value of 1 indicates
performance no better than random.

negative training data. This is especially attractive as we can
generate synthetic positive training data in silico.

To date, we have tested GUARDIAN on samples of moder-
ate complexity that contain single species of fungi or, in the
case of two samples, fungi in the presence of non-engineered,
non-fungal DNA. In the future, we will test GUARDIAN on
more complex metagenomic samples, some simulated.
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1 INTRODUCTION
The field of synthetic biology builds genetic circuits in living cells by
implementing design principles of engineering, in order to construct
new functionalities for biotechnological and biomedical applica-
tions [1]. The dominant computing paradigm in synthetic biology is
digital, involving computation with two discrete (Boolean) numbers
for inputs and outputs (OFF and ON) such as switches, counters,
logic gates, memories, and edge detectors [5]. significant progress
has been made in creating orthogonal synthetic biological parts
(e.g., TFs, promoters, recombinase and RNA devices) that are assem-
bled to construct complex logic functions [4]. However, scaling the
complexity of digital circuits is severely limited because it requires
a large number of parts, and high levels of protein expression, while
placing substantial metabolic and toxicity burdens on the host cells.
In efforts to scale up the computational complexity of genetic cir-
cuits, an analog computing was suggested and implemented in
living cells [3]. This analog paradigm computes with a continuous
set of numbers, and scales significantly more efficiently than its dig-
ital counterpart. However, analogous to electronics, design issues
such as noise, reliability, and loading effects have pushed circuits
to their limits in scaling of computation. By contrast to synthetic
computation in living cells, natural biological systems consist of
imprecise units that collectively interact with each other to reliably
perform computationally intensive tasks (Fig. 1).

2 PERCEPTUAL COMPUTING MODELS IN LIVING
CELLS

The basic computational element in ANNs is the perceptron [7]
(Fig. 2a), which performs the following three operations. (1) Signal
weighting: multiplication of each analog input (xi ) by a scalar
(wi ) that represents the synaptic weight. (2) Signal aggregation:
summing of all the inputs in an analog fashion. (3) Thresholding:
non-linear activation of the summed analog signal. The perceptron’s
output is given by:

y=
∑N
i=1wi · xi (1.1) z= ey

1+ey (1.2)
In Eq.1.1 the parameter b is used for biasing, and N is number of

the inputs. The perceptron is a model that captures the computa-
tional power of neurons (parallelism and adaptivity [7]). Fig. 1 has
shown that genetic and neural architectures share some computa-
tional features e.g., decision is made based on collective interaction
of analog bio-molecules. Thus, our next step is to describe the basic
computational structure of genetic processing units using a trans-
formative version of the perceptron. In biological systems, the inter-
actions between proteins and DNA that control promoter activity

Figure 1: (a) neural network [7] (b) gene network [6].

can be realized as sigmoid activation functions operating in the loga-
rithmic domain, and can be described by Michaelis-Menten kinetics
at the steady state [3]. Therefore, analogously, scalar multiplication
and summation in the perceptron are converted, respectively, to
power-law and multiplication:

Y=
N∏
i=1

B · ( xi
Ki

)ni (2.1) z= em·ln(Y /kd )+β
1+em ·ln(Y /kd )+β

(2.2)

where Y is a multi-protein complex, Xi is the concentration of
transcription factor (TF), Ki is a normalization constant (or input
dynamic range of Xi ), ni is known as the Hill coefficient, that
describes cooperativity, and B = α ·τ has a unit of concentration (α
protein production rate and τ protein half time). Eq. 2.2 is known
as a Hill-function, where Kd is a dissociation constant of binding
reaction, β is the basal level of the promoter, m is number of binding
sites in the promoter, and Z is the promoter activity. We coined the
new model (Eq. 2, Fig. 2b) "perceptgene", and it can be viewed as a
perceptron that operates in the logarithmic domain. We compared

Figure 2: (a) perceptron, widely used in ANNs, (b) perceptgene, new
developed that is suitable for gene circuits

three perceptual computing models, (1) perceptron (Eq. 1.1-1.2), (2)
perceptgene (Eq. 2.1-2.2) and (3) a hybrid model, a perceptron with
an activation function of perceptgene (Eq. 1.1, 2.2). Our simulation
results show that the perceptron and perceptgene have a similar
behavior; both unambiguously separated the analog pattern into
two discrete levels (Fig. 3b-3d). By contrast, the hybrid model failed
to act as a binary classifier. The hybrid model has a simple genetic
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structure but it requires biological parameters that are challenging
to achieve.

Figure 3: Simulation results of perceptual computing models, with
the analog signal (Y) and the corresponding output signals (Z): (I)
perceptron: Eq. 1.1-1.2, Fig (a)-(b). (II) perceptgene: Eq. 2.1-2.2, Fig
(c)-(d). (III) hybrid model Eq. 1.1-2.2, Fig (e)-(f).

3 NEURO-INSPIRED COMPUTATION IN LIVING CELLS
The first step toward the implementation of neuro-inspired genetic
circuits is to build weighted analog pattern that consists of a power-
law and multiplication function. Fig. 4a shows a one possible design,
and it includes auto-negative feedback (ANF) loops [3] and a com-
binatorial promoter [2]. The analog signal (Y) is represented by
the activity of the combinatorial promoter. The circuit activity at
steady state:

Ri · (1 + ( Xi
Kmi

)hi ) = α · τ
1 + ( Ri

Kd i
)ni

(3.1)

Y =
α · τ

1 + ( R1
Kd 1 )n1 + ( R2

Kd 2 )n2 + ( R3
Kd 3 )n3 + ( R4

Kd 4 )n4
(3.2)

where i=1,2,hi is the Hill-coefficient of binding inducerXi to repres-
sor Ri , Kdi is the dissociation constant of binding the repressor Ri
to promoter,Kmi is the dissociation constant of binding the inducer
Xi to repressor Ri . Here, we assumed that there is no crosstalk
between the repressors. The simulation results of Eq. 3 are shown
in Fig. 4b and exhibit a power-law and multiplication function.
To implement the perceptgene, we connected the power-law and
multiplication circuit with an activator that has a non-linear be-
havior (Fig. 4a). The perceptgene output (Z) is represented by the
activator promoter, and is given by Eq.2.2 and Eq.3. Fig. 4c shows
that we can implement a genetically encoded perceptron operates
in the logarithmic domain. To control the design parameters of
our circuits, we developed a perceptgene-based rule, in analogy

to the supervised learning algorithms of ANNs. The new learning
algorithm is based on: (1) computation of the perceptgene depends
on the Hill-coefficients and by adjusting their values, we can obtain
a wide range of possible target output for specific inputs, (2) the
training rule minimizes the output error, using a gradient descent
in a log-linear domain:

< E >=
1
N

∑
i = 1N (loд(zDi) − loд(zi ))2

2 (3.3)

Eq. 4 calculates the average error between the desired data (ZDi )
and the actual perceptgene output (Z), N is the number of samples.
By using a chain-rule, in addition to gradient-descent (Eq. 4), we
calculated the update changes to hi and ni , and trained the circuit
of Fig. 4a to exhibit AND gate (<E>=3%) and OR gate (<E>=0.3%)
as shown in Fig. 4d. In summary, the perceptgene is an abstract
model that can be implemented in living cells to build neural gene
networks. These networks can be trained by updating their Hill-
coefficients acting as weights.

Figure 4: Figure 4: (a) Implementation of perceptgene in living cells
consists of auto-negative feedback loops (ANF) and an activator. (b)
Simulation result of ANF with parameters hi = 2, ni = 1,m =

2, Kdi = 10, Kmi = 1, α · τ = 10, Kd = 3000. (c) Simulation re-
sult of perceptgene. (d) Implementation of logic gates using per-
ceptgene and gradient decent algorithm, with simulation parame-
ters: m = 2, Kd i = 10, Kmi = 1, α · τ = 10, Kd = 4000. AND gate:
hi = 1.5, ni = 1. OR gate: hi = 2, ni = 2z
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1 INTRODUCTION
A hazard is the possibility of an unwanted or unexpected
variation of the output of a combinational logic network
before it reaches steady-state. A glitch is the actual obser-
vance of such a problem. These terms are used mostly for
electronic circuits, though glitches have been observed for
genetic regulatory networks (GRNs) as well. A glitch is a tran-
sient behavior that corrects itself as the system reaches a
steady-state. Nonetheless, this glitching behavior can have
drastic consequences if this transient output of the GRN
causes an irreversible change in the cell such as a cascade of
responses within or with other cells, or if it induces apopto-
sis. Therefore, avoiding glitching behavior can be crucial for
safe operation of a genetic circuit.

To better understand glitching behavior in genetic circuits,
this paper utilizes a version of our dynamic model genera-
tor [2] that automatically generates a mathematical model
composed of a set of ordinary differential equations (ODEs)
that are parameterized using characterization data found in a
Cello genetic gate library [4]. Simulation of a dynamic model
allows for the prediction of glitches that cannot be observed
with steady-state analysis.

2 CIRCUIT ANALYSIS
To demonstrate our analysis procedure, this paper analyzes
circuit 0x8E (see Figure 1(a)) from the Cello paper [4], since
this paper gave experimental time course data that included
glitching behavior. The behavior of this circuit that is pre-
dicted using our automatically generated model is shown on
Figure 1(b), in which Yellow Fluorescent Protein (YFP) produc-
tion in Relative Promoter Units (RPU) [1] is shown over time
for each possible input value. The simulation shows glitches
on YFP production in several places including the condition
observed experimentally (namely when Ara and IPTG are
provided simultaneously).
To better understand the cause of this glitch, let us con-

sider the Karnaugh map for this circuit shown in Table 1. The
values in the Karnaugh map indicate the steady-state YFP
production (1: High, 0: Low) for different combinations of
input molecules. Let us first consider when the environment
changes from no input molecules to where IPTG and aTc are
high. In the Karnaugh map, this moves the circuit from (Ara,
IPTG, aTc) = (0, 0, 0) to (0, 1, 1). Since there are two input
changes, there are two different paths from the initial-state to

(a)

(b)

Figure 1: (a) Circuit diagram for circuit 0x8E from the Cello
paper [4]. (b) YFP production (in Relative Promoter Units)
over time (in seconds) for circuit 0x8E for each combination
of input molecules (IPTG, aTc, Ara). Simulation obtained us-
ing the automatic model generated in iBioSim [2].

the end-state, depending on which input change the circuit
"senses" first. If the circuit senses the aTc change first, the
circuit momentarily passes through (0, 0, 1), while if the cir-
cuit senses IPTG change first, the circuit momentarily passes
through (0, 1, 0). In both of these states and the final state,
the circuit evaluates to low, so the circuit makes a monotonic
change from 1 to 0, and there is no possibility of a glitch. Now,
let us consider a transition from no input molecules (0, 0, 0)
to where Ara and IPTG are high (1, 1, 0). If the circuit senses
first the Ara input molecule, it passes through (1, 0, 0) before
reaching (1, 1, 0), and it evaluates to high in all these states.
However, if the circuit senses IPTG before it senses Ara, it
will momentarily pass through (0, 1, 0), which evaluates to a
low output, before reaching the end-state where the output
is high, thus producing the glitch that is observed both in
the simulation and the experimental results. This potential
for a glitch is known in the asynchronous logic community
as a function hazard [3]. The existence of a function hazard
means that regardless of how the circuit is designed, the
possibility of a glitch remains. In other words, a function
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hazard is a property of the function and not of the circuit
implementation. However, it is not always the case that the
existence of a function hazard means that a glitch occurs.
The transition from no inputs (0, 0, 0) to Ara and aTc high (1,
0, 1) also implies two input changes, thus two different paths
from the initial-state to the end-state. The order that these
input changes are sensed affects the output of the circuit;
therefore a function hazard exists. Yet, the glitching behavior
is not observed in the simulation shown in Figure 1(b).

Table 1: Karnaugh Map for Circuit 0x8E

Ara
IPTG aTc

0 0 0 1 1 1 1 0

0 1 0 0 0
1 1 1 0 1

Figure 2(a) (yellow line) shows the simulation of all the
2-input change function hazards for this circuit. It can be ob-
served that multiple glitches occur. Glitches manifest when
multiple inputs pass through multiple paths with different
delays. Therefore, a possible solution to remove the glitch
could be to add more delay to the shorter path as shown Fig-
ure 2(b). Simulating this modified circuit shows that adding
the redundant logic avoids some glitches but not all of them,
and the response is slower (Figure 2 (a), red line). The only
way to avoid function hazards is to restrict the allowed input
changes to the system. As an example of this, limiting the
input changes to only single input changes produces a very
smooth and glitch-free function, as shown by the simulation
in Figure 2(c).

3 DISCUSSION
This paper presents a method of analysis for hazards and
glitches in genetic circuits that leverages dynamic model
generation. It illustrates this procedure using the Cello 0x8E
circuit that exhibited glitching behavior in experimental re-
sults. We identified the cause of the problem as a function
hazard in the circuit caused by multiple input changes. A
system with a function hazard always has the potential to
glitch for the specified input change, and modifying the im-
plementation can only change its likelihood of occurring.
For example, we demonstrated how adding some extra re-
dundant logic to add delay to the short path of the circuit
may reduce the likelihood of some glitches while increasing
it for others. The only solution to avoid function hazards
completely is to restrict the allowed input changes to the
system to include only single-input changes and a restricted
set of multiple input changes. In the future, we plan to map
the RPU units to actual molecule count to enable stochastic
analysis for prediction of the probability of glitches.

(a)

(b)

(c)

Figure 2: (a) Simulation for all 2-input change function haz-
ards. (b) Circuit 0x8E with redundant logic. (c) Simulation of
original circuit with single input changes.
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1 INTRODUCTION
We present an automated model reduction algorithm that
uses quasi-steady state approximation based reduction to
minimize the error between the desired outputs. Additionally,
the algorithm minimizes the sensitivity of the error with
respect to parameters to ensure robust performance of the
reduced model in the presence of parametric uncertainties.
We develop the theory for this model reduction algorithm
and present the implementation of the algorithm that can
be used to perform model reduction of given SBML models.
To demonstrate the utility of this algorithm, we consider a
synthetic biological circuit to control the population density
and composition of a consortium consisting of two different
cell strains. For this example, we show the application of our
algorithm that minimizes the sensitivity of the error along
with the error itself to return a final reduced model that has
robust performance to parametric uncertainties.

2 PROBLEM FORMULATION
For a state vector x ∈ Rn , a vector consisting of all model
parameters Θ ∈ Rp and the vector of output measurements
y ∈ Rk , we define the nonlinear dynamic model with a
nonlinear function vector f and a k × n matrix H ,

Ûx = f (x ,Θ), y = Cx .
Our goal is to find a reduced model with a lower dimensional
state vector x̂ ∈ Rn̂ so that n̂ < n,

Û̂x = f̂ (x̂ ,Θ), ŷ = Ĉx̂ ,
for initial conditions x(0) = x0, x̂(0) = x̂0 and ŷ ∈ Rk that
minimizes the error e ∆

= y − ŷ and the sensitivity of the
error Se

∆
= ∂e

∂θ for all θ ∈ Θ. To formulate the sensitivity
minimization problem, we define sensitivity coefficients of
states with respect to a parameter θ as si = ∂xi

∂θ . We have
from [1] that ÛS = JS + Z where J is the Jacobian of the
system, S is the vector of the sensitivity coefficients and Z
is the vector of the partial derivatives of the dynamics, ∂f

∂θ .
Similarly, we have Û̂S = Ĵ Ŝ + Ẑ for any reduced model. In
our approach, we collapse some of the states’ dynamics into
∗Department of Electrical Engineering at California Institute of Technology,
Pasadena, CA, USA. Email - apandey@caltech.edu
†Department of Control and Dynamical Systems at California Institute of
Technology, Pasadena, CA, USA. Email - murray@cds.caltech.edu

algebraic relations, hence, retaining the structure and the
meaning of the states of the original model. This process is
reminiscent of singular perturbation based model reduction
algorithms [2]. Let xc denote the vector of collapsed states.
Then, for a permutation matrixT that consists of only 0s and
1s with the condition that there can only be one non-zero
element in a row and a column, we have,

x = T

[
x̂
xc

]
=

[
T1 T2

] [ x̂
xc

]
, T1 ∈ Rn×n̂ , T2 ∈ Rn×(n−n̂).

3 MAIN RESULT
We give a method to upper bound the norm of the sensitivity
of the error that can be computationally more efficient than
the brute force sensitivity analysis of all possible reduced
order models to compute the sensitivity of error.

Theorem 1. Suppose that there is a matrix P = PT ⪰ 0
that solves the continuous-time Lyapunov equation for J̄ =
diag(J , Ĵ ) i.e., J̄T P J̄ + P J̄ = −C̄T C̄ , whereC =

[
C −Ĉ] , then

the norm of the sensitivity of the error for the nonlinear model
reduction can be upper bounded for some N > 0,

∥Se ∥2
2 ≤ λmax (P) + 2N max

t



∂f
∂θ

∂f̂
∂θ


Qs

[
∂x̂
∂θ
∂xc
∂θ

]
2

, (1)

P =

[
P11 P12
P21 P22

]
, Qs =

[
P11T1 + P12 P11T2
P21T1 + P22 P21T2

]
.

Proof. See [5]. □

4 ALGORITHM
We develop a brute force algorithm [4] based on the results
presented in the previous section to compute the sensitivity
of the error efficiently for all reduced models. The algorithm
iterates over all possible reduced models by collapsing a
subset of state dynamics. It computes the error and its corre-
sponding sensitivity bound to return a final reduced model
that satisfies the user specified tolerance levels.

5 EXAMPLE
Population and composition control circuit
In this example, two coupled feedback controllers are de-
signed using various genetic components that control the
total population density of a bacterial consortium to a desired
value and the fraction of the two cell types in the consortium.
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See [3] for the details of the implementation of this circuit.
The full ODE model is given in equation 2.

dN1
dt
= βR1

(
lR1 +

R2
1

KR1 + R
2
1

)
− kbA1N1 − dTN1

dA1
dt
= Kr βR2

(
lR2 +

R2
2

KR2 + R
2
2

)
− kbA1N1 − dTA1

dR1
dt
= βtac

(
ltac +

I 2

Ktac + I 2

)
L1 − dSR1

dR2
dt
= βsal

(
lsal +

L2

Ksal + L2

)
L2 − dSR2

dN2
dt
= βR2

(
lR2 +

R2
2

KR2 + R
2
2

)
− kbA2N2 − dTN2 (2)

dA2
dt
= Kr βR1

(
lR1 +

R2
1

KR1 + R
2
1

)
− kbA2N2 − dTA2

dL1
dt
= kC

(
1 − L1 + L2

Cmax

)
L1 − dcL1

N1
Ktox + N1

− dL1

dL2
dt
= kC

(
1 − L1 + L2

Cmax

)
L2 − dcL2

N2
Ktox + N2

− dL2.

Here, the state vector x consists of the toxins (Ni ), signals
(Ri ) and the anti-toxins (Ai ) species corresponding to each
cell type (L1 and L2).
We have, x =

[
N1 A1 R1 R2 N2 A2 L1 L2

]T .

f̂1 =

(
lR1 +

βR1x
2
7

x2
7 + KI0

)
− dTx1

− βR2kbx1
(
Ka0lR2 + x

2
8
)

kbx1x
2
8 + Ka0kbx1 + dTx

2
8 + Ka0dT

,

f̂2 =

(
lR2 +

βR2x
2
8

x2
7 + Ka0

)
− dTx5

− βR1kbx5
(
KI0lR1 + x

2
7
)

kbx5x
2
7 + KI0kbx5 + dTx

2
7 + KI0dT

, (3)

f̂3 = kc

(
1 − x7 + x8

Cmax

)
x7 − dcx1x7

x1 + Ktox
− dx7,

f̂4 = kc

(
1 − x7 + x8

Cmax

)
x8 − dcx5x8

x5 + Ktox
− dx8.

Using our model reduction algorithm, we obtain final re-
duced order model as shown in equation 3. This model has
the best robust performance among the multiple possible
reduced models as shown in Figure 1 and Figure 2.
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the information does not necessarily reflect the position or the policy of the
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Time

To
ta

l 
p
o
p
u
la

ti
on

     Full model
---   Reduced models  

Figure 1: Comparison of the total population in the full
model and the reduced models obtained when considering
only the error metric. It is clear that all of the four reduced
models have similar performance (note that the curves for
two of the models are stacked on top of others) and so the
choice of the reduced model is not clear from this metric
alone. However, on using our algorithm that minimizes the
sensitivity of the error (shown in Figure 2) as well, we get a
final reduced model given in equation 3.
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Figure 2: The total sensitivity of the population of L2, with
time for all four reduced models. The legend indicates the
state indices that form the reduced model state vector x̂ . Ob-
serve that the reduced model with x̂ =

[
x1 x5 x7 x8

]T
(given in equation 3) has the lowest total sensitivity.
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High-throughput data acquisition in systems and synthetic
biology leads to an abundance of data that need to be pro-
cessed and aggregated into biologically relevant dynamical
models. Building such models based on this wealth of data
is of paramount importance to gain insight into an existing
biological process, or to understand and optimize designs
of synthetic biology constructs. However, building models
manually for each data set is inconvenient and can become
impractical for highly complex biological systems.

Looking at the spectrum of model-building processes: on
one end, we have first-principle-based modeling, which has
been a successful method to build models in many areas of
science and engineering; however, this method for model
construction might not scale well with the copious amount
of available data. On the other end of the spectrum, we have
machine learning methods, which can build complex input-
output models using a vast amount of data; however, the
resulting interconnections in the model are completely de-
tached from first principles and therefore such models are
rarely human interpretable. A middle ground approach is
gaining traction in the literature where a dictionary of pos-
sible functions—assembled by domain experts—is presented
to an algorithm along with the measured data. Then, based
on these inputs, the algorithm builds the most suitable (e.g.
parsimonious) combination of dictionary functions as a dy-
namical model [1, 3, 4, 6].
In this work, we combine this dictionary function-based

approach with Chemical Reaction Network Theory (CRNT)
to automatically generate dynamical models, as well as all
their possible reaction graphs. Figure 2. summarizes the main
steps of our approach.

For the model building part, we use Sparse Bayesian Learn-
ing (SBL), which offers methods to learn the sparsest set of
dictionary functions necessary to capture the dynamics of a
system, and at the same time automatically builds a nonlinear
Ordinary Differential Equation (ODE) model.

Sparse Bayesian Learning was first developed in the signal
processing community and has solid theoretical foundations
such as proof of convergence and guarantees for sparse re-
covery, under certain conditions [8]. These foundationsmake

it an appealing candidate for an automatic model reconstruc-
tion method for biological systems. Figure 1. shows the main
components of the SBL algorithm.

Cost function:
ŵ = argminw | |y − Φ(x)w| |22 + λ | |w| |1

Data:
y: Time derivative of x
Φ(x): Dictionary of functions

evaluated on x

y

n × 1

=
Φ(x)

n ×m

w

m × 1

k non-
zero
entries
k ≪m

+
ννν

Figure 1: Sparse Bayesian Learning can estimate a vector
of weights, which contains only a few nonzero entries by
solving an underdetermined inverse problem. In our imple-
mentation, the vector y contains the derivative of the time-
series data vector x. We also assemble a dictionary of possi-
ble model right-hand side terms in Φ(x), e.g. x1x2 or xn1

K+xn1
.

Such a dictionary comes from domain knowledge and it is
evaluated on the time-series data. The vector ν represents
the measurement noise. The non-zero weights, which are
computed by a series of convex optimization problems, se-
lect a few elements from the dictionary, and as a result a
sparse model of the underlying dynamical process can be
obtained.

At the core of the SBL algorithm, we have an iterative
reweighted L1 norm minimization, which associates nonzero
weights to only a few dictionary functions. It should be em-
phasized that compared to common ‘simulate-and-compare’
approaches used for parameter (and model) estimation, this
algorithm finds the parameters as well as the structure of
the model after only a few dozens of iterations and does not
require any resource intensive model simulation.
If the dynamical model describes a biochemical process,

one might want to construct the reaction graph representa-
tion as well. It is usually assumed that there is a one-to-one

36



IWBDA 2019, July 2019, Cambridge, UK Tuza and Stan

Time-series Data

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

900

1000 SBL ODE building and
post processing

Ûx = Φ(x)w

Reaction Graph
Computation

Figure 2: Workflow. First, a set of time-series data is collected from biological experiments. Given the processed data and the
set of dictionary functions, the SBL algorithm estimates the weights of the dictionary functions. Then, a dynamical model is
built from a sparse linear combination of dictionary functions. Finally, all graph structures that yield this same dynamical
model can be computed.

correspondence between the dynamical model and the un-
derlying network structure. However, this is only true if one
assembles the differential equations from the network struc-
ture. Conversely, multiple non-equivalent graph structures
can exhibit the same dynamics. The existence of multiple
network structures for a given dynamics has been investi-
gated extensively in [2, 5, 9]. However, these results were
established under the assumption of perfect measurements.
An extension of these results to the uncertain case has been
presented recently [10]. As we show in this work, this ex-
tension allows us to use a sparse model structure, built from
noisy time-series data, and to compute the possible network
structures (Figure 3.).
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Figure 3: Left: the joint confidence region of the parameters
are shown as red ellipses.Within the confidence region each
red dot represents a valid CRN realization. Right: the possi-
ble network structures are shown as a binary tree. Each leaf
(which corresponds a red dot on the left) is a binary string,
where ‘1’ means a reaction is present in a reaction graph—
the reaction itself is identified by the index of the digit. The
figure shows the relationship between the size of the con-
fidence region and the number of possible network struc-
tures.

Additionally, the whole system identification process can
be complemented with constraints on the parameters, for
example, to enforce stability or non-negativity of the recon-
structed models—thus offering relevant physical constraints

over the possible network structures during the optimization
process [7].
Using the above-described approach, the wealth of data

can be translated into biologically relevant dynamical models
as well as reaction graphs. On one hand, the set of possible
graphs give an overview of the possible network connections
and allows us to identify targets for further perturbation
experiments (e.g. gene knockouts). On the other hand, the
model at hand steers further data acquisition (e.g. provides
inputs for optimal experimental design), thereby providing
a vital step for closed-loop system identification.

REFERENCES
[1] Brunton, S. L., Proctor, J. L., and Kutz, J. N. Discovering governing

equations from data by sparse identification of nonlinear dynamical
systems. Proceedings of the National Academy of Sciences 113, 15 (mar
2016), 3932–3937.

[2] Johnston, M. D., Siegel, D., and Szederkényi, G. Dynamical equiva-
lence and linear conjugacy of chemical reaction networks: new results
and methods. MATCH Commun. Math. Comput. Chem. 68 (2012), 443–
468.

[3] Pan, W. Bayesian Learning for Nonlinear System Identification. PhD
thesis, Imperial College London, 2017.

[4] Schmidt, M., and Lipson, H. Distilling free-form natural laws from
experimental data. science 324, 5923 (2009), 81–85.

[5] Szederkényi, G., Banga, J. R., and Alonso, A. A. Inference of complex
biological networks: distinguishability issues and optimization-based
solutions. BMC Systems Biology 5 (2011), 177.

[6] Tuza, Z. A., and Stan, G.-B. Characterization of biologically relevant
network structures form time series data. In 57th IEEE Conference
on Decision and Control, Miami Beach, FL, USA, December 17-19, 2018
(2018).

[7] Tuza, Z. A., and Stan, G.-B. An automatic sparse model estima-
tion method guided by constraints that encode system properties. In
European Control Conference (ECC), Naples Italy (2019).

[8] Wipf, D., and Nagarajan, S. Iterative reweighted l1 and l2 methods
for finding sparse solutions. IEEE Journal of Selected Topics in Signal
Processing 4, 2 (2010), 317–329.

[9] Ács, B., Szederkényi, G., Tuza, Z., and Tuza, Z. A. Computing all
possible graph structures describing linearly conjugate realizations of
kinetic systems. Computer Physics Communications 204 (2016), 11–20.

[10] Ács, B., Szlobodnyik, G., and Szederkényi, G. A computational
approach to the structural analysis of uncertain kinetic systems. Com-
puter Physics Communications 228 (2018), 83–95.

37



Model-driven design of genetic regulatory networks
using virtual parts

Göksel Mısırlı
g.misirli@keele.ac.uk

School of Computing and
Mathematics, Keele University

Bill Yang
z.yang22@newcastle.ac.uk

School of Computing, Newcastle
University

Anil Wipat
anil.wipat@newcastle.ac.uk

School of Computing, Newcastle
University

1 INTRODUCTION
As technology advances, and the cost of DNA synthesis de-
creases, synthetic biology is moving towards data driven
design applications. DNA fragments can be represented as
electronic records ready to be composed virtually to create
designs of complex genetic circuits. This approach opens
the possibility of using representations of various sequence
features such as promoters and coding sequences (CDSs)
in a computer environment. Whether designs are created
manually in a computer-aided environment, or created com-
putationally using heuristic approaches, designs need to be
verified and/or optimised. Model-driven design methodolo-
gies are already proven as a useful tool to map a virtual
design to a physical system in a number of industries includ-
ing software engineering, aerospace industry, and embedded
system development. This approach is also key to create
predictable biological applications.

We previously developed the Virtual Parts Repository [4],
which provides reusable and modular models of biological
parts and interactions. These models are called virtual parts
and can be used to create complex models representing bio-
logical systems. Due to the increase and the availability of
large number of biological parts, virtual parts are ideal to
computationally explore large design spaces to create new
designs or to find alternative biological solutions.
In parallel to developments in model-driven design ap-

proaches, the synthetic biology community developed the
Synthetic Biology Open Language (SBOL) [1] to facilitate
the exchange of genetic circuit designs. The language al-
lows specifying the order of DNA-based biological parts,
their types and interactions between these parts. SBOL is
designed as a graph language and can be directly stored
in graph repositories. One such database is SynBioHub [3],
which allows uploading designs in the form of SBOL doc-
uments and querying the underlying data using the SBOL
semantics directly. VPR1 uses SBOL only to export informa-
tion and can only communicate with its built-in relational
repository. Model composition is carried out by explicitly
querying information about molecular constraints from this
repository.

This paper presents the second version of the Virtual Parts
Repository (VPR2) in relation to these latest developments.

VPR2 has been developed using a modular architecture in-
cluding components for a Web-based repository, a web ser-
vice, a client library for computational tools, and a standalone
data library to retrieve data from remote SBOL repositories
(Figure 1). The web service can be used to retrieve virtual
parts, and to create computational models of genetic circuits.
Moreover, VPR2 can be used to work with a choice of a
SynBioHub instance, which can be installed at a different ge-
ographical location. VPR2 has a graph-based repository and
allows browsing of the underlying data and models. More-
over, SBOL is used as a domain specific language to control
the composition of models.

2 THE VIRTUAL PARTS REPOSITORY 2.0 (VPR2)
VPR2 has been designed to decouple the modelling and ge-
netic circuit design processes. Using this approach, design
tools can start taking the benefit of computer simulations
without delving into details of complex modelling abstrac-
tions. The integration between different tools and VPR2 is
carried out using already existing and widely adopted data
standards in synthetic biology, such as SBOL and the Systems
Biology Markup Language (SBML) [2]. VPR2 uses SBOL to
specify data that can be converted into modular and hierar-
chical SBML models, using two approaches:
• Connected mode. VPR2 is connected to a graph repository
to create computational models.

• Disconnected mode. VPR2 uses SBOL documents provided
by tools to create computational models. Nominal values
are used to parameterise modelling entities.
In the connected mode, VPR2 works directly with a graph

repository that can store SBOL data. The repository can be
the VPR’s default repository or can be selected from various
SynBioHub instances. A genetic circuit can be represented
using SBOL in terms of DNA-based biological parts (Figure 1),
either using start and end positions, or using a relative or-
der of parts. VPR2 queries the SBOL repository to retrieve
detailed information about biological parts represented in
the design.
Computational tools can use VPR2 to return either a de-

tailed SBOL document or an SBMLmodel as explained below:
• A detailed SBOL document. A simplified definition of a ge-
netic circuit is extended with additional constraints from a
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Figure 1: VPR2 has been designed to work with existing standards such as SBOL and SBML. The system can either use data in
repositories to return a model for a DNA-based genetic circuit design, or use the information provided by the user to return a
model that can be simulated. VPR2 includes a web repository, a web service, model and data layers and a client API.

user-specified SBOL repository. Information about biolog-
ical constraints such as molecular interactions is used to
populate the initial SBOL document. This approach can be
used by tools which can create models using custom mod-
elling abstractions and choices of modelling languages.

• An SBML model, capturing the complex relationships be-
tween the constituent biological parts.
In the disconnected mode, tools can specify genetic cir-

cuits using SBOL with detailed information about molecular
interactions between biological parts. This detailed view of a
genetic circuit can then be converted into an SBML model.

Figure 2: The toggle switch systemwasmodelled usingVPR2
and simulated using COPASI.

VPR2 has its ownmodelling abstraction, representing vari-
ous biochemical reactions. Examples include the binding and
unbinding of biological molecules, transcriptional activation
and repression of transcriptional units and the degradation
of biological molecules. Virtual parts can include entities for
DNA-based parts, proteins and small molecules. Although
VPR2 uses nominal values to create modelling entities, tools
can override reaction parameters by providing additional
details in SBOL documents that are used as input to derive
models. Reaction parameters can currently be provided as
inline annotations that can be embedded in SBOL documents.
Figure 2 demonstrates the use of VPR2 to model a tog-

gle switch, which was previously modelled using the VPR2

data layer and iBioSim’s modelling approach [5]. The aTC
and IPTG signals are respectively used to set and unset the
GFP and RFP outputs. VPR2 uses a different modelling ab-
straction utilising the binding and unbinding of molecules
to facilitate modularity. In this paper, the system modelled
using virtual parts corresponds to 49 biological entities such
as promoters, CDSs, proteins and signalling molecules. The
resulting model consists of 34 submodels, including 50 bi-
ological reactions and 74 different kinetic rate parameters.
Submodels can represent virtual parts or templates that are
used to instantiate virtual parts.

3 CONCLUSION
VPR2 has been developed to facilitate the search of large de-
sign spaces of biological systems using computer simulations.
The use of a modular approach and the adoption of existing
standards make VPR2 ideal for genetic design automation re-
lated workflows. Design tools can, hence, take the advantage
of mathematical models to find optimum solutions.

Availability. The VPR2 development version is available
at http://v2.virtualparts.org. Please see the Documentation
menu to access the web service, the web service client library,
examples and the data library.
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1 INTRODUCTION
The field of synthetic biology has developed with the aim
of making genetic engineering more repeatable and repro-
ducible. Part of the synthetic biology movement is the cre-
ation of genetic circuits which carry out useful functions
such as sensing environmental conditions or producing use-
ful pharmaceuticals. To make the design of such circuits
easier, inspired by digital electronic design, a more abstract
view of the components is taken in order to allow compos-
ing of parts together to create a desired functionality. An
example of this is seen with software tool, Cello, which con-
verts specifications of behavior in the Verilog language into
a composition of genetic parts [3].
Unfortunately, the analogy to digital electronic circuits

breaks down when the noise of biological systems is consid-
ered, and thus further modeling and verification is required
to check designs that are generated via automated methods.
This is because unlike the use of transistor based logic in
which an abundance of electrons create highly predictable
and binary behavior, genetic circuits involve small molecule
counts making their behavior inherently noisy and stochas-
tic. The fact that they are actually many circuits running
in parallel within a cellular population, further complicates
the analysis of these circuits. Therefore, stochastic analysis
methods are required to understand the noise tolerance (i.e.
robustness) of these circuits. As a case study, this paper con-
siders the stochastic analysis of an asynchronous genetic
sensor circuit, building on the case study in [2]. This design
is particularly interesting, as it is constructed using three
different cell types, and its correctness depends upon the
interactions between these cells.

2 RESULTS
The genetic sensor circuit for our case study is shown in
Figure 1, and it was originally proposed in [2]. The desired
behavior of this circuit is the filtering out of signals that are
only present for a short amount of time. Namely, this circuit
is triggered when it senses the presence of both IPTG and
aTc, and IPTG must be present in the system for a prolonged
period of time to propegate through the three levels of logic.
If this happens, it produces the output signal yellow fluo-
rescent protein (YFP). A circuit with this behaviour may be
potentially interesting for applications such as cancer treat-
ments where a drug should only be released if tissue specific
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+
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Figure 1: A genetic sensor that uses filtering and communi-
cation to improve its reliability. (a) The logic diagram pro-
duced by logic synthesis. It is composed of three gC gates
which go high when both inputs are high and go low when
the input not marked with a “+” goes low. The output of the
second and third gate are connected to the “+” input of the
next gate. The detection begins when both IPTG and aTc go
high, activating Cell 1. This creates the quorum signal LasI
to diffuse to Cell 2, which then activates Cell 2 to produce
the quorum signal RhlI. The RhlI signal diffuses to Cell 3 to
activate YFP production. However, if IPTG goes low at any
point during this chain reaction, the whole circuit resets. (b)
The genetic design produced by Cello, which is composed of
three genetic sequences that can be put onto separate plas-
mids and transformed into cells to create three cell types.
(Figure courtesy of [2])

molecules were sensed and tumour indicator molecules are
continuously present, thus acting analogous to a low pass
filter.

As described earlier, in order to determine if this circuit has
the desired behavior, a stochastic analysis must be performed.
In [2], an ODE analysis shows that this circuit potentially has
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(a)

(b)

(c)

Figure 2: iBioSim simulations of the genetic sensor demon-
strating the consistency of the behavior. For the circuit out-
puts to turn on (Purple, Blue, and YellowHigh) both aTc and
IPTG inputs need to be present for a sufficient amount of
time (as it filters lower time presence). (a) The ODE Simu-
lation with IPTG present for 1300 seconds. This shows that
all cell outputs (Purple, Blue, and Yellow) are high and that
a time of 1300 seconds is enough for the final output (YFP)
to be reach a high state, and that there is a delay of about
400 seconds between LasI reaching High Equilibrium and
YFP doing the same. (b) The stochastic simulationwith IPTG
present for 1300 seconds. This shows good agreement with
the ODE analysis. (c) Results from 100 Monte Carlo simula-
tion runs showing the probability LasI, RhlI, and YFP going
above 300 molecules versus time. This shows variation in
timing of the response of cells in a population.

the desired behavior (see Figure 2(a)). This paper conducts a
stochastic analysis to better understand the robustness of this
circuit in the presence of noise. The results of this stochastic
analysis are shown in Figure 2(b) and (c). Figure 2(b) shows

the average of 100 stochastic simulation runs, and there is
good agreement with the behavior seen in the ODE analysis.
Figure 2(c) shows the probability of LasI, RhlI, and YFP going
above 300 molecules versus time during these 100 stochastic
simulation runs. These results give a clear indication that
not all cells make these transitions at the same time. In other
words, some genetic sensors will respond to the inputs faster
than others will respond slower. It can also be seen that noise
is cumulative between cells.

3 METHODS
The genetic circuit was designed using the software tools
Cello [3] and iBioSim [4] as described in [2]. A model was
created from this genetic circuit using the model generation
procedure described in [1]. The simulations were conducted
using ODE and stochastic simulators in iBioSim.

4 DISCUSSION
This paper gives some initial results on the stochastic anal-
ysis of a complex genetic circuit. Asynchronous sequential
circuits (circuits whose behavior depends on the timing and
order in which the inputs are applied) such as the one studied
here require complicated analysis. Furthermore, this system
is composed of three cell types each with a different genetic
circuit that together communicate to perform the desired
filtering behavior. Given the inherently stochastic nature of
genetic circuits, a stochastic analysis is necessary to deter-
mine the robustness of such genetic designs. Our preliminary
stochastic results indicate that the circuit behaves as desired.
In the future, we would like to perform a more detailed anal-
ysis using techniques such as stochastic model checking.
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1 INTRODUCTION
Synthetic biology is a movement to standardise genetic en-
gineering and make it more repeatable. One important ad-
vancement was the development of standardised genetic
parts known as BioBricks, which can be composed using
restriction enzyme assembly [3, 5]. Another important ad-
vancement was the development of the Synthetic Biology
Open Language (SBOL), a standard language for describing
these parts, among other things [1]. Finally, to share these
parts, design repositories, e.g. SynBioHub [4], were devel-
oped. One recent enhancement to SynBioHub is the introduc-
tion of plugin capabilities to allow third-party developers to
add functionality. This paper describes one such plugin that
is designed to aid designers in part selection. In particular,
this plugin enables users considering the use of a particu-
lar part to see alternative parts with the same function that
have been heavily utilized in the past, or to see parts that
are commonly used with the part of interest, enabling users
to find additional parts for their genetic circuit design. As
a proof-of-concept, this plugin is demonstrated using a li-
brary of BioBrick parts from the International Genetically
Engineering Machine (iGEM) competition.

2 BACKGROUND
A genetic design is the combination of one or more genetic
parts, in series. There are many different possible part cate-
gories, however the four we focused on (for their prevalence
and importance) are promoters, ribosome binding sites (RBS),
coding sequences (CDS), and terminators, (other roles are
also displayed in a category called Other). Within each cate-
gory there are many different possible parts to choose, e.g.
for promoters pTet and pLac are commonly used.

When creating a new design, either old parts can be reused,
or one can create their own new parts with associated DNA
sequences. An issue with this is that for something like the
pTet promoter slight variations in naming, sequences, or
upload file format can lead to a whole host of parts which
are the same or very similar. Thus, it can be difficult to tell
which one is the most common form, which often results in
further new parts being uploaded.

3 RESULTS
Our visualization plugin can assist designers to find parts for
their designs. In particular, our plugin displays up to three

graphs per part page. First, there is a histogram that shows
how commonly used this part is relative to most commonly
used parts (not shown). Second, there is a histogram that
shows the commonality of this part relative to other com-
monly used parts of the same role (see Figure 1). Finally,
there is a Sankey diagram that shows other parts that are
commonly used with this part sorted by their role and in-
dicating their position compared to the part of interest (see
Figure 2). Some additional features that make these visualiza-
tions interactive include the ability to: zoom in and out, scroll
across the graphs, show data about a part when hovering
over it, add value comparison lines dynamically, download a
plot as a PNG, and navigate to a page describing that part in
the corresponding SynBioHub instance.

Figure 1: Top 10 CDSs by Number of Uses Compared to GFP.

4 METHODS
The visualization tool is implemented as a plugin deployed
on the development server for the reference instance of
SynBioHub (https://dev.synbiohub.org). The plugin is an
HTTP server, written in Python, using the Flask library
with endpoints for each of the graph types. When a part
page is opened, SynBioHub sends a post request to this plu-
gin with the URL for the part. This URL is used in four
different pre-written SPARQL queries which are sent to Syn-
BioHub to gather the necessary data. The data returned is
processed to create the input for the visualizations. The vi-
sualizations are made using the plotly [2] library. Finally,
the graphics are transmitted to SynBioHub for rendering
on a part page in SVG format embedded in HTML. Repo:
https://github.com/3ach/jet-plugin
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Figure 2: Example visualizations created by the plugin for the part BBa_E0040, more commonly known as GFP. A diagram
showing how the part of interest (GFP) is combined with other parts in the designs it is found in and what fraction of these
interactions are preceding (e.g. BBa_B0034 is before GFP) and following (e.g. BBa_B0034 is after GFP).

5 DISCUSSION
These visualisations allow easier understanding of the data
in SynBioHub and allow questions to be answered such as:

• What role of part is most often seen in combination
with a part? (RBS are most commonly seen with GFP)

• Which part is most often seen in combination with a
part? (BBa_B0034 for GFP)

• Does a particular part generally precede or followGFP?
(BBa_B0034 generally precedes GFP)

• Does a part generally occur before or after other parts?
(After for GFP)

In the future, we plan to incorporate features like more pre-
cise ordering information and sequence similarity analysis.
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1 INTRODUCTION
The ability to visually represent genetic circuits can aid hu-
man understanding and improve the dissemination of infor-
mation. Such visual representations are especially useful in
publications for helping to explain complex relationships
between constituent parts of large genetic circuits. However,
when these diagrams are created manually, variations in how
information is presented may cause issues in interpreting
the meaning of different glyphs and how they are connected.
Moreover, there are an increasing number of computational
tools and repositories for synthetic biology that can automat-
ically render visual depictions of genetic circuits. The SBOL
Visual [2] standard has been developed to provide guide-
lines on how genetic design features should map to suitable
glyphs, as well as how various glyphs can be connected to-
gether. However, an actual computational implementation
of mapping genetic parts to suitable glyphs has previously
been left to tool developers.

The SBOL Visual community has created a set of standard
glyphs for a variety of commonly used genetic parts. Glyphs
are proposed bymembers of the community and, through dis-
cussions, decisions are made about the types of part each can
be used to represent. In addition to recommended glyphs for
specific types of part, SBOL Visual specifies generic and al-
ternative glyphs for many. These annotations are available as
free text. For each genetic part type, a single human-editable
Markdown file is created, which includes information about
the mapping between recommended and alternative glyphs,
and the relevant genetic parts through biological roles and
molecular interactions, which are identified via commonly
used ontological terms.

Ontological terms are a powerful way to represent a large
amount of information via simple URIs, which can then fur-
ther point to additional properties of terms and the relation-
ships of terms with other biological concepts. Furthermore,
the meaning of a term is also derived from all its parents. As a
result, an ontological representation of SBOL Visual is highly
desirable for computational integration and processing of
visual guidelines with other existing ontologies and tools.
Previously, an ontology was created for SBOL 1 and included
mappings only between DNA-based parts and SO terms [8].
Since then SBOL has grown into a richer data model, with
many more glyphs defined, as well as new classes of glyphs

and relationships between glyphs. Thus, the ontology needed
to be reconstructed in the light of these developments.
To address this, we have developed the SBOL Visual 2

Ontology, which we use to represent the constraints about
genetic circuit glyphs and their relationships to other onto-
logical terms. Recently, an ontology called SBOL-OWL [7]
was developed to provide semantic meaning for terms from
the SBOL standard [3] in a machine accessible format. Using
an ontological mappping, the SBOL Visual Ontology further
integrates information about standardized glyphs with the
SBOL standard.

2 THE SBOL VISUAL ONTOLOGY
The SBOL Visual 2 Ontology (SBOL-VO) was programmati-
cally constructed using Markdown files that are created and
managed by the SBOL Visual community. The base class in
the ontology is Glyph, a subclass of which corresponds to
an individual glyph.
A class representing a glyph may include the following

Annotation properties: rdfs:label (name), rdfs:comment
(description), defaultGlyph (the name of the glyph file),
glyphDirectory (the folder containing the glyph), notes
(additional free text information), recommended (whether
the glyph is recommended or not), prototypicalExample
(an example use of the glyph).

SBOL-VO was directly integrated with the SBOL standard
via SBOL-OWL through ontological restrictions. These re-
strictions are created based on ontological terms associated
with a glyph. For example AptamerGlyph is defined to be
a glyph for sbol:ComponentDefinition entities with the
role of SO:0000031 which is a Sequence Ontology (SO) [5]
term used for aptamers. These restrictions can be defined for
ComponentDefinition entities that represent genetic parts
or sbol:Interaction entities that represent molecular in-
teractions. The following rules were applied to create these
restrictions:
• If a glyph is associated with an SO term, a restriction is
created for the ComponentDefinition entity using the
role property. For example, AptamerGlyph isGlyphOf
some ComponentDefinition with a role of SO:0000031.

• If a glyph is associated with a BioPAX [4] term, the re-
striction is created for the ComponentDefinition entity
using the type property. For example, ComplexGlyph

44



IWBDA 2019, July 2019, Cambridge, UK Misirli and Beal, et al.

Figure 1: Free text description of recommended and alternative glyphs are used to create ontology terms and restrictions.

isGlyphOf some ComponentDefinition with a type of
biopax:Complex.

• If a glyph is associated with a Systems Biology Ontology
(SBO) [1] term, a restriction is created for the Interaction
entity using the type property, only if the SBO term is
a subclass of the biological activities and processes (i.e.,
SBO:0000231). For example, DegradationGlyph isGlyphOf
some Interaction with a type of SBO:0000179.
Based on the representation of information in the Mark-

down files, hierarchical relationships between SBOL Visual
terms were also created. The following rules were applied to
create parent-child relationships.
• If a single glyph is included, the corresponding term is
created, e.g. AptamerGlyph.

• If both a recommended glyph and an alternative glyph
are included, the mapping restriction is created for the
recommended term. The alternative glyph term is created
as a subclass of the former and linked to the former via
the isAlternativeOf property, e.g. AssemblyScarGlyph
and AssemblyScarGlyphAlternative terms.

• If one generic glyph and a set of its instances (n glyphs) are
included, the base class is created for the former and one
recommended term is created for each instance, e.g. Cleav-
ageSiteGlyph is the parent for terms about DNA, Protein
and RNA cleavege sites. If alternatives are included, they
are created as subterms of the recommended terms, e.g.
BiopolymerLocationGlyph (Figure 1) and its recommended
and alternative terms.
The programmatic conversion was carried out using the

Python programming language and using the OWLready
API [6]. The ontology is available at https://dissys.github.io/
sbol-visual-ontology.

3 CONCLUSION
SBOL-VO makes standard glyphs used for genetic circuit
diagrams available to computational tools in the form of an
ontology. The SBOL community heavily uses ontological
terms to map genetic parts and their roles. Here, the creation
of SBOL-VO and its mapping with the SBOL ontology facili-
tates further data integration for querying and retrieval of
appropriate glyphs for genetic parts and their interactions.

4 ACKNOWLEDGEMENTS
Funded in part by NSF Expeditions in Computing Program
Award #1522074 as part of the Living Computing Project.
This document does not contain technology or technical data
controlled under either U.S. International Traffic in Arms
Regulation or U.S. Export Administration Regulations.

REFERENCES
[1] Courtot, M., et al. Controlled vocabularies and semantics in systems

biology. Molecular systems biology 7, 1 (2011), 543.
[2] Cox, R. S., , et al. Synthetic biology open language visual (SBOL visual)

version 2.0. Journal of integrative bioinformatics 15, 1 (2018).
[3] Cox, R. S., et al. Synthetic biology open language (SBOL) version 2.2.0.

Journal of integrative bioinformatics 15, 1 (2018).
[4] Demir, E., et al. The BioPAX community standard for pathway data

sharing. Nature biotechnology 28, 9 (2010), 935.
[5] Eilbeck, K., et al. The sequence ontology: a tool for the unification of

genome annotations. Genome biology 6, 5 (2005), R44.
[6] Lamy, J.-B. Owlready: Ontology-oriented programming in Python

with automatic classification and high level constructs for biomedical
ontologies. Artificial intelligence in medicine 80 (2017), 11–28.

[7] Misirli, G., et al. SBOL-OWL: An ontological approach for formal
and semantic representation of synthetic biology information. ACS
Synthetic Biology (2019).

[8] Quinn, J., et al. Synthetic biology open language visual: an ontological
use case. Extended abstract at Bio-Ontologies (2013).

45



Flapjack: an open-source tool for storing, visualising,
analysing and modelling kinetic gene expression data

Guillermo Yáñez
Pontificia Universidad Católica de

Chile
gnyanez@uc.cl

Isaac Núñez
Pontificia Universidad Católica de

Chile
innunez@uc.cl

Tamara Matute
Pontificia Universidad Católica de

Chile
tfmatute@uc.cl

Fernán Federici
Pontificia Universidad Católica de

Chile
ffederici@bio.puc.cl

Timothy J. Rudge
Pontificia Universidad Católica de

Chile
trudge@uc.cl

1 INTRODUCTION
Engineering design cycles based on accurate parameter esti-
mation from experimental data are key for predictable assem-
bly of complex genetic circuits. In particular, as dynamical
systems the reliable design of genetic circuits requires anal-
ysis of kinetic gene expression data. Metadata not present
in raw data files is also necessary to account for experimen-
tal protocols and the context in which measurements were
made. This data is often distributed across many institutions,
in different file formats, repositories and databases, which
makes it difficult to collate and reduces the power of analysis.
Existing repositories focus on biological part descriptions [1],
parameter estimation from published data [2], non-kinetic
-omics experimental data [3], or store data as raw files for in-
dividual experiments [4]. None of these repositories uses the
widely adopted Synthetic Biology Open Language (SBOL)
standard [5] for description of genetic parts, making it dif-
ficult to relate data on genetic circuits to their constituent
components. Thus there is a need for data repositories that
can store kinetic gene expression data, link this data to circuit
designs, and allow analysis that combines multiple studies
and experiments to reliably estimate parameters.

2 RESULTS
Here we present Flapjack, a web-based open-source tool for
storing, visualising, analysing and modelling kinetic gene ex-
pression data. Flapjack is an SBOL-compliant full-stack web
application built with the back-end framework Django, us-
ing Python for analysing data via libraries including NumPy,
SciPy and Pandas. The front-end is written in JavaScript and
uses the D3.js visualisation library. The architecture of Flap-
jack is shown in Figure 1. We provide a web app interface,
and a Docker container for easy installation at individual, lab
or institution scale. Users are able to upload their raw mea-
surement data and metadata, linking the circuit DNA to Syn-
BioHub Uniform Resource Identifiers (URIs), and describing
experimental conditions such as media, strain, and inducer

Figure 1: Flapjack’s stack: PostgreSQL relational database;
Back-end Django Framework; Front-end; D3.js library. All
contained in a Docker virtualization.

concentrations. The uploaded information is then stored in
a PostgreSQL relational database (Figure 2). The application
back-end communicates with the database through Django’s
Object-Relational Mapping (ORM) Framework. Flapjack is
also available as a python module for developers to use with
their own custom software tools and a local database. Flap-
jack enables users to flexibly query experimental data based
on metadata, for example extracting all measurements re-
lated to a particular DNA sequence, all growth curves for
a given strain, etc. These queries return all relevant data
irrespective of the particular study or experiment, or may
be restricted to specific experiments of interest. Using the
web app users may then visualize the experimental time
series using interactive plots (time courses, kymographs,
heatmaps), apply analyses such as calculation of expression
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Figure 2: Flapjack’s data model.

rates, growth rates, and parameterise transfer functions or
induction curves (Figure 3). For custom analysis queried data
can be downloaded in CSV, JSON or XML file formats.
We demonstrate the functionality of Flapjack by char-

acterizing six multifluorescent gene circuits: constitutive
expression, IPTG signal receiver input module, and four in-
verters [6] with IPTG input. Each circuit was measured in
two separate experiments, with two replicates in each ex-
perimental condition. Inverters were measured under 12
different inducer concentrations. Circuit designs were made
using SBOLDesigner [7] and uploaded to our SynBioHub [8]
instance [9]. Figure 3 shows examples of visualisation out-
puts from the web app, analyses of kinetic gene expression
rates, and parameter estimation of induction curves.

Currently, Flapjack supports upload of Synergy HTX and
BMG Labtech microplate reader data, but can easily be ex-
tended to accommodate any data format.

3 FUTUREWORK
We are currently developing data federation via Resource
Description Framework (RDF) and the implementation of a
Virtuoso database; developing a Flapjack API for developers
to retrieve data from Flapjack and use it directly in their own
software tools without the need for file download; including
upload of data from sources such as timelapse single-cell mi-
croscopy; and coupling of models [10] to synthetic microbial
biofilm simulation tools such as CellModeller [11].

4 CONCLUSIONS
We have developed a data repository and set of analysis
tools that enables scaleable data analysis, visualization and

parameter estimation, collating data between institutions,
studies, experiments, and individual researchers. Our tool
could significantly decrease time consuming and error prone
data wrangling, allowing characterization of genetic circuits
that seamlessly incorporates new data for reliable parameter
estimation. Through the use of the SBOL Stack, our tool
connects directly to the ecosystem of existing tools such
as SBOLDesigner, SynbioHub, and iBioSim. Flapjack could
significantly enhance data sharing, management and analysis
for synthetic and systems biology.

Figure 3: Flapjack’s analysis. A. Input curve for IPTG signal
receiver. B. QacR Inverter with IPTG input. C. Kymograph
for YFP Expression rate. D. Expression rate for YFP and CFP
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1 MANIPULATING BIOLOGICAL COMPONENTS
Constructing or modifying already existing biological sys-
tems is the nucleus of the synthetic biology field. Engineering
of novel biosensors, reprogramming living cells, creating ge-
netic logic circuits for biological computers, and engineering
new synthetic life organisms are some of the most remark-
able cross-disciplinary endeavours in recent years. Design-
ing, assembling, and manipulating biological components
are core aspects of the synthetic biology field but they are
also a bottleneck in the typical research design-build-test cy-
cle. Computer-aided design tools and hardware instruments
are used to automate, reduce complexity, and accelerate the
computational and experimental work in the research do-
main. Furthermore, an increasing number of domain-specific
computer-aided tools for design, programming, and simu-
lation have been standardized, developed, and adopted by
the synthetic biology community. By contrast, the physical
manipulation of biological samples still heavily relies on
expensive traditional wet lab equipment such as pipetting
robots, specialized thermal cyclers, and measuring instru-
ments. The goal of our work is to develop a reconfigurable
biochip alternative to the traditional lab liquid handling by
utilizing lab-on-a-chip technologies. In this paper, we present
a modular digital microfluidics platform which has the po-
tential to integrate a broad panel of lab processes used when
working with biological components.

2 DIGITAL MICROREACTORS
Precise and efficient liquid handling in a controlled envi-
ronment is an essential part of the process of manipulating
biological samples. Ensuring reagent concentration, temper-
ature, mixing order, incubation, purification, sensing, and
analysis are in the foundation of accurate and reproducible
experimental lab work. Conducting a lab experiment often in-
volves moving reagents between storage containers, reaction
chambers or lab equipment and it is a tedious and error-prone
task. Lab robots can be used as an alternative but due to their
cost and operation complexity, they are more suitable for
large scale automation. As an alternative, a fluid handling
technology called digital microfluidics provides a simple and
efficient way of moving nano-to-microliter droplets on a
biochip patterned with electrodes. Discrete droplets can be

programmatically dispensed from on-chip reservoirs, trans-
ported, merged, mixed, and split. Each droplet serves the
purpose of a fluid vehicle and a microreactor thus eliminat-
ing the need for storage containers and mechanical fluid
handling. Integrating a biochip with an array of sensing and
controls allows for a universal full stack solution for working
with biological systems.

3 A RECONFIGURABLE BIOCHIP PLATFORM
A reconfigurable biochip and its instrumentation should be
able to adapt and evolve together with the experimental
needs. To address this, we present the latest evolution of our
modular reconfigurable digital microfluidics platform [3] the
architecture of which is shown in Figure 1.

Figure 1: Modular reconfigurable microfluidics platform ar-
chitecture.

The platform is designed with respect to modularity on
both software and hardware levels and it consists of three
distinctive parts: (1) a computer or a smart device which acts
as a high-level programming tool and platform controller,
(2) an instance of the modular microfluidics platform, and
(3) a reconfigurable biochip. Key feature of the platform are
the clear separation between the high-level and low-level
computation functions as well as the loosely coupled modu-
lar instrumentation subsystem. The bus interface provides a
plug-and-play connection to the control, feedback, and supply
modules used to instrument a particular biochip. The plug-
and-play functionality allows for new platform modules to
be developed and added in order to match any changes in
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Figure 2: Modular microlfuidics platform prototype.

the instrumentation needs of a biochip. Furthermore, the
modular design enables the microfluidics platform to be rep-
resented as a library of functional modules and to be used as
an input to a high-level protocol compiler. This allows for a
biological protocol to be compiled into a biochip design and
a corresponding instance of the microfluidics platform.
A demo configuration of the instrumentation platform

with an open digital biochip is shown in Figure 2. A central
part of the system is the replaceable biochip which is fab-
ricated by commercially available PCB processes. The chip
has a functional array of individually addressable electrodes
and reconfigurable heating regions. Implementing cooling
capabilities for reagent storage or thermal shock as well as
providing means for electrophoresis and electroporation are
considered as future work.

4 ON THE BIOCHIP HORIZON
Similar DMF devices and platforms have been previously
reported [1][2][4] and each of them has a different level of
integration, programming model, complexity, modularity,
and workflow. Digital microfluidic biochips are built around
an array of individually addressed electrodes. This allows
for time multiplexing of different specialized regions of the
chip in order to achieve optimal resources utilization. Such
resources can be temperature controlled zones, biosensors or
simply clean or contaminated areas of the biochip. Another
important characteristic of the digital biochips is that they
allow for an in-line integration of detectors to provide inter-
mittent or continuous monitoring of the ongoing reactions.

Automating and miniaturizing DNA assembly, amplifica-
tion and transformation on low-cost portable devices hold

the potential to reduce operation cost and increase the through-
put of experimental validation of the synthetic biology re-
search. Biochips are becoming more features rich, integrated,
and simpler to fabricate. Providing modularity and standard-
ization on biochip component, instrumentation and program-
ming level is considered to be a key factor of sustaining the
fast development pace as well as lowering the barrier of
entering the biochip research field.
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1 INTRODUCTION
Both basic research and biological design require high through-
put screening to parse through the massive amounts of vari-
ants generated in experiments. However, the cost and ex-
pertise needed for use of such technology limit accessibil-
ity. Simple and reproducible designs of a sorting platform
would reduce the barrier for implementation of affordable
bench-top screening platforms. Droplet microfluidics present
a promising approach for automating biology, reducing reac-
tion volumes to picoliter droplets and allowing for determin-
istic manipulation of samples. Droplet microfluidics have
been used extensively for high throughput screening and
directed evolution [1, 3], yet limitations in fabrication have
prevented the characterization needed for a design tool and
subsequent widespread adoption. Here, we present a finite
element analysis (FEA) model-based design framework for
dielectrophoretic droplet microfluidic sorters and its pre-
liminary experimental validation. This framework extends
previous work from our group creating microfluidic designs
tools, increasing their usability in the lab [4, 6].

2 FEA MODEL OF DROPLET SORTING
Successful droplet sorting is characterized by deflection of
the target droplet from the “waste” to “keep” channel (Fig-
ure 1). Total lateral deflection is a result of opposing dielec-
trophoretic (Eq. 1) and Stokes’ drag forces (Eq. 2), where V is
the electrode voltage, rd is the droplet radius, ϵoil is the oil
permittivity, ηoil is the oil viscosity, ®vy is the lateral velocity,
and k represents the geometry of the electric field gradient in
the y-direction [2]. Droplets are assumed to be solid particles,
with the same viscosity and permittivity as water.

FDEP = 4kπϵoilr 3dV
2 (1)

FD = 6πηoilrd ®vy (2)
Upon entering the electrode region, droplets quickly ap-

proach terminal velocity (®vt ), providing an analytical solu-
tion to the total lateral displacement of the droplet, assuming
that the period at terminal velocity contributes to the major-
ity of deflection (Eq. 3). Here, tr is the residence time of the
droplet in the electrode region, determined by the droplet
throughput.

∆y = ®vt tr =
2kϵoilr 2dV

2

3ηoil
tr (3)

3 RESULTS
FEA modeling of dielectrophoretic sorting found three dis-
tinct regimes of droplet behavior: no deflection, deflection,
and model failure, where the force applied prevents further
droplet movement (Figure 1). Sweeping across input voltages
showed distinct regions that resulted in successful droplet
sorting, given an input droplet diameter or throughput (ve-
locity). However, no single voltage was compatible with
all parameter combinations. Preliminary experiments have
shown similar regions, where high voltage causes failure
by merging adjacent droplets. Varying geometric design pa-
rameters will change the total lateral deflection required for
sorting (wi and θB ) or the resistance ratio of the bifurcation
(wo1 andwo2), which alter the number of streamlines going

Figure 1: FEA model of droplet microfluidic sorter in differ-
ent regimes (Top). Effect of voltage, droplet diameter, and
velocity on sorter regime (bottom). Scale bar is 250µm.
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Figure 2: Workflow of design tool development. Designs covering the parameter space (Box 1) will be characterized by an FEA
model (Box 2), reducing the parameter space to regime boundaries (Box 3). These designs will be fabricated with CNCmilling
(Box 4), compared against the FEA model (Box 5), and used to create a predictive tool based on machine learning (Box 6).

into each channel (Figure 2, Box 1). These initial results high-
light the need for a design tool capable of predicting sorter
behavior given user specifications.

4 CONCLUSIONS AND FUTUREWORK
This design framework will help guide development of a
design automation tool for microfluidic droplet sorting and
downstream integration into screening platforms (Figure 2).
Further experimental characterization of the design space
is needed to assess the FEA model accuracy and validity of
simplifying assumptions. Rapid, affordable microfluidic fab-
rication with CNC milling developed in our group enables
collection of the data sets necessary for predictive models,
not feasible with standard photolithographic methods [5].
Once developed, this tool will take user-specified droplet size
and throughput and return the variable parameters needed
for successful, accurate sorting, compatible with the user’s
detection system of choice. A design automation tool for
droplet microfluidic sorting combined with a low-cost fab-
rication method would enable miniaturization of screening
platforms onto the bench-top, increasing accessibility of syn-
thetic biology to non-experts.
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1 INTRODUCTION
The increased prevalence of engineered organisms increases
the importance of detecting such organisms in an automated
way. Many types of engineered sequences can be detected
by simple string signatures consisting of sequences of nu-
cleotides. However, a major challenge for rare sequence vari-
ant detection is the sensitivity of current next-generation
sequencing (NGS) technologies. Moreover even when the
common bulk population sequencing methods employed by
most systems correctly identify rare variants, they lack the
ability to resolve whether the variants co-occur within the
same cell or originate from different sources within the same
heterogeneous sample. Differentiating these cases is key to
identify changes that are unusual for a particular cell but
might not be unusual for the population as a whole (e.g., a
promoter transferred from one species to another).

We have developed a single cell analysis pipeline for yeast
as part of our GUARDIAN (Guard for Uncovering Accidental
Release, Detecting Intentional Alterations, and Nefarious-
ness) project. The pipeline uses the capabilities of Mission
Bio’s Tapestri system, a microfluidic device that lyses cells,
attaches cell-unique barcodes to DNA fragments, and en-
ables the sequenced DNA to be mapped back to the original
cell. By carefully selecting the sequences we look for and
then analyzing the co-occurance of the sequences, we can
identify whether or not cells have been engineered. This
abstract will discuss the selection and design of the engineer-
ing signatures for Tapestri, the sample analysis pipeline, and
then present our initial results.

2 SIGNATURE DESIGN
The Tapestri platform is shown in Figure 1. Tapestri is a
commercial product aimed at detecting cancer cell variants
at the single cell level. As part of the GUARDIAN project,
we retargeted Tapestri to yeast cells, in particular making
changes to the lysis and encapsulation processes to account
for the rigid, carbohydrate-based cell wall.
Tapestri uses primer and amplicon panels to detect dif-

ferent DNA sequences within cells. Engineering organisms
relies on a set of parts and tools, design rules, and construc-
tion methods. We developed a set of 90 primers that target

the types of engineering expected in yeast cells; specifically
we target detection of plasmids, integration, deletion, and
engineering parts. Example targets are shown in Table 1.

Table 1: Engineering Signature Targets

Type Examples
Plasmid Bacterial replicons, Yeast replicons, Plasmid DNA
Integration Integration sites
Deletion Auxotropic deletions
Engineering Promoters, Terminators, Fluorescent proteins,

Genome editing
Genotyping Strain identifiers

Once a particular target DNA sequence is selected, Mis-
sion Bio has a multi-step panel design workflow. The DNA
sequence is compared against reference strains and sites of
variation are identified. Depending on the target sequence
length, sites of variation, and type of target, primers may
be selected at the boundary of or internal to the target se-
quence. The full set of primers and amplicons are evaluated
for specificity, interaction, and GC content among other fac-
tors. Following design, the panel is produced and optimized.

3 ANALYSIS PIPELINE
Figure 2 shows the analysis pipeline steps. First samples
are prepared and run through the Tapestri. The resulting
samples are sequenced, e.g., on a NovaSeq machine. The
sequencing data is then trimmed and mapped back to par-
ticular DNA signatures using DNA barcodes. The barcodes
are then used to map the signatures back to their cells of
origin. The last step in the analysis pipeline is to use the
combination of signatures to determine whether or not a
cell has signs of engineering. The goal of the GUARDIAN
project is to determine whether or not a sample contains
any engineered cells. The context of signatures (e.g., cell
species, presence / absence of other signatures) informs our
engineering determinations.

The trimming, mapping, calling, and analysis steps are im-
plemented as Python scripts within a Docker container. We
provide a web-based interface to the experimenter to provide
metadata about the sample and we record this information in
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Figure 1: Tapestri processing overview showing how DNA targets are identified in individual cells.

Figure 2: Overview of the GUARDIAN analysis process for
identifying whether or not individual cells have been engi-
neered. Signature selection steps are not shown.

Figure 3: t-SNE plot showing clusters of similar cells labeled
based on observed engineering.

a SynBioHub[2] instance. The metadata includes user, date,
and sequencing instrument information. The SynBioHub in-
stance also stores information about the amplicons and the
target DNA sequences that are referenced by the analysis
code. The pipeline leverages open source tools including bwa
and samtools. Each step in the pipeline produces interme-
diate files, which are labeled with IRIs, and metadata that is
stored in SynBioHub. The observed signatures are mapped

back to individual cells. The final analysis step is to interpret
the presence and absence of particular DNA sequences in
the context of the cell type to determine whether or not a
cell has been engineered. Each cell is labeled according to
the presence or absence of engineering signatures.

Our current approach uses clustering algorithms to iden-
tify groups of similar cells. The data can be visualized using
t-SNE plots (Figure 3); each dot represents a single cell and
the color of the dots indicates whether signatures of engi-
neering were observed (purple), signatures of deletions were
observed (blue), signatures of engineering and of deletion
were observed (orange), or no signs were seen (gray).

4 DISCUSSION
Our initial work has targeted the CENPK and S288C yeast
strains and has demonstrated the ability to identify even low
levels of engineering. Our future analysis work will produc-
ing detailed reports about the variations seen in individual
cells within the larger population. A limitation of this tech-
nique is that it can only detect the engineering or other
markers that are in a panel. Although the common types of
engineering can be robustly detected, this process cannot
detect changes that it is not looking for. Our future work
will look at ways to address this shortcoming, e.g., single cell
whole genome sequencing [1].
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1 INTRODUCTION
Computational nucleic acid devices show great potential for
enabling a broad range of biotechnology applications, in-
cluding smart probes for molecular biology research, in vitro
assembly of complex compounds, high-precision in vitro dis-
ease diagnosis and, ultimately, computational theranostics
inside living cells. This diversity of applications is supported
by a range of implementation strategies, including nucleic
acid strand displacement, localization to substrates, and the
use of enzymes with polymerase, nickase, and exonuclease
functionality. However, existing computational design tools
are unable to account for these strategies in a unified manner.
We present a logic programming language [9] that al-

lows a broad range of computational nucleic acid systems
to be designed and analyzed. The language extends stan-
dard logic programming with a novel equational theory to
express nucleic acid molecular motifs. It automatically iden-
tifies matching motifs present in the full system, in order
to apply a specified transformation expressed as a logical
rule. The language supports the definition of logic predicates,
which provide constraints that need to be satisfied in order
for a given rule to be applied.

Our language can encode the semantics of nucleic strand
displacement systems with complex topologies, previous
extensions to the Visual DSD language [6], as well as new
extensions including the encoding of kinetic rate hypothe-
ses, together with computation performed by a broad range
of enzymes. More importantly, our approach is extensible
in that new nucleic acid implementation strategies can be
encoded simply by defining new logic predicates. Thus, our
approach lays the foundation for a unifying framework for
the design of computational nucleic acid devices.

2 LANGUAGE DESIGN
Our approach relies on the domain level abstraction, which
has been used to successfully design and engineer a broad
range of computation DNA systems. This abstraction as-
sumes that sequences have been carefully designed to allow
consecutive nucleotides to be considered as distinct, non-
interfering domains, and thereby provides a high-level con-
ceptual framework for modelling and designing the behavior
of nucleic acid computational devices.

The syntax of our language (Figure 1A) is formally de-
fined in the style of process calculi and combines a syntax
for nucleic acid strands, which extends previous work on
strand graphs [8], with a syntax for logic programs, based on
Prolog. Compiling a model written in our logic programming
language uses a custom inference system based on SLDNF
resolution, which is widely used in logic programming lan-
guages such as Prolog. We simplified the treatment of nega-
tive predicates to avoid a consistency problem with standard
SLDNF known as floundering, modified the standard resolu-
tion strategy to a breadth-first search (which is guaranteed to
find all possible solutions), and, most importantly, extended
the standard unification algorithm with a novel equational
theory of nucleic acid strands. Our equational theory de-
fines contexts and patterns that allow the identification and
sound manipulation of general nucleic acid motifs.

3 PROTOTYPE IMPLEMENTATION
A prototype implementation of our logic programming lan-
guage has been integrated in Visual DSD and is freely accessi-
ble at http://classicdsd.azurewebsites.net, together
with a collection of built-in Logic Programming examples.
This integration means that all of the existing simulation and
analysis methods present in Visual DSD are also supported
by our logic programming language, providing a strong mo-
tivation for implementing our logic programming language
as an extension to Visual DSD, rather than as a Prolog li-
brary. Our logic programming language can encode previous
extensions to the Visual DSD language [4, 5, 8, 10], as well
as new extensions including enzyme interactions [7] and the
encoding of kinetic rate hypotheses [1], neither of which
were previously supported in Visual DSD. More importantly,
our approach is extensible in that new nucleic acid imple-
mentation strategies can be encoded simply by defining new
logic predicates. Thus, our work provides a framework to
model the largest set of nucleic acid information processing
systems to date (Figure 1B). For a selection of examples that
are also supported by previous versions of Visual DSD [5],
our logic programming language has an average perfomance
penalty of approximately 25% in terms of compilation time.
This is not unexpected given the generality of the language
and we are working to optimize the system further.
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Figure 1: (A) BNF syntax for patterns and processes. (B) Part of a chemical reaction network for a ribocomputing AND gate [3],
and corresponding logic program code to express domain binding and strand displacement. These rule sets are extensible:
additional rules could be added to encode translation of GFP, for example.

4 DISCUSSION
We envisage a number of usage scenarios for our logic pro-
gramming language. In the most common scenario, we antic-
ipate that the basic rules for nucleic acid strand displacement
will be included by default, and the user will add new en-
zyme rules or kinetic hypotheses depending on the particular
implementation strategy. More broadly, we anticipate two
different classes of users: those who write predicates that
define particular nucleic acid implementation strategies, and
those who select from a set of existing predicates to model
their systems of interest. This will allow scientists not fa-
miliar with logic programming to still take advantage of the
enhanced customisation that our approach enables.

Our logic programming approach invites comparison with
Kappa [2], which is a rule-based modelling language that cap-
tures the interactions between agents via named sites. While
Kappa rules define patterns that can be matched to a system,
our approach further allows the definition of arbitrary logical
predicates to be associated with a rule, allowing increased
generality. For example, our approach allows a single binding
rule to be applied for all domains that are complementary,
whereas Kappa would require a separate binding rule to be
written for each specific domain. Furthermore, our approach
allows complex topologies to be expressed using predicates,
such as whether a domain is hidden inside a hairpin, or is
part of a junction of arbitrary size. An interesting goal would
be to encode Kappa in our framework, so one could extend
Kappa with arbitrary logical predicates.
As a practical matter, a useful future direction would be

the inclusion of a formal module system whereby particular
sets of predicates can be defined as self-contained modules
and easily loaded into a model with a single command. This
would enable the creation of a standard library of commonly
used predicate sets for well-known experimental frameworks
such as DNA strand displacement or the PEN-DNA toolbox.
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1 INTRODUCTION
Characterization and classification of microbial organisms
prove to be interesting and important tasks, as much is still
unknown about their features and available data is not pre-
cise. Often this is a problem, as these estimates are not accu-
rate and cannot be used as a reliable source for simulating
organism behavior. This problem is aggravated by the fact
that simulation designers are unaware of the variables to
take into account when producing their solution. Automa-
tion has proven to be a great aid in eliminating human error
and delivering standardized solutions. As such, automating
the retrieval of individual cells from graphical material, such
as pictures or videos, allows for the generation of massive
amounts of data. In turn, processing these data would im-
prove the estimates for currently existing cell features, acting
as better parameters within a simulation environment.

2 THE PROBLEM
Extraction of cell features is important. It is a tedious process
in which observation, retrieval and analysis are required.
This takes up research time from the scientist. Applications
stemming from the retrieved data include diagnostics, sim-
ulation and characterization. The automation of feature ex-
traction would offer a platform for data basic analysis and
storage. It should release the scientist from the task, using
input graphical material such as pictures and/or videos.

3 PROPOSED SOLUTION
The goal of this work is to be able to identify a large amount
of individual cells and extract important features in an au-
tomated manner. Features such as length, width and orien-
tation angle are of interest. Previous work has been done
on this topic [5, 7, 10], however they provide insufficient
information to extract for dynamical behavior of cells. Pic-
tures and/or videos of growing cell colonies should serve
as input to the tool. In our proof-of-concept, 2D gro [3, 4]
simulations pictures and videos were used, and also pictures
in the literature showing cell colonies [2, 9]. Computer vi-
sion techniques are at the core of this solution. Specifically,

∗All authors contributed equally to this research. This research was funded
by Semilla Project MGUTIERREZ - UDP.

the Python OpenCV library [8] was used to process the im-
ages/videos. Cells must be identified and segmented as a first
step. However, preprocessing the input file first is necessary
to better prepare the object borders: operations such as ero-
sion and dilation are used. Once the file is preprocessed, a
segmentation algorithm is applied (Canny Edge [1]) to iden-
tify the contours of each cell. Once this step is completed,
noise is filtered through approximation to a geometric shape
(an ellipse in the proof-of-concept). The parameters (length,
width, orientation angle) are then evaluated and stored for
further analysis. An example is shown in Figure 1. This pro-
cess is followed by any kind of input, but describes the full
process for pictures. However, if the input file is a video,
further operations must be performed. These operations are
concerned with the location tracking of a cell object. This
is done by searching in a spatial neighborhood of the pro-
jected location of the object (optical flow algorithm [6]), and
selecting the new location closest to it. Identification of the
key events (cellular division, for instance) is also tracked by
constantly observing cell length (Figure 2). Therefore, cell
division time can be recorded. Figure 3 shows the frames
before and after division.

(a) Simulation image (b) Microscopy image [2]

Figure 1: Individual cells are identified and approximated by
an ellipse for data extraction.

4 RESULTS
Both image and video tests were run. For the simulation
image in Figure 1, a segmented bacterial count of 1578 was
reached out of 1731 possible bacteria (91.16% accuracy), while
in the microscopy image 225 cells out of 249 (90.36% accu-
racy) were segmented. False positives may occur if an empty
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Figure 2: Parameter extraction process. The graphicalmaterial is processed by applying several operations on the files. Individ-
ual cells are identified by segmenting the image/video and data are extracted from each cell. In case a video is being processed,
then an individual cell is tracked and tested for its location to obtain dynamical behavior parameters.

(a) Tracked cell ready
to divide

(b) Tracked cell after
division

Figure 3: Sample frames of a gro simulation video in which
single cell tracking is occuring. This tracking can be ex-
tended to all bacteria in the colony.

space with a similar size to a cell is present. Object filters are
applied onto the images to reduce the amount of detected
false positives. Width, maximum and minimum length, loca-
tion (x and y coordinates, in pixels) and the orientation angle
were the features extracted for each bacterium. Minimum
length/maximum length and width/maximum length ratios
of 1:3 and 1:4 (simulated), and 2:3 and 1:4 (microscopy) were
found, respectively. For videos, cells are tracked and consec-
utive division events for each tracked cell are recorded.

5 CONCLUSIONS AND FUTUREWORK
Our method for identification of individual cells in pictures
and their tracking in videos and later extracting data has
initially proven successful. Accuracy of the method is being
improved, and we are also working to include more features
(such as shape, 3D body approximation or division dynam-
ics). Other Machine Learning techniques are being added
to the method. Many tests on other species remain to be

run. The overall goal is to automate the characterization and
representation of cells for simulation through data.
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1 INTRODUCTION
The once future vision of green, sustainable manufacturing
of valuable chemicals for industrial sectors such as materials,
drugs, cosmetics, and food is suddenly becoming the bioman-
ufacturing of today by embracing bio-based solutions using
natural and renewable energy sources. The bioproduction
of chemicals in its transition from an emerging applied sci-
ence to a truly industrial biomanufacturing technology is
requiring an accelerated reduction of delivery times from
concept to development to scale-up. In order to achieve its
full potential, the industrial biomanufacturing pipeline de-
mands strategies for rapid prototyping [5], streamlined scal-
ing from microtiter plates to commercial bioreactors, and
robust upstream and downstream processing [11]. To that
end, top-down bioprocess engineering has often relied on
optimal experimental design approaches [4, 8], delivering in
that way an approach to a) make lean use of resources; b)
facilitate agile updates in the pipeline; c) perform an efficient
identification of main effects in the factorial design; and d)
enable modeling and provide predictive ability. This type of
design approach has been widely adopted in sectors such
as defense, manufacturing, or pharma, where proprietary
design software have been generally the option of choice.

In contrast, the development of bottom-up approaches for
engineering biology [6] has followed a different path because
of its collaborative environment where constructs, strains
and protocols are shared across the labs. Adoption of the
optimal design of experiments has remained slow [2, 3], ar-
guably hampered by the lack of open community standards.
To contribute to the genuine open spirit of the synthetic
biology community, we want to provide here OptBioDes, an
open-source community-based optimal design tool that is
tailored to the synbio-based chemical production of bioman-
ufacturing pipelines and provides full design diagnostics
capabilities. Following the model of cloud labs, OptBioDes
lives in the cloud, and it is also available as a Galaxy node
for workflow development [1].

2 MATERIALS AND METHODS
The problem under study consists of the generation of op-
timal combinatorial libraries of plasmids that are built in
order to efficiently express a metabolic pathway for chemical
production under different conditions and in a given chassis
organism. Factors that typically enter into the design choice

are plasmid copy number of the vector backbone (ori), resis-
tance cassette (res), promoter (pro), open reading frame (orf)
of the gene variants (including RBS libraries) associated with
each of the n steps, terminator (ter) and gene arrangement.
The construct has the following constraints:

(1) Layout: ori+ res+pro1+orf1 +
∑n

i=2 (
[teri−1 + proi

]
+

+orf i ) + tern ,
(2) Arrangement: orfs correspond to gene variants of each

step, which may either appear at predefined positions
or in free arrangement,

where [teri−1 + proi
] might be present or absent, depending

on the design specifications. In our approach, we assume no
prior knowledge about the effects of the genetic parts on
the desired phenotype of the engineered strains. Therefore,
factors are coded using one-hot encoding in an hypercube
with values−1 and 1 for the l−1 levels, corresponding to their
number of degrees of freedom and expressed as normalized
vectors in their l − 1 principal directions.

Our optimal experimental design is based on a logistic
regression analysis with an assumed model for the response
Y : Y = βX+α , whereX is defined as the model matrix, i.e., a
row for each experimental run and a column for each term in
the model. We consider D-optimal designs, where the design
is evaluated based on its D-efficiency, which compares the
design with an orthogonal design expressed as a percentage:

Def f = 100
( 1
n
|XTX|1/p

)
, (1)

where p is the number of independent variables or degrees
of freedom, X is the model matrix, and n the library size.

Orthogonal designs are defined as follows [10]:
• the entries in the model matrix X are either −1 or 1,
• the columns are orthogonal cTi c j = 0 for i , j,
• cTi ci = n, where n is the number of experiments,
• the sum of the absolute value of the columns is n.

OptBioDes is a Python library for synbio optimal design
whose source code is available at https://github.com/pablocarb/
doebase. In order to generate a D-optimal experimental de-
sign for the given factors, constraints and underlying model,
we used an implementation of the Coordinate Exchange
algorithm [7]. A cloud-based application for OptBioDes can
be accessed through REST web services at http://optbiodes.
synbiochem.co.uk/REST. For the returned designs, the tool
provides diagnostics such asD-efficiency (Equation 1), power
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analysis and relative prediction variance [7], allowing the op-
timal selection of library size. In order to integrate OptBioDes
into pathway design workflows, a Galaxy tool is available
as part of the synbiodesign repository of the Galaxy Tool
Shed.

Figure 1: OptBioDes in the synbio design–build–test–learn
toolchain. Modeling and learn guide pathway, enzyme and
genetic parts selection in order to generate a DoE specifica-
tion sheet, which acts as an abstraction layer with respect to
the parts definition. The sheet is submitted to the optimizer
and the result is an instantiation of the experimental design
according to the specifications.

3 RESULTS
The key strength of OptBioDes is its ability to establish an
optimal automated designwithin the synbio design toolchain.
As shown in Figure 1, the tool seamlessly integrates into the
design–build–test–learn pipeline and can be used as part
of a full workflow using Galaxy or other automation envi-
ronments. Starting from the target chemical, information is
passed through parts selection tools. Resulting selection is
then compiled in a DoE sheet (see GitHub site for details),
where genetic part information can be referenced from a
central repository like SynBioHub [9]. Following the cloud
biomanufacturing paradigm, once the optimal combinato-
rial designs have been selected, the automated build and
test stages proceed through robotic platforms allowing full
sample traceability so that experimental results are fed back
into the learn and design engines. Statistical analyses are
then applied in order to infer an ensemble of models for the
design factor–response relationships under either mecha-
nistic hypothesis, i.e., kinetic models, or using model-free
approaches, i.e., machine learning. Models considering more
complex interactions between factors will be supported in

the future. The resulting analyses provide a new set of design
rules for the next experimental round.

For instance, our optimal design approach was employed
in order to design highly-compressed 16-member libraries
for 4-gene producer pathways for flavonoids and alkaloids
production in E. coli [5]. For both classes of compounds the
application of the first iteration of rapid prototyping either
led to the identification of high producer strains or provided
enough information in order to narrow down main effects
for a rapid second iteration focused on high producers. Such
compelling results show that this fully automated optimal
design node plug-in for the synbio toolchain complies with
the flexibility requirements of agile design and is therefore
expected to become widely adopted in future biomanufac-
turing systems.
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1 INTRODUCTION
The design of microfluidic devices has the potential to ac-
celerate the discovery and the exploration of engineering
paradigms [5]; however, the non-standardized technology
stacks coupled with the tedious manual design processes
have prevented the complete integration of microfluidic tech-
nologies into academic and research settings [10]. While a
majority of the research in Microfluidic Design Automation
(MDA) tools has been focused on physical design automa-
tion and the generation of robust architectures, recent works
by Grimmer et al. have explored the possibility of integrat-
ing device sizing and architecture generation into the design
workflows [2, 3]. However, a significant deficit in these meth-
ods is their complete reliance on analytical models which are
based on simplifying assumptions that often do not represent
the experimentally observed behavior into their formulation.
In order to bridge the gap between abstractions provided by
MDA tools and the generation of realistic devices, we outline
a design flow that enables the integration of performance
metrics into the MDA design flows enabled by 3DµF [9],
Fluigi [4] and DAFD [7].

2 PERFORMANCE CHARACTERIZATION
Because of the presence of complex surface interactions and
fluid dynamic phenomenon, it is very difficult to characterize
the behavior of microfluidic devices. By taking advantage of
rapid prototyping techniques [8], DAFD employs machine
learning algorithms to characterize and predict microfluidic
behavior [6] over a large design space.
In order to use DAFD, the user first needs to generate a

dataset that sufficiently characterizes a component by vary-
ing the flow conditions and its geometric parameters. After
training the performance models within DAFD using the
data from characterization experiments, the user would be
able to query DAFD for a desired performance alongside the
geometric parameters and their respective flow conditions.

3 SPECIFICATION OF PERFORMANCE METRICS
Liquid Flow Relations (LFR) is a hardware description lan-
guage (HDL) that borrows syntax and concepts from Verilog
[1] for describing devices that perform liquid manipulations.
LFR allows the designer to abstract the technologies that are
used for performing the fluid manipulations and describe the

entire device’s behavior in terms of how the different fluids
that would be injected onto the device would be distributed
and controlled.

Figure 1: Specifying Droplet Generator performance using
LFR - A. Shows a representative design of a device that con-
tains a droplet generator. B. Gives the LFR (Liquid Flow Re-
lations) description of the device shown in A. Lines 6-7 how
the user can define custom performance constraints while
Lines 1 and 8 show how different elements of the device de-
scription allow for the synthesis of the design architecture.

Figure 1 shows an example of an LFR specification that
is used to describe a device used to generate droplets. Lines
1 and 10 give a top level description where the user explic-
itly specifies the inputs and outputs. In order to assign the
performance specification, the user needs to annotate the
assign statement (Line 8) to help LFR synthesize a DROPLET
GENERATOR with the target performance metrics (Lines 6
and 7).
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Figure 2: Steps A-F describe how a text based Liquid Flow Relation (LFR) file is converted into a device that matched the per-
formance specification described in the LFR file. The LFR compiler reads the description and creates an unsized architecture
(incorrect dimensions). The compiler then queries DAFDwith the performance specifications and retrieves component param-
eters to generate the final design description that is used by Fluigi[4] to generate the layout of the device and the subsequently
generate the DFM output that are optimized for different manufacturing processes to be manufactured and validated.

4 ARCHITECTURE SYNTHESIS
In order to generate the microfluidic architecture from LFR
specification, the compiler first constructs a Fluid Interaction
Graph that captures the interactions and behaviors between
the various fluid inputs. The compiler then processes the
graph to evaluate the logical expressions that are associ-
ated with the control inputs and finally maps microfluidic
technologies to generate a netlist G that describes the archi-
tecture of the device. WhereG ∈ (V ,E) is a graph whereV is
collection of components and E is a collection of connections
that link various components.
Once the initial netlist is generated, the LFR compiler

sequentially goes through each of the performance speci-
fications associated with netlist and queries DAFD for the
geometric parameters that are necessary for individual com-
ponents to meet their respective performance targets.

5 CONCLUSION AND FUTUREWORK
The integration of performance metrics into the larger MDA
workflows (Architecture Synthesis and Physical Design Au-
tomation) has the potential to reduce the amount of mi-
crofluidic expertise needed to takes ideas seen in literature
and apply them in different applications. By expanding the
datasets utilized by DAFD to include different microfluidic
design primitives, we can extend the capabilities and the
efficacy of MDA tools and allow for new synergies between

researchers working in microfluidics research and design
automation.
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1 INTRODUCTION
Microfluidics is the science of handling liquids inside sub-
millimeter microchannels at nano-liter and pico-liter scales.
This volume reduction enables increased resolution, sen-
sitivity, and throughput, while, reducing the reagent cost
significantly [1, 11]. These advantages make microfluidic de-
vices to be ideal substitutes for bench-top and robotic liquid
handling in numerous life science applications, specifically,
synthetic biology where there is a need for low-cost, au-
tomated, and high-throughput platforms [3]. Despite the
need, implementing microfluidic platforms in the life science
research work-flow is an exception rather than being the
norm [8, 10]. This can be attributed to the high cost of fabri-
cating microfluidic devices and a lack of microfluidic design
automation tools that can design a microfluidic geometry
based on the desired performance [6]. As a result, designing
a microfluidic device that delivers an expected performance
is an iterative, time-consuming, and costly process [2]. To
address this, we previously described a low-cost and accessi-
ble micro-milling technique to fabricate microfluidic devices
in less than an hour while costing less than $10 [7]. How-
ever, still designing a microfluidic device that performs as
expected is an iterative and in-efficient process. Therefore,
microfluidic design automation tools that are able to design a
microfluidic geometry and provide the necessary flow condi-
tions and fluid properties that would deliver a user-specified
performance is with great importance.We propose amodular
design automation tool, called DAFD, that is able to design
a microfluidic device based on user-specified performance
and constraints. DAFD uses machine learning to generate
accurate predictive models, and then exploits these models
to provide a design automation platform. DAFD can be im-
plemented in many microfluidic applications such as droplet
generation [4], high-throughput sorting, and micro-mixing.
2 A MODULAR DESIGN AUTOMATION TOOL
DAFD can be divided into two sections. First a forward pre-
dictive model that is built by choosing the most accurate
algorithm from the built-in machine learning algorithms.
Once an accurate model is identified by the user, this model

Figure 1: DAFD, relies on a forward predictive model that
relates the inputs of the system to its performance. Using
this predictive model the design automation tool can then
provide the required inputs to achieve a user-specified de-
sired performance. This open-source tool allows researchers
to train design automation tools on different microfluidic
components such as droplet generators and droplet sorters.

is able to predict the performance of the systems if the inputs
are given. Second, the reverse model (i.e., design automation
tool) that allows the user to specify the desired performance
and get the required inputs in return, as shown in Fig. 1.

Performance prediction
Machine learning techniques enable system behavior pre-
diction and have advanced several fields from biology to
cyber-physical systems [9]. With the introduction of low-
cost microfluidic fabrication in recent years, large design
spaces previously only explored using numerical simula-
tions [12], can now be studied experimentally in a time- and
cost-efficient manner [5]. Therefore, machine learning algo-
rithms can now be trained on large and reliable experimental
data-sets to generate accurate predictive models for differ-
ent microfluidic modules. Several built-in machine learning
algorithms are included in DAFD and the user can pick the
most accurate model for the experimental data of any given
microfluidic, as shown in Fig. 2.
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Figure 2: Large experimental datasets can now be generated using low-cost micromilling. Once a dataset is generated, several
built-in machine learning algorithms (neural networks, random forest, support vector regression, nearest data-point, etc.) can
be trained on the dataset to develop an accurate predictivemodel. The reversemodel exploits the predictivemodel, dataset, and
gradient descent to provide the required inputs for the desired performance. Thus, eliminating the need for design iterations.

Design automation
Once an accurate predictive model is generated, DAFD work-
flow allows the user to specify the desired performance and
constraints. As shown in Fig. 2, the algorithm starts with
finding a point on the data-set that is closest to the speci-
fied performance. Then, by defining a cost function Eq. (1)
and using gradient descent the cost function is minimized
until the desired performance is reached and the inputs that
resulted in that performance are reported.

F (x) =
n∑
i=1

(Pi,d − Pi,x )2 (1)

where F (x) is the cost function, Pi,d is the ith desired per-
formance metric, and Pi,X is the ith current performance.
3 CONCLUSION AND FUTUREWORK
DAFD is a modular design automation tool for microfluidics
that enables researchers to design microfluidic devices by
specifying the desired performance. Thus, lowering the bar-
rier to entry to microfluidics for life science groups with
limited knowledge of microfluidics. DAFD allows for ex-
perimental researchers with limited knowledge of machine
learning to build design automation tools by training DAFD
forward models on an input-performance data-set of any
microfluidic component through an open-source codebase.
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ABSTRACT
Synthetic genetic logic circuits are an application of
synthetic biology where biological parts of the DNA from
inside a cell are engineered to implement logical functions.
Such circuits exhibit a nondeterministic behavior and are
much harder to characterize in contrast to electronic logic
circuits. Approaches to analyze the threshold values and
timing analysis of single or cascaded genetic logic circuits
have been previously proposed, however, they suffer from
long latency. There is a potential for parallelizing the
procedure which verifies the obtained threshold values
for obtaining lower run times. In this work, we introduce
a fast approach to estimating threshold values through a
parallelized verification procedure. The proposed algorithm
takes significantly less time than the previous approach
exhibiting a time complexity of ∅(N ) reduced from ∅(N 2).

1 INTRODUCTION
Dynamic Virtual Analyzer and Simulator or D-VASim [1]
is an interactive virtual laboratory environment for the
simulation and analysis of genetic logic circuit models
represented in System Biology Markup Language or SBML
[2]. D-VASim helps replace the time-consuming in-vitro
experiments (laboratory experiments) needed to analyze
and design genetic circuits. D-VASim can take up to hours
in estimating the threshold values for complex genetic
circuits [3] owing to its serial execution necessitated by
data dependency. Such simulation times are still acceptable
compared to the number of days required to spend in
laboratory experiments for only a single input combination
and specific parameter set. However, there is potential for
much faster approaches to genetic circuit simulation. D-
VASim applies both deterministic and stochastic analyses
to extract and validate Boolean logic from the SBML model.

The input to D-VASim is genetic circuit model where D-
VASim allows the user to interact with the model, observe
its behavior, and make direct changes in the concentration
of input protein(s) at run-time. D-VASim is capable of
estimating the threshold value for a genetic circuit model
[1]. The threshold value refers to the minimum input
protein(s) concentration that causes the average output
protein(s) concentration to cross the input protein(s)
concentration. The Boolean function of a genetic logic
circuit can be verified by extracting the logic behavior
from the simulation data. Thus threshold value and timing
analysis are used to verify a genetic logic circuit’s intended
boolean function.
This methodology is useful in helping the user extract

the Boolean logic of the bio-models without any prior

knowledge of the expected behavior of the model. The
proposed approach is similar to the previous approach
[3] in a way that it also estimates the single threshold
value required by all inputs to trigger the final output.
However, as compared to the previous version of D-
VASim which takes too long to produce the estimations for
complex circuits owing to its sequential execution and data
dependencies, the proposed approach eliminates the data
dependency and applies multi-threading and loop unrolling
in the threshold value verification procedure leading to a
faster threshold value estimation.

2 PROPOSED ALGORITHM
The improved algorithm for threshold value analysis of
genetic logic circuit is shown in Algorithm 1. The parameter
definitions are also presented as comments in Algorithm 1.
More details on the function that each parameter represents
can be obtained from [3]. The algorithm is initialized by
user-defined parameters. We have used the same parameter
values as used in [3]. Lines 11 − 19 verify the obtained
threshold value by iterating the model for a predefined
number of iterations I . In the previous algorithm [3], due
to a sequential verification process implementation, the
average of the running array is computed post-verification.
In comparison, we compute the average of every single
array for only those elements which are above the possible
threshold value (PT ). This average is used for Estimate
Consistency E and then checked against the user-defined
parameters for the upper and lower threshold values. The
way we implement the verification process eliminates any
data-dependency and all the required iterations can be run
in parallel significantly reducing latency.

Another reason the proposed verification process is faster
compared to [3] is because we filter the input concentration
values greater than PT and we only use these values to
compute the running average in each iteration. In Figure 1,
A shows the task flow of the algorithm from [3] and B shows
the task flow of the proposed algorithm. We can clearly
see that the proposed algorithm runs all the iterations i in
the verification process simultaneously. In each iteration,
the running average is calculated after filtering the input
concentration values. Thus the time complexity can be
calculated for [3] as Nouter (Tp1 + (NinnerTp2) + Tp3) and
Nouter (Tp1 +Tp2 +Tp3) for the proposed algorithm. In the
case where user inputsNouter = Ninner = N , then, the time
complexity for [3] becomes ∅(N 2) and for the proposed
algorithm ∅(N ).
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Algorithm 1: Threshold Value Analysis
1 begin
2 INITIALIZE (Ic , Fc , Os , Ot , OCDUTH , OCDLTH ,OCDLTH ,Inc ,

St ,N )
/*
Ic = Initial input concentration where the analysis should start from
Fc = Final input concentration where the analysis should stop at
Inc = Increment Value: The value which is added to the previous
concentration level until the concentration level reaches to
Os = Name of output specie
Ot = Initial time to check selected circuit behavior
St = Settling time
OCDUTH and OCDLTH = User defined percentage acceptance of
output consistency for upper and lower threshold value respectively.
N = Number of iterations to verify the consistency of results
Vt = Time to verify each iteration N
*/

3 for all possible combination do
4 if (Ic == 0 ) then
5 Determine initial Output concentration
6 while (Ic <= Fc ) do
7 if (Oc > Ic ) then /*Oc Output of concentration of selected specie */
8 PT = Ic /* PT = Possible Threshold value */
9 /* Verification Process */

10 for i from 1 to N parallel do
11 while (T1 <= Vt ) do
12 Execute Simulation
13 if (Tc2 > ST )
14 /* Filter Output */
15 if input concentration > PT then
16 Store this output concentration in array (j)
17 end
18 Take the running average of array (j)
19 end
20 Estimate consistency Ec
21 if (Ec >= OCDUTH ) then
22 Consider lower threshold value = 0, if not found already
23 Return the results and terminate all loops
24 else
25 if (Ec <= OCDLTH ) then
26 Save lower threshold value and resume analysis
27 else
28 Resume analysis
29 Ic = Ic + Inc
30 T1 = 0
31 end
32 end

Table 1: Results Comparison

Genetic Threshold Value Analysis
Logic [1] Proposed Algorithm
Circuit (sec) (sec)

Ckt1 NOT 17 0.17
Ckt2 NAND 32 0.37
Ckt3 AND 80 0.62
Ckt4 NOR 15 0.12
Ckt5 OR 40 0.72

Ckt6 Delay 60 0.51
Results generated using D-VASim

3 RESULTS
The performance of the proposed algorithm is compared
with the one implemented in current version freely
available online [4]. We run experiments on the set of
genetic logic circuit models presented in [5]. The threshold
analysis run-times from D-VASim and our algorithm are
listed in Table 1. It is clear from Table 1 that with the
proposedmodification to the verification step, the threshold
value estimation times are significantly reduced.

Figure 1: Task flow of (A) Previous algorithm [3] and (B)
The proposed algorithm.

CONCLUSION
In this work, we have proposed modification to accelerate
a state-of-the-art threshold analysis procedure and
subsequently the timing analysis of genetic logic circuits.
The main contribution lies in paralellizing the threshold
value verification process. We achieved significant
reduction in threshold value analysis latency by a huge
factor in all of the test cases.
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1 INTRODUCTION
A top goal in synthetic biology is incorporating engineer-
ing principles into biology, for example through modular
approaches in gene assembly. This approach requires ade-
quate resources for managing data in order to speed up the
design-build-test-learn cycle. We performed an evaluation
of two free open source software platforms for data manage-
ment in synthetic biology: JBEI-ICE [1] and Synbiohub [2].
The analysis was done from the standpoint of experimental
biology research groups in academia, which are interested
in using these types of repositories for managing their syn-
thetic biology data. We defined a minimal set of requirements
for repositories in this context and explored the platforms
performance in three real world scenarios: 1) support for the
design-build-test-learn cycle, 2) batch submission of existing
design into repositories and 3) Re-use and discovery of de-
signs present in repositories. This work provides an insight
into the current state of synthetic biology resources, we hope
that it will encourage wider tool adoption and help guide
future development that will impact on design automation.

2 METHODOLOGY
The public instances of JBEI-ICE and Synbiohub were evalu-
ated by performing tasks that are executed in experimental
labs. I order to explore the use cases, the team worked to-
gether with experimentalist in order to document different
data-management scenarios. The evaluation was distilled
into tabular form of features. Therefore we provide a useful
guideline for interested new users or developers benchmark-
ing their applications.

∗Both authors contributed equally to this research. This work was funded
by the Wellcome Institutional Strategic Support Fund (ISSF3) and the UK
Centre for Mammalian Synthetic Biology (award BB/M018040/1)

3 RESULTS
Tables generated in this work include:

• Minimal requirements for a parts registry.
• Requirements for collaborative design-build-test-learn
research cycle.

• Requirements for batch operations
• Examples of search use-cases

We present Table 1 one as example, from our just accepted
manuscript [3].

Table 1: Minimal repository requirements

Features Synbiohub ICE
Unique identifiers yes yes
Descriptive name yes yes

Storing exact sequence yes yes
Access permissions yes better

Visualize sequence map yes yes
Import common sequence formats yes yes

Attributions yes better
User labels and tags yes yes

Functional categorization (e.g. promoter, tag) better yes
Device level categorization (e.g. logic gate) yes yes

Chassis no yes
Bibliography information better yes

Licence information for parts no yes
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1 INTRODUCTION
As an engineering substrate, DNA is well suited for the con-
struction of biochemical circuits and systems due to its sim-
ple design based on the Watson-Crick paring rules [1]. DNA
Strand Displacement (DSD) is an implementation strategy
based on the hybridization of DNA strands with partial or
full complementarity, resulting in the displacement of one
or more pre-hybridized strands [1], [2], [3]. Visual DSD is a
graphical user interface (GUI) aided software platform that
enables an in silico design and simulation of DSD-based cir-
cuits [4], [5]. The platform accounts for system complexity
and potential unwanted interferences between molecules in
the system and is intended to minimine the gap between the
theoretical simulation results obtained in silico and the ex-
perimental results obtained in the wet lab. If a given system
is modelled as either a set of DSD reactions or as an Abstract
Chemical Reaction Network (ACRN) then it can be simulated
by running the corresponding text file in, respectively, the
“DSD” or the “CRN” mode of Visual DSD, which allow inter-
actions of domains with one or more mismatched bases [4].
The end results of the DSD systems is quite sensitive to the
values of parameters – typically, these include the reaction
rates, concentrations, the degree of complementarity, etc.
Hardware description languages (HDLs) enables a user to

design an electronic system through textual commands that
are transformed into a physical implementation of the cir-
cuit in silicon. Recently, Cello has applied this approach to
genetic circuits to transform an HDL design into a linear
DNA sequence that can be constructed and run in living
cells [6]. However, Cello does not facilitate the design of
computational nucleic acid devices. In [7], a general purpose
CRN-to-DSD compiler Nuskell has been developed and its
benefit has been illustrated through interesting applications
[7]. Unlike Nuskell which uses a top-down approach, our
complier uses a bottom-up approach that makes use of do-
mains as starting building blocks, then connects them into
strands, describes the interaction rules for different types

of reactions, combines reactions into blocks which together
generate the full circuits.
The current work focuses on the optimisation of Visual

DSD through automation of the code generation and simplifi-
cation of the introduction of Visual DSD to a wider reaserch
comunity. The designed compiler will relax the requirement
that the user should be proficient in Visual DSD program-
ming language.

2 OUR COMPILERS: RATIONALE AND OVERVIEW
Any linear time-invariant (LTI) system S can be represented
by a so-called transfer function (TF), which is a frequency-
domain representation. This, in turn, can be expressed as a
connection of a finite number of integrators, scalar gains,
and summation blocks, as shown in Figure 1(C and D). Each
of these component blocks can be realised by finitely many
CRN’s which comprise catalysis, annihilation, and degra-
dation reactions. Each of these component blocks can also
be realised through a well-known set of DSD reactions. In
order to optimise the reaction parameters, we have designed
an algorithm based on particle swarming optimisation (PSO),
summarised in [8]. This can be used additionally to update
the default parameters set by the compiler. So, we have syn-
thesized two MATLAB-based compilers (1) TF-to-CRN: its
output is a text file of a ACRN representation of S which
should be run in the “CRN” mode of Visual DSD and (2)
TF-to-DSD: its output is a text file of a DSD representation
of S which should be run in the “DSD” mode of Visual DSD.
Our compilers support 2-domain, 3-domain, and 4-domain
representations: in general, the representation is called k-
domain if each chemical species is implemented as a single
strand of DNA comprising k distinct domains. The operation
of our TF-to-DSD compiler can be summarised as follows;
TF-to-CRN can be explained similarly:

(1) Step 1: In the GUI of TF-to-DSD, the user inputs TF
of the LTI system that they want to design.
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A B

C D E F

Figure 1: Our TF-to-DSD compiler in action. A: This Visual DSD screenshot illustrates the DSD code to implement a low-pass
filter (LPF), given in C, generated by our TF-to-DSD compiler. B: The output of this LPFwhen excitedwith a staircase input – the
red color plot represents the input and the green color plot represents the output. D: In the generated code, all necessary blocks
such as "Scaled Summation" (see line # 73) can be created and modified on the fly. After entering the polynomial coefficients
as illustrated in E, the user has a choise of the type of DSD architecture F.

(2) Step 2: In the GUI of TF-to-DSD, the user inputs the
number of domains of the desired DSD architecture.

(3) Step 3: TF-to-DSD computes a minimal state-space
model M for this TF; M comprises a finite number of
integrators, scalar gains, and summation blocks.

(4) Step 4: For each block, building on [2], TF-to-DSD
creates a text file containing (1) the DNA strand com-
positions and (2) a minimal set of DSD reactions.

(5) Step 5: Using PSO, TF-to-DSD optimises all DSD pa-
rameters such as the concentrations, chemical reaction
rates, the degree of complementarity.

The resulting text file can now be run in the “DSD" tab of
Visual DSD for the simulation and analysis purposes, and
to provide the initial data for the wet-lab implementations.

3 RESULTS AND DISCUSSION
As illustrated in Figure 1, our compiler gives satisfactory
results. Also, we have shown how the bottom-up architecture
of Visual DSD can be adequately generalised to implement
not only different algorithms but also to synthesize new
conceptual modules on the fly for LTI systems. Our approach
can be generalised for dynamic nonlinear systems as well

if the input is presented in a different way, for example, by
a block diagram. Besides speeding up the in silico design of
DSD-based circuits, our compilers also increase the outreach
of DNA computation to users whomight only be comfortable
with mathematical models and MATLAB/Python.
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1 INTRODUCTION
Engineering cells to achieve programmed development of
complex three-dimensional shapes (also known as morpho-
genesis) would provide a powerful means of tissue engi-
neering for application areas such as regenerative medicine
and drug development. Morphogenesis is a complex process
involving cell-to-cell signaling, biomechanical forces, cell
division, and differential adhesion. In order to program cells
to organize themselves into the diverse types of structures
seen in nature, as well as entirely novel structures, synthetic
biologists need a toolkit of morphogenetic parts and means
of composing those parts to produce predictable geometric
forms. We have thus been investigating genetic “building
blocks” for engineered morphogenesis and have developed
the “Morphogen Circuit Builder,” a computational tool that
allows us to explore a large space of designs that can be
implemented with these parts, and a “Morphogen Compiler”
that uses the circuit builder to generate a such designs from
a high-level description of target morphologies.

2 MORPHOGEN CIRCUIT BUILDER & COMPILER
The Morphogen Circuit Builder is a high-level Java API that
represents circuit designs using the Synthetic Biology Open
Language format (SBOL). Leveraging SBOL allows us to com-
pose hierarchical designs from abstract genetic modules by
connecting regulatory inputs, outputs, and recombination
targets. Abstract modules are then instantiated by selecting
parts from an inventory of DNA parts, including promoters,
regulatory elements, recombinases, recombination sites, a
variety of cadherin coding sequences, reporters, and degrada-
tion tags. The circuit builder stores and accesses these virtual
parts in a SynBioHub repository [3] populated by scraping
GenBank sequences from vector maps and converting them
to SBOL format. A key step in the process was annotating
these modules with interaction information and descriptive
ontology terms so that the compiler can automatically select
and appropriately match modules together.

The circuit builder can also transform multi-layered, mod-
ular designs into one or more target sequences. This involves
flattening the modular, hierarchical design to a single layer
and unifying all input/output connections. Once this is ac-
complished, all of the sequences of sub-components are con-
catenated together into a single sequence for each plasmid
to be assembled and delivered.
The circuit builder also automatically generates a two-

dimensional model of morphogenetic differentiation and
sorting. These models are based on the Cellular Potts Model
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Figure 1: Switchmodules can be chained in order to program
multi-stage differentiation.

and can be simulated using CompuCell3D [5]. Although a
variety of cell modeling frameworks could be applicable,
CompuCell3D’s programmatic API enables integration with
Morphogen Compiler and includes plugins for simulating
different processes related to morphogenesis (e.g., diffusion
gradients, division). Characteristic parameters, such as ex-
pression level or recombination efficiency, are associated
with modules in the repository, which then determine the
corresponding parameters in the model. During compila-
tion, as one module is connected to another, the compiler
performs operations that augment the model depending on
which type of modules are being connected. Furthermore,
by exploring a variety of circuit designs, we have established
a predicted phase space for certain morphogenetic systems,
which has then allowed us to implement the Morphogen
Compiler. While the examples here are based specifically on
a readily available library of parts controlling differential
adhesion, our toolchain can be extended to apply to other
morphogenetic processes as parts become available.

The Morphogen Compiler generates a circuit design based
on a user-specified, high-level description of a morphology.
The compiler is capable of generating designs for multiple
types of morphologies, such as multi-layer, concentric sorted
balls (analogous to gastrulation) or specialized, cell clus-
ters interspersed through tissue (analogous to clusters of
endocrine cells in pancreatic tissue) [4]. The user specifies
the desired morphology and target characteristics such as di-
ameter, layer thickness, average cluster size, and/or number
of clusters. Morphologies are then generated by controlling
the probability with which cells differentiate into different
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types, as well expression levels of one or more types of cad-
herins (a family of cell-adhesion membrane proteins playing
a key role in tissue morphogenesis, leading to cell sorting
through differential adhesion [2]). The compiler then gener-
ates a circuit design by selecting modules with appropriate
parameters, then proceeds to realization and/or simulation
via the circuit builder as described above.

3 RESULTS
We have tested the compiler and circuit builder with a va-
riety of differentiation cascade circuits. These cascades are
composed of a modular recombinase-based switch that differ-
entiates a region probabilistically into either of two cell fates,
one of which expresses an adhesion protein while the other
produces additional recombinase outputs that can then be
chained to another downstream differentiation switch. This
motif based design thus allows specification of structures
with an arbitrary number of cell types. Figure 1 shows how
a differentiation switch is implemented and how multiple
switches can be chained in a cascade.
Differentiation into one cell fate versus the other is gov-

erned by competition between a pair of recombinases for
their cognate recombination sites. The probability of one re-
combination event versus the other depends on the relative
expression levels of each recombinase, which is modulated
through the use of degradation tags, which have previously
been demonstrated for fine-tuning circuits [1].

The differentiation switches are parameterized with a dif-
ferentiation probability (f ) that determines the relative prob-
ability of selecting a lower-adhesion cell fate vs. a higher-
adhesion cell fate: at each stage, low relative f will tend to
result in complete cell sorting, while high f will instead tend
to result in quasi-stable cluster formation. Cadherin modules
expression levels are then modulated to achieve the parame-
terized degree of adhesion means by degradation tags, thus
allowing an exponential number of different morphogenetic
patterns to be generated from differential tuning of a single
composable motif. Figure 2 shows examples (using Compu-
Cell3D simulation of compiler-generated models) of different
morphologies that can be generated by modulation of the
number of stages and the level of f for each stage.

4 FUTUREWORK
Our future goals are to explore a wider range of possible mor-
phogenetic shapes by optimizing simulation parameters to
better produce desired topological characteristics and match
these more closely to laboratory results. To support this goal,
we have implemented algorithms in the simulator that cal-
culate image-based, topological parameters, such as cluster
number, cluster size, and heterotypic boundary length (a
measure of cell sorting). Additional metrics, such as image
symmetry will need to be considered as well. In addition,
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Figure 2: Controlling probability of switching into cell types
with different cadherin expression profiles can generate dif-
ferent morphologies, as shown in these CompuCell3D[5]
simulations generated by the Morphogen Compiler.

we have parallelized simulations so that we can efficiently
explore large parameter spaces. These features will allow us
to identify optimal parameter sets that generate a variety of
target morphologies, including asymmetric morphologies.
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INTRODUCTION
A fuller benefit from the enormous amounts of data gener-
ated by omics technologies, as evident from the 1000Genomes
Project, Wellcome Trust Case Control Consortium, Exome
Aggregation Consortium and others, can be realised only
if a repository of common reference datasets together with
efficient meta-analysis techniques is developed [1], [2]. In
genomics alone, the amount of publicly available gene ex-
pression data is enormous: (1) NCBI GEO has over 3 million
samples collected from more than 19,000 platforms and (2)
ArrayExpress has 54.46 TBworth data frommore than 72,000
experiments conducted on more than 2.4 million assays.
Use of elastic net [3] in meta-analysis was proposed by

Hughey-Butte in [2] for classification and regression pur-
poses, and its efficacy was demonstrated via cancer datasets.
Using 629 samples from five data sets, they trained a multi-
nomial classifier to distinguish between four lung cancer
subtypes. Their meta-analysis-derived classifier included 58
genes and achieved an excellent accuracy of 91% on leave-
one-study-out cross-validation and on three independent
data sets. In this manuscript, we extend the approach of [2]
to show how meta-analysis using gradient-boosted decision
trees can realize an even greater classification accuracy.

MATERIALS AND METHODS
We used the discovery dataset D0 created in [2]. This dataset
contains curated data from eight publicly available microar-
ray studies of lung cancer. Four cancer subtypes are of in-
terest: adenocarcinoma (AD), squamous cell carcinoma (SQ),
small cell lung carcinoma (SCLC), or carcinoid (CAR). In this
dataset, the number of samples is 639 whereas the number of
genes is 7,200. Thus, this is a high-dimensional dataset, with
the number of predictors being an order of magnitude larger
than the number of samples. Our classifier model is trained
on the merged discovery dataset using machine learning ap-
proaches and then tested separately on each of the validation
dataset as well as on the merged validation dataset.

For training the model, given the high-dimensional nature
of the dataset, elementary machine learning methods can-
not be used directly owing to the “curse of dimensionality"
[3], [4]. Ensemble methods such as Random Forest (RF) and

Gradient Boosted Trees (GBT) are helpful in solving such prob-
lems since these create aggregate of individual models: the
individual models must be designed such that those models
do not suffer from the curse of dimensionality [5], [6], [7].
The aggregation is accomplished via bagging and boosting
techniques – bagging refers to aggregating the individual
models in parallel whereas boosting refers to aggregating
those sequentially. RF is an example of the methods that
use bagging while GBT is an example of the methods that
use boosting. For validation, three datasets are used – each
corresponding to one of the studies, viz., CLCGP, GSE37745,
and GSE41271. We trained the classifer model on the merged
discovery dataset and then tested it separately on each of
the validation dataset as well as a merged validation dataset.

Our synthesis of the classifier, and its verification, can be
summarised as follows for the GBT approach; the case for
RF can be summarised on similar lines:
(1) Step 1 – Create a standardised training dataset D:

The corresponding cancer type was found out from
the sample metadata and the column of cancer types
was combined with the gene expression data to form
the training dataset D for the model.

(2) Step 2 – Train the classifier on D using GBT: Use
the R package xgboost (see [8]) with the following
configuration: (i) # iterations = 9, (ii) cross-validation
folds = 5, (iii) evaluation matrix: log-loss, and (iv) ob-
jective function: multiclass softmax.

(3) Step 3 – Fit the model: Fit and test the model inde-
pendently for each validation dataset. Furthermore, to
check the overall accuracy of the model, merge the
three validation datasets and then validate the model
on the merged validation datasets.

To ensure reproducibility, a random seed is set in Step 3
prior to each fitting.

RESULTS AND DISCUSSION
Replacing the use of elastic net with RF resulted in no im-
provement in the results reported in [2]. However, replacing
the use of elastic net with GBT led to fairly significant im-
provements as follows. The confusion matrices obtained in
the resulting 5-fold cross-validations are shown in Figure 1;
in a confusion matrix, the columns represent the predicted
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Figure 1: Confusion matrices generated by our GBT-based meta-analysis method on the datasets studied in [2].

values and the rows represent the actual values. Figure 1(I)
gives the confusion matrix for the 5-fold cross-validation
on the dataset corresponding to GSE37745. This dataset has
172 samples: 106 of type AD and 66 of type CAR. Here, our
predictive accuracy is 100%. Figure 1(II) gives the confusion
matrix for the 5-fold cross-validation on the dataset cor-
responding to GSE41271. Here, our predictive accuracy is
100%. Figure 1(III) shows the confusion matrix for the 5-fold
cross-validation on the merged discovery dataset: predictive
accuracy is 99.06% which is more than the 91.2% accuracy
reported in [2]. Figure 1(IV) shows the confusion matrix for
the 5-fold cross-validation on the entire merged discovery
dataset: predictive accuracy is 100% – here, the perfect accu-
racy might be an indication of over-fitting. Figure 1(V) gives
the confusion matrix for the 5-fold cross-validation on the
dataset corresponding to CLCGP. Here, our predictive accu-
racy is 88.58% which is slightly better than the figure of 86%
achieved in [2]. Figure 1(VI) gives the confusion matrix for
the 5-fold cross-validation on the merged validation dataset
comrpising 654 samples. Here, our predictive accuracy is
96.18% which is better than the 91.3% accuracy achieved in
[2]. This accuracy is realised in just 9 iterations, resulting
in savings in computational cost as well. The superior per-
formance on all individual validation datasets as well as on
the merged validation dataset reveals that there is no overfit-
ting. Furthermore, we have identified X9997, X11127, X11166,
X3920, and X22920 as the fivemost important predictors with
X9997 being overwhelmingly important.
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1 INTRODUCTION
When engineering E. coli cells to produce proteins of interest,
a pertinent challenge is how to optimise the performance of
the cell, whether that requires maximising protein expres-
sion, or sustaining a population over many generations. A
key way to control cells’ behaviour is through the design of
synthetic constructs, and therefore being able to predict how
construct composition affects host performance is of great
interest. As the behaviour of both construct and host are mu-
tually connected, controlling cell performance is inherently
complex and can lead to unexpected outcomes such as circuit
failure or stunted growth [2]. These phenomena are usually
attributed to the over-consumption of shared cellular re-
sources by heterologous gene expression [1], a phenomenon
known as burden, and this needs to be carefully considered
when designing cell systems.

In order to predict the variable effects of construct design
in realistic cell environments, ‘whole cell models’ (WCMs)
can be applied, which consider the interplay of key cellular
processes given finite resources (figure 1). While existing
WCMs are able to provide powerful descriptions of biological
processes, there are many important phenomena that exist-
ingWCMs do not consider, and so their scopes are ultimately
limited to idealised scenarios.

Metabolism

Translation

Genome

Protein

mRNA

Energy

Transcription

Plasmids

Ribosomes

Figure 1: A simple ‘whole cell model’ (WCM), showing key
processes in E. coli: metabolism, transcription and transla-
tion. Here we also consider the function of a synthetic plas-
mid (yellow circle), which produces its own proteins that
causes a burden on the host. This construct can mutate dur-
ing DNA replication (orange circle), alleviating the burden.

One such process that has yet to be explored in a WCM
setting is the mutation of synthetic constructs. Copying er-
rors during DNA replication often render plasmids obsolete
[4], leading to a sudden drop in heterologous expression for
that cell. While this is bad for our experiments, this mutation
reduces the burden on the cell and allows it to grow faster,
akin to positive feedback. Mutations to constructs are thus
positively selected for, and the rate at which this occurs is
important to understand and control if we want to optimise
cell performance. Many factors affect mutation spread, and
one significant contributor is the construct’s genetic com-
position; depending on the construct’s sequence, size and
modular composition, its level of burden on the host will
vary which in turn connects to mutation selection across
the population [3]. To better understand these phenomena,
therefore, requires modelling the spread of mutation in a
WCM setting.

2 THEWHOLE-CELL MUTATION MODEL
To explore these phenomena, we first model a population of
E. coli cells as a stochastic birth process, using engineered (E)
and mutant (M) cells as two distinct states. E cells can divide
to produce an M cell with a particular probability, while M
cells always produce another M. In a chemostat, where cells
are continually diluted to maintain a fixed number, we would
expect that a population of E cells will gradually all mutate,
with the rate at which this occurs being linked to burden.

Mutations 

cause a 

drop in H 

production

Drop in H 

production 

boosts mutant 

growth

Average proteome of this population

H H
H

Figure 2: A population of E/M cells has a corresponding av-
erage fraction of different functional types of protein. We
consider how these fractions change as the population mu-
tates over time, given that the H fraction is directly linked
to mutant growth rate.

To link our mutation model to burden, we consider dif-
ferent functional types of protein, for example ribosomal,
enzymatic and heterologous. E cells produce heterologous
(H) protein from their plasmids, so with more mutations, the
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fraction of H in a population will drop. By linking the in-
crease in mutants with the decline of the H fraction, we can
model how construct burden affects the spread of mutation
(figure 2).

We demonstrate the general effect of burden on mutation
spread by starting with a chemostat of all E cells; as before,
each cell contains different types of protein, including H.
Over time, M cells are expected to take over the population,
at a rate linked to the presence of burden (figure 3). If burden
is ignored in our model (dashed lines), we find a slow decay
of E cells, however whenwe link the H fraction to mutant cell
growth, we can mimic the feedback that drives the positive
selection of mutant cells. Alongside the rise of M cells is a
decrease in H fraction, as expected.
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Figure 3: Left: the quantity of E and M cells in a chemo-
stat over time, for cases where construct burden is ignored
(dashed lines) and considered (solid lines). Right: the drop in
H fraction over time, averaged over every cell.

This is a useful starting point to probe the way in which
mutation spreads in a population of engineered cells, but
further work will consider linking this to experimental data.
For example, time-series data of the decay of different con-
structs (with different genetic components) can allow us to
probe the specific mechanisms of mutation, as research by
[4] provides. This can ultimately help us to design a model
that predicts mutation spread given a particular construct
design.

3 CONCLUSION
The mutation of synthetic constructs affects the behaviour
of an engineered cell population over time. In order to un-
derstand and predict these effects, we require modelling the
spread of mutation in the context of a realistic cell envi-
ronment. To begin exploring these phenomena, we model
cell mutation in a chemostat and link mutation rate to the
cellular burden produced by heterologous gene expression.
Our results highlight the positive selection of mutants in a
population, and they act as a starting point to explore the
specific mechanisms of burden. This will ultimately allow
us to design synthetic constructs that deliver optimal cell
performance with construct mutation in mind.
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1 INTRODUCTION
This abstract presents a novel scheme for sorting and shift-
ing binary values stored in DNA. The computation is ef-
fected via the mechanism of toe-mediated strand displace-
ment [5], [1]. Recent research by the DNA-computing com-
munity has demonstrated how data can be stored in DNA by
“nicking” it using gene-editing techniques [2]. Nicking can
expose toeholds for strand displacement. Wang et al. have
proposed a scheme called SIMDNA, for “Single Instruction
Multiple Data DNA,” that implements parallel DNA strand
displacement operations on binary bits [3]. In their scheme,
binary bits are encoded in segments of DNA called “cells”.
Instructions consist of strand displacement operations on
the encoded bits, changing the location of exposed toeholds.
Building on the work of Wang et al., we propose a scheme
for performing parallel sorting and shifting of binary bits.

2 DESIGN OF THE SYSTEM
The coding scheme that we use for binary values is shown
in Figure 1. For each cell, there are five regions. Region 1 is
always exposed as a toehold. Regions 2 through 5 are covered.
When storing a bit value of 0, there is a nick between regions
2 and 3; when storing a bit value of 1, there is a nick between
regions 4 and 5.

Figure 1: The coding scheme for bit values of 0 and 1.

Parallel Binary Bubble Sorting
We describe a scheme for sorting an arbitrary sequence of
binary values. With the classical bubble sorting algorithm,
a sequence of values is sorted by comparing and swapping
adjacent values, from the beginning to the end of the se-
quence. With n values, the process is repeated n times, for a
total run time of O(n2) steps. Sorting arbitrary values can be
parallelized, but alternate passes are needed, sorting first odd
and then even values, in order to avoid swapping conflicts.

With binary values, the bubble sorting algorithm is con-
siderably simpler: it can be parallelized without alternate
passes. To see why, note that there are four possible pairs of
bits: (0, 0), (0, 1), (1, 0) and (1, 1). Of these, only the pair (1, 0)
needs a swap. In any sequence of three bits, there can be at
most one swap. Performing the compare and swap opera-
tions on all pairs of bits in sequence of n bits in parallel, the
algorithm requires O(n) parallel steps.

The basic idea for implementing the instructions for sort-
ing with DNA strand displacement is first to identify all the
(1, 0) pairs and expose their corresponding toeholds. Then
rewrite the data in those positions. Figure 2 shows the se-
quence of instructions for each step (a total of 12 instruc-
tions).
Instructions 1 and 2 identify the combination of (1, 0).

The toehold between a bit value of 1 and a bit value of 0 is
replaced by a strand with a label of S1. Instruction 3 seals off
the region exposed during Instruction 1 and 2. In instruction
4, the strand with label S1 is detached, exposing region 5,
in the case of a bit value of 1, or region 2, in the case of a
bit value of 1. In instruction 5, in the case of a bit value of 0,
region 2 is temporarily covered by a strand with label S2. In
instruction 6, a bit value of 1 is replaced by a strand with label
S3 via the toehold at region 5. The strand is then detached
and the bit value of 0 is written to the location of a bit value
of 1 in instructions 7 and 8. In instruction 9, the temporary
cover for a bit value of 0 is lifted. Then, in instructions 10
through 12, a bit value of 1 is written to the location of a bit
value of 0 using the same scheme as instructions 6 through
8.

Left Shift Register
The scheme for sorting can readily be adapted to implement
shifting of binary values. The basic idea for a left-shift regis-
ter is the following:

• Find all the pairs (0, 1) and (1, 0)
• Cover the toeholds for the pairs (0, 0) and (1, 1).
• Identify the pairs (1, 0) and flip the bit values of 1.
• Identify the pairs (0, 1) and flip the bit values of 0.
• Uncover all the toeholds for the pairs (0, 0) and (1, 1).

Our implementation the left shift register consists of 14 in-
structions per shift operation. The details are omitted due to
space constraints.
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Figure 2: Instructions for one parallel step of binary bubble sorting. The original data encodes 0110. After one parallel step,
the data encodes 0101.

3 DISCUSSION
We proposed a scheme for pairwise parallel execution of
operations on binary values via strand displacement, and
discussed two possible applications: sorting and shifting. We
discussed the parallel binary bubble sorting algorithm in
detail as it is a natural fit for the paradigm, since it only
requires pairwise exchanges. We have only validated the
scheme through simulation. A practical and experimental
concern is the amount of “leakage” per operation: what frac-
tion of strand displacement operations will not execute cor-
rectly. Each parallel step consists of about 10 separate in-
structions; leakage will compound over the course of these
10 operations. Using leakless strand displacement [4] as part
of the design is a possible strategy to mitigate experimental
error. In future research, we will explore alternate encoding
schemes to minimize the number of instructions per step.
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