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FOREWORD 
Welcome to IWBDA 2015! 

 
The IWBDA 2015 Executive Committee welcomes you to Seattle, Washington for the Seventh 

International Workshop on Bio-Design Automation (IWBDA) at the University of Washington. 

IWBDA brings together researchers from the synthetic biology, systems biology and design 

automation communities. The focus is on concepts, methodologies and software tools for the 

computational analysis and synthesis of biological systems.  

 

The field of synthetic biology, still in its early stages, has largely been driven by experimental 

expertise, and much of its success can be attributed to the skill of researchers in specific 

domains of biology. Although has been a concerted effort to assemble repositories of 

standardized components, creating and integrating synthetic components remains an ad hoc 

process. Inspired by these challenges, the field has seen a proliferation of efforts to create 

computer-aided design tools addressing synthetic biology’s specific design needs – many 

drawing on prior expertise from the electronic design automation (EDA) community. IWBDA 

offers a forum for cross-disciplinary discussion, with the aim of seeding and fostering 

collaboration between the biological and the design automation research communities.  

 

IWBDA is proudly organized by the non-profit Bio-Design Automation Consortium (BDAC). 

BDAC is an officially recognized 501(c)(3) tax-exempt organization.  

 

This year the program consists of 17 contributed talks and 16 poster presentations. Talks are 

organized into five sessions: Standards & Data Exchange; Pathways and Oligo Design; Process 

Management; Genetic Circuits I; and Genetic Circuits II. In addition, we are very pleased to 

have two distinguished invited speakers: Dr. Miriah Meyer from the University of Utah and Dr. 

Eric Klavins from the University of Washington.  

 

We thank all the participants for contributing to IWBDA; we thank the Program Committee for 

reviewing abstracts; and we thank everyone on the Executive Committee for their time and 

dedication. Finally, we thank National Science Foundation (NSF), Synthetic Biology Engineering 

Research Center (Synberc), Autodesk, Twist Bioscience, ACS Synthetic Biology, Raytheon 

BBN Technologies, Minres Technologies, Riffyn, Cytoscape and Lattice Automation for their 

support.  
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Washington in Seattle, WA and received tenure in 2009. He holds adjunct appointments in Computer 

Science and Engineering and in Bioengineering and is the Director for the UW Center for Synthetic 

Biology. 

 

Until approximately 2008, Klavins' research was primarily in computer science and control systems, 

focusing on stochastic processes, robotics and self-assembly. At about this time, he learned the basics of 

genetic engineering of the next few years switched entirely fields to synthetic biology and now runs an 

interdisciplinary group of engineers, biologists, experimentalists, and theorists -- all focused on 

engineering life. His current projects include synthetic multicellular systems with engineered bacteria and 

yeast, modeling and design for synthetic multicellular systems, and laboratory automation.   
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Talk Title: Why an (interactive) visualization is worth a thousand numbers. 

 
 

Dr. Miriah Meyer is a USTAR assistant professor in the School of Computing at the University of 

Utah and a faculty member in the Scientific Computing and Imaging Institute. Her research 

focuses on the design of visualization systems for helping researchers make sense of complex 

data. She obtained her bachelors degree in astronomy and astrophysics at Penn State 

University, and earned a PhD in computer science from the University of Utah. Prior to joining 

the faculty at Utah Miriah was a postdoctoral research fellow at Harvard University and a visiting 

scientist at the Broad Institute of MIT and Harvard. 

Miriah is the recipient of a NSF CAREER grant, a Microsoft Research Faculty Fellowship, and a 

NSF/CRA Computing Innovation Fellow award. She was named both a TED Fellow and a 

PopTech Science Fellow, as well as included on MIT Technology Review's TR35 list of the top 

young innovators and Fast Company's list of the 100 most creative people. She was also 

awarded an AAAS Mass Media Fellowship that landed her a stint as a science writer for the 

Chicago Tribune. 
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Dr. Swapnil Bhatia is a research assistant professor at the Department of Electrical and Computer 
Engineering at Boston University and co-founder of Lattice Automation. He received his PhD in computer 

science from the University of New Hampshire in 2010. He worked as a postdoctoral scholar in the Cross-
disciplinary Integration of Design Automation Research (CIDAR) laboratory with Prof. Douglas Densmore 
where he was a key contributor to projects funded by the DARPA Living Foundries, DARPA Synthetic 

Biology Seedling and the National Science Foundation (NSF). In addition to conducting research, Swapnil 
enjoys mentoring students and has been involved in some capacity with almost every graduate student 
and undergraduate that worked in the CIDAR lab during his time there.  

 
Swapnil’s research focus is the development of tools for machine learning genetic design principles from 
biological screening data. He led a team that created a platform for synthetic biology automation 

(Puppeteer); he was the lead developer of a combinatorial design software tool (Finch) and was part of 
the TASBE tool chain for synthetic biology developer team. He has also developed algorithms for de novo 
sequencing from mass spectrometry data.  

 
The first annual Allan Kuchinsky Scholarship to IWBDA is being generously sponsored by Cytoscape.  
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ABSTRACT 
The NIST-hosted Synthetic Biology Standards Consortium 
(SBSC) will collectively build the infrastructure to support a fully 
integrated global synthetic biology enterprise. We aim to 
accomplish this by developing metrology products – standards, 
including reference materials, reference data, reference methods, 
and documentary standards – that will enable coordination of 
labor and reuse of materials. We will present the results of the 
kick-off workshop for the SBSC, held on March 31, 2015 at 
Stanford University. A summary of the plans developed by each 
working group will be shared, and mechanisms of future 
consortium operations will be discussed. 

1. INTRODUCTION 
 Synthetic biology will realize its full contributions to the 
bioeconomy when a robust metrology infrastructure is in place to 
enable coordination of labor and reuse of materials. Metrology 
products – standards, including reference materials, reference 
data, reference methods, and documentary standards – can enable 
business-to-business transactions at scale. The NIST-hosted 
Synthetic Biology Standards Consortium (SBSC) will collectively 
build the infrastructure to support a fully integrated global 
synthetic biology enterprise. [2] 

 The structure of the consortium is represented schematically in 
Figure 1.  Volunteer participants come together, supported by 
NIST, to create metrology products. NIST provides hosting and 
professionalization of the standards development process. 
Members contribute by providing their metrology needs and 
technical expertise for metrology product development. 

Consortium direction and decision making is consensus-based and 
data-driven. The SBSC has been convened with a kickoff 
workshop on March 31, 2015. [1,3] The goal of the workshop was 
to identify several initial working groups with critical mass, 
leadership teams, and a clear path forward to deliver standards.  

2. WORKSHOP STRUCTURE 
 In order to achieve this aim, we structured the workshop using 
panel discussions and break out groups. The panels were 
composed of volunteers from the community who, at the time of 
registration, indicated an interest in leading the efforts in a 
candidate technical area (interest in the candidate working groups 
is shown in Figure 2).  
These participants were then solicited to speak to the consortium 
as part of a panel. Each panelist was asked to shape their remarks 
by considering three questions: 

• What problem will this working group solve?  

• Who needs this problem solved?  

• What products will you develop together to solve the 
problem? What will success look like? 

 
 
 

 
Figure 1 Consortium Structure: Volunteer participants, 

hosted by NIST organize to create metrology products that 
support the growth of the bioeconomy. NIST provides hosting 
and professionalization of Standards Development. Members 

provide metrology needs and labor sharing. 

 

Figure 2 Registration and Working Group Interest: 157 
people registered, with 123 people attending (110 in person 

and 13 remotely). The break down and overlap of their 
interests in the various working groups is shown. Volunteers 
were recruited to lead panel and working group discussions 

for each topic. 



3. WORKSHOP OUTPUTS 
Groups formed to discuss these questions and build consensus on 
terms of reference for each group in the following technical areas: 
Automation and Protocol Interoperability, Flow Cytometry, 
Digital Biological Information, DNA Construction, Measurements 
for Regulated Applications, and Performance Metrics for 
Engineered Systems. Graphical representation of the terms of 
reference for each group is shown in Figure 3. A workshop 
summary report has been produced. [4] 

Moving forward, NIST will continue to coordinate the efforts of 
each group to refine their terms of reference and develop initial 
metrology products. This facilitation will take the form of hosting 
teleconferences, guiding development of metrology products, and 
providing coordination of labor. Consortium membership remains 
free and open; we solicit the engagement and contributions of all 
interested parties.   

4. REFERENCES 
[1] Cavanagh R. 2015. “Synthetic Biology Standards 

Consortium – Kick-off Workshop” Federal Register, Vol. 80, 
No. 56; pp 15563-15564. 

[2] Galdzicki, M., Munro, S.A., Boyle, P., and Ubsersax J. 2012. 
“A Vision for a Synthetic Biology Standards Consortium”  
http://synbioleap.org/wp-content/uploads/2013/05/a-vision-
for-a-synthetic-biology-standards-consortium.pdf. 

[3] Hayden ,E.C. 2015. Synthetic biology called to order. 
Nature, 520, (April 9, 2015), 141-142. DOI= 
http://dx.doi.org/10.1038/520141a. 

[4] Munson, M.S., Munro, S.A., and Salit, M. 2015. Synthetic 
Biology Standards Consortium Workshop Report. 
http://jimb.squarespace.com/s/SBSC_Workshop_Summary_
Report.pdf. 

 

 
Figure 3 Output from the working group discussions: Groups spent 90 minutes developing terms of reference for their efforts to 

answer; “What will we do?”; “Why is it important?”; and “How will we accomplish it?”. The groups reported back to the 
consortium as a whole. These reports are summarized graphically, above. 
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1. INTRODUCTION
The initial version of the Synthetic Biology Open Language
(SBOL) was designed for the exchange of information about
biological designs at the DNA level. As the field of syn-
thetic biology matures, however, there is a clear need to
extend SBOL to capture the function of biological designs
and their structure beyond annotated DNA sequences [2].
To support the specification of increasingly complex and di-
verse biological designs, standards need to represent data on
both biological structure and function in a modular, hierar-
chical fashion. These include data on biological interactions,
which are especially important for the functional compo-
sition of biological components, and meta-data on compu-
tational models, which are important for linking biological
designs to more detailed descriptions of their behavior in
specific biological contexts.

SBOL 1.1 provides entities to represent biological systems as
composite DNA designs [1]. In particular, biological parts
are represented in SBOL 1.1 using DnaComponent entities.
These entities can be reused in different designs, constituting
building blocks of larger and more complex DnaComponent

entities.

SBOL 2.0 builds conceptually upon the DNA-centric SBOL
1.1 data model in two directions. First, SBOL 2.0 gener-
alizes the concept of a DNA component to support a wide
range of biological components, including RNA, proteins,
and metabolites. This generalization enables the structural
diversity of biological designs to be fully captured. Second,
SBOL 2.0 introduces a functional data model to comple-
ment its structural data model, thereby enabling specifica-
tion of the dynamic interactions and processes of a design
in a lightweight manner, without commitment to any spe-
cific quantitative modeling framework. Ultimately, SBOL
2.0 provides a system of hierarchical constructs for describ-
ing both the structure and function of modular biological
designs.

2. SBOL 2.0 DATA MODEL
As shown in Figure 1, SBOL 2.0 offers a rich set of
design entities, including ComponentDefinitions, Se-

quences, ModuleDefinitions, Models, Collections (not
shown), and GenericTopLevels (not shown). These entities
enable the design of biological systems from compos-
able, modular, and reusable building blocks. Examples
can be found in the SBOL 2.0 specification, online at
http://sbolstandard.org/.

Figure 1: Red boxes represent the top level entities
that may encapsulate entities represented in blue
boxes. Arrows indicate property relationships (un-
labeled for simplicity). The left half of the diagram
is a generalization of SBOL 1.1 to include molecules
other than DNA, while the right half is entirely new.

Component Definitions. Biological components are re-
presented in SBOL 2.0 using the ComponentDefinition

entity, which provides an improved representation of
component compositions and their associated structural
constraints. In SBOL 1.1, sub-components are represented
via SequenceAnnotations. However, this representation
requires even small regions of DNA, such as start codons, to
be defined as reusable components. SBOL 2.0 SequenceAn-

notations, on the other hand, simply indicate regions of
interest that can refer to sub-components if desired. These
sub-components are represented by Component entities.
Furthermore, additional entities are introduced to represent
different types of Locations for SequenceAnnotations,
such as a cuts between adjacent base pairs and ranges. As
in SBOL 1.1, SBOL 2.0 also supports the representation
of partial designs, in which precise locations may not be
known. Rather than use SequenceAnnotations to explicitly
encode sub-component ordering, SBOL 2.0 represents
this and other biological structural relationships between
sub-components using SequenceConstraint entities.

Beyond DNA, the ComponentDefinition entity of SBOL 2.0
can also be used to represent different types of biological en-
tities, such as RNA, protein, metabolites, small molecules,
and complexes. The types and roles of these entities ref-
erence existing data in the form of terms from ontologies.
For example, the roles of a ComponentDefinition can define
whether it is a promoter or coding sequence by referring to
terms from the Sequence Ontology.



Sequences. In SBOL 2.0, more general sequence informa-
tion can be attached to different types of ComponentDef-

initions. The International Union of Pure and Applied
Chemistry (IUPAC) encodings are used to specify the nu-
cleotide and amino acid Sequences of DNA, RNA and pro-
tein components. The Simplified Molecular Input Line En-
try System (SMILES) encoding is recommended to specify
the Sequences (atomic structures) of small molecules.

Module Definitions. A ModuleDefinition entity can be
used to link several entities to represent the function of a
biological system design. Each ModuleDefinition includes
FunctionalComponents, which are defined by Component-

Definitions , and the Interactions between these compo-
nents. Information about Interactions is crucial to specify
the qualitative functional details of a design. Each Inter-

action has one or more Participations that elaborate on
the roles of participant FunctionalComponents.

Each ModuleDefinition can also indicate its inputs and out-
puts, thereby informing its composition and reuse by par-
ent entities. For example, a parent ModuleDefinition can
import other ModuleDefinitions as Modules and map the
inputs/outputs of these sub-modules to its own. This ap-
proach aids machine reasoning and automation to compose
modules into designs for complex biological systems.

Models. Model entities document references to actual
sources for quantitative or qualitative models. Each model
entity includes the model source, framework, and language.
Although Figure 1 shows an SBML model linked to a
Model entity, it is important to note that the model can be
encoded in any language, such as CellML, Matlab, etc.

Extension via Annotations. In addition to the entities
described here, SBOL provides an annotation framework
for application-specific information. Namely, each entity in
an SBOL file can be annotated with Resource Description
Framework (RDF) properties. Furthermore, application-
specific entities can be included as RDF documents. SBOL
libraries make these custom annotations and documents
available to tools as generic properties and GenericTo-

pLevel entities that are preserved during subsequent read
and write operations.

3. SERIALIZATION AND LIBRARIES
SBOL documents are serialized using RDF, taking advan-
tage of the rich tool ecosystem for this Semantic Web tech-
nology. Unique Uniform Resource Identifiers (URIs) identify
each entity in a SBOL document. Libraries to read and write
SBOL 2.0 documents are available in several languages, with
ongoing support and development by the SBOL community.
The Java library, libSBOLj 2.0 [3], is the most mature. This
library is backwards compatible and can import SBOL 1.1
data into SBOL 2.0 data objects. Other ongoing library
development efforts include Scala and C libraries.

4. CONTINUED DEVELOPMENT
Beyond the extensions added by SBOL 2.0, the SBOL stan-
dard is undergoing continuous development to represent
more information about different types of biological system

designs. In some cases, there is not yet sufficient scientific
consensus for effective standards development. Currently,
the most pressing area for development is capturing data on
biological context, such as experimental conditions, chassis,
and growth media. Such information is not yet captured in
the core objects of the standard, but can be encoded for
testing as annotations and GenericTopLevel entities.

In this and other extension initiatives, SBOL uses existing
standards and resources whenever possible. For example,
SBOL already leverages existing ontologies for terms to de-
fine the types, roles, and other properties of entities in the
SBOL data model. In general, SBOL 2.0 links to these ex-
ternal resources via placeholders and provides guidelines for
their use with limited enforcement.

Finally, the development of SBOL is carried out openly and
iteratively with the community feedback. SBOL is also now
part of COMBINE, an initiative to coordinate the develop-
ment of standards for computational modeling in biology,
which aids in the application of best practices for the devel-
opment of data standards.
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1. INTRODUCTION
Recently, Version 2.0 of the Synthetic Biology Open Lan-
guage (SBOL) has been released to describe genetic designs
[4]. In this new version of SBOL, component types are gen-
eralized (Protein, RNA, small molecules, etc.), and new fea-
tures are added to incorporate behavioral and hierarchical
aspects. The Systems Biology Markup Language (SBML)
[2] is a widely used standard for describing biological behav-
ior. SBOL and SBML serve different purposes. SBOL is
intended to describe the structural design of genetic circuits
and only basic qualitative behavioral aspects, while SBML’s
goal is to create models that can be simulated.

Despite their differences, conversion between their common
elements is useful. In earlier work, a converter between
SBOL to SBML has been reported [5]. This abstract de-
scribes a converter from SBML to SBOL. In particular, this
converter begins with an SBML model with annotations us-
ing the Systems Biology Ontology (SBO) [1], and it infers the
structure and qualitative functional aspects of the model to
produce an SBOL data file. Both of these converters are
now integrated within the iBioSim genetic design automa-
tion (GDA) tool being developed at the University of Utah.

2. CONVERSION FROM SBML TO SBOL
SBML includes the following core constructs: Compart-
ments, Species, Reactions, Parameters, etc.. In iBioSim,
genetic designs are described using species and reactions
annotated using the SBO. These annotations enable species
to be identified as promoters, mRNA, or proteins, reactions
as degradation, complex formation, or genetic productions,
and modifiers to reactions as activators or inhibitors.

Fig. 1(a) shows an example of a model constructed in
iBioSim for a LacI inverter. This model is composed of
three proteins, LacI, TetR, and GFP represented as blue
rectangles. These proteins are represented as species in
SBML. In addition, the model contains a promoter pLac.
Promoters are also represented as species in SBML. iBioSim
also includes high-level constructs for genetic circuits. A red
arc represents repression and green arcs represent genetic
production. These are represented by a reaction that is
annotated with SBO terms to describe these relationships.
Using the hierarchical model composition (comp) package,
SBML can instantiate models to construct more complex
models, such as the full genetic toggle switch design shown
in Fig. 1(c). The dashed arcs in the top-level model of the
genetic toggle switch model represents complex formation.

(a) (b)

(c)

Figure 1: (a) A LacI inverter, (b) a TetR inverter,
and (c) a genetic toggle switch in iBioSim.

SBOL 2.0 includes Component Definitions to describe DNA,
RNA, protein, and other types of components. These com-
ponents can have Sequences associated with them, and they
can be related to each other through Interactions. The Com-
ponent Definitions and Interactions can be grouped into
Module Definitions. Module Definitions can be composed
hierarchically to form more complex modules. Finally, Mod-
ule Definitions can use Model objects to reference external
models written in, for example, SBML.

The conversion begins with an empty SBOL Document. Be-
ginning with the top level SBML model, the conversion pro-
cess recursively converts each sub-model and adds the corre-
sponding data to the SBOL document. This process builds
a SBOL Module Definition for each sub-model with a SBOL
Model element referencing its SBML model.

Next, each species is converted into a SBOL Component
Definition and given a type of DNA, protein, small molecule,
etc. If the species has been annotated with sequence infor-
mation [3], then this can be referred to, as well. For example,
species LacI, TetR, and GFP in Fig. 1(a) are converted to
Component Definitions of type protein with role transcrip-
tion factor, and pLac is converted to a Component Definition
of type DNA with role promoter.



A Functional Component is created within the Module Def-
inition for each species used in the sub-model, and its def-
inition references the corresponding Component Definition
for the species. The Functional Component is also marked
as being an input, output, or none, and if it is an input or
output, it is given a public access type (private, otherwise).
For example, within the LacI inverter Module Definition, a
public input Functional Component is created for the LacI
species that is an instance of the LacI Component Definition.

Next, the converter checks the type of each SBML reaction.
A reaction can be an ordinary chemical reaction, a degra-
dation reaction, complex formation reaction, or a genetic
production reaction. Each reaction is converted into one or
more SBOL Interactions between the corresponding Func-
tional Components. An Interaction in SBOL 2.0 is used to
describe the functional relationship between the reactants,
products, and modifiers of the reactions. For example, for
an ordinary chemical reaction, an Interaction is created that
includes all of them as Participants. A degradation reaction
includes the degraded protein as a Participant. The complex
formation reaction results in an Interaction that includes the
separate proteins as reactants and the complex as a prod-
uct. Finally, the genetic production reaction is converted
into several Interactions. In particular, it creates one Inter-
action for each activator or inhibitor and the promoter, and
it creates one production Interaction for each promoter with
its products. For example, in Fig. 1(a) the repression arc is
converted into an Interaction where LacI is an inhibitor Par-
ticipant and pLac is a promoter Participant.

In hierarchical SBML models, the same species may ap-
pear at various levels of the hierarchy, which is indicated
using replacements and replacedBy elements. In particu-
lar, a species in the top-level model may have a replacement
that states that all instances of the species in the sub-model
should be replaced by this top-level species. On the other
hand, a replacedBy object indicates a species in the top-level
model should be replaced by a species in a sub-model. In
SBOL, this operation is accomplished using MapsTo objects.
Namely, a MapsTo is used to identify when Component In-
stances used at different levels of the hierarchy are actually
the same Component Instance. A SBOL MapsTo object is
created for each SBML replacement or replacedBy object.
The MapsTo object maps a local Component Instance to a
remote Component Instance. In this case, the local reference
is to a Functional Component for the species in the top-level
model and the remote is the Functional Component for the
species in the sub-model. For a replacement, the MapsTo
object has a refinement type of use local indicating that the
properties of this object should be taken from the Functional
Component in the top-level object. For a replacedBy, the
MapsTo object has a refinement type of use remote indicat-
ing that the properties of this object should be taken from
the referenced object. For example, in Fig. 1(c), LacI in the
TetR Inverter replaces the top-level LacI which in turn re-
places the LacI in the LacI Inverter. In this case, two SBOL
MapsTo objects are created. A visual representation of the
generated SBOL is shown in Fig. 2.

3. DISCUSSION
Standards are an important feature of synthetic biology to
help overcome the challenges to reproduce designs and reuse

Figure 2: Genetic toggle switch in SBOL 2.0.

published work. While SBML is used to create models for
simulation, SBOL is used for the structural design of genetic
circuits. This abstract describes a conversion method from
SBML to SBOL that extracts the structural and qualita-
tive behavioral information. As a future goal, we plan to
attach quantitative information, such as reaction rate con-
stants, species initial amounts, stoichiometry, etc. enabling
the ability to round-trip the conversion from SBOL back to
SBML. In SBOL, this quantitative data will be represented
in SBML using Generic Top Level objects and Annotations.
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ABSTRACT
We have developed the SBOL Stack, a Sesame RDF database
specifically designed for storing and publishing of SBOL
data. The SBOL Stack can be used to publish a library
of synthetic parts and designs as a service, to share SBOL
with collaborators, and to store designs of biological systems
locally. The system includes a Web client that allows users
to upload new biological data to the database, a simplified
search option that automatically creates SPARQL queries
to access desired SBOL parts, and a visualiser for viewing
results in a graphical representation. Users of the SBOL
Stack can register different instances of the SBOL Stack
with their own instance and perform federated queries over
all registered databases. Federated queries allow the SBOL
Stack to perform automatic data integration. In this paper,
we demonstrate how the SBOL Stack is a valuable tool for
researchers working on the design of systems in synthetic
biology.

1. INTRODUCTION
Synthetic biology is a growing field that combines ideas from
biology and engineering with the goal of designing and build-
ing new useful biological systems. It is, however, often dif-
ficult to utilise the extensive amount of biological data for
design in synthetic biology. This difficulty arises because
efforts are usually carried out in individual laboratories and
carried out by teams in different geographic locations. More-
over, the interests of researchers can vary greatly, and biolog-
ical data relevant to the design of genetic circuits is typically
not exchanged.

Standards are necessary to aid in the interpretation and ex-
change of biological information. An emerging standard in
synthetic biology is the Synthetic Biology Open Language
(SBOL) [2], a data exchange standard for descriptions of
genetic parts, devices, modules, and systems. The goals of
this standard are to allow researchers to exchange designs
of biological parts and systems, to send and receive genetic
designs to and from biofabrication centers, to facilitate stor-
age of genetic designs in repositories, and to embed genetic
designs in publications.

Most existing repositories for SBOL simply store individual

∗Currently at Macquarie University.
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SBOL files. However, the SBOL language can be repre-
sented in RDF/XML and can thus be stored in triplestore
repositories where it can be searched using SPARQL queries
similar to the Knowledgebase of Standard Biological Parts
(SBPkb) [1]. SBOL in the form of RDF automatically in-
tegrates into Semantic Web technologies allowing linkage to
other biological data, including SBOL in different databases.

We have developed the SBOL Stack to allow researchers to
better store, retrieve, exchange, and publish SBOL data.
The SBOL Stack is a Sesame Resource Description Frame-
work (RDF) [4] database specifically designed for publish-
ing a library of synthetic parts and designs as a service, for
storing designs of biological systems locally, and for facil-
itating the sharing and integration of SBOL with collabo-
rators using Semantic Web technologies. Unlike previously
developed repositories like the SBPkb, the SBOL Stack also
automatically integrates SBOL data with other RDF data
and allows users to perform federated queries over several
repositories at once. Additionally, the system includes a
Web client that enables the uploading, downloading, and
visualisation of SBOL data using SPARQL queries.

2. SBOL STACK
SBOL data, described in XML, can be uploaded to the
SBOL Stack through the Web interface. Queries can be
performed to retrieve and download SBOL data using either
the Web interface or the SPARQL endpoint. These queries
allow users of the SBOL Stack to retrieve only desired parts
of the SBOL data.

Graph SPARQL queries produce well-formed RDF triples
in the structure: Subject → Predicate → Object. Graphs
generated using these queries can be downloaded and used
in other tools that support RDF data. Since the SBOL
language is defined using RDF, these types of queries can
also return SBOL data. The SBOL Stack has been optimised
to perform these types of queries using a search option that
automatically performs graph queries without the need to
write SPARQL directly. In order to use this option, users
simply need to specify a type of Subject, a type of Predicate,
and an optional Object.

For graph queries, the SBOL Stack includes a visualiser that
presents the results of the query as a collection of nodes con-



Figure 1: A graphical visualisation resulting from
performing a graph query using the SBOL Stack.
The directed graph visualisation allows users to ex-
plore the data in their repository by performing ad-
ditional queries on selected nodes.

nected to each other via edges. This visualisation is useful
for users as it allows them to see how the data they are in-
terested in is organised in the database. Figure 1 depicts an
example of a visualisation that is produced when performing
a graph query using the SBOL Stack.

2.1 Data Integration
Information about genetic features, their biological role, and
their functional interactions is usually spread over many
databases. This situation makes it difficult to automatically
assimilate the information necessary for biological system
design. Since SBOL is based on RDF, it is ideal for data in-
tegration and can easily be linked to other RDF data. Some
examples include integrating with ontologies such as the Se-
quence Ontology and the Gene Ontology.

In addition to SBOL, the SBOL Stack includes semantically-
enriched integrated data from the BacillOndex [5] dataset,
an ontology about genetic features, gene products and their
annotations, gene regulatory networks, metabolic pathways,
and so on. It is possible to include other custom ontologies in
the SBOL Stack as long as they can be expressed in RDF.
Biological entities can be mapped to SBOL objects using
the ontology to enrich the data, and the data model from
the ontology can be used to automate the identification of
biological parts via SPARQL queries.

2.2 Federated Querying
To facilitate exchange, instances of the SBOL Stack can be
installed by researchers at various organisations. One of
the strengths of the SBOL Stack is its ability to register
many databases and perform federated queries [3]. Fed-
erated queries allow for the retrieval and compilation of
more complete data by automatically querying all registered
databases without the need to manually query each individ-
ual repository. In fact, the SBOL Stack can register any
Sesame RDF database, so other repositories that contain
information about biological parts can be included in the
federated queries. Figure 2 presents a diagram of how fed-
erated querying works in the SBOL Stack.

3. DISCUSSION & FUTURE WORK
As more biological data are generated, it will become essen-
tial to adopt standards and repositories so computer applica-
tions can communicate and exchange data efficiently and in
an automated manner. Tools and repositories that support
standards like SBOL will be required to create workflows for
design in synthetic biology. The automatic retrieval and in-
tegration of SBOL data provided by the SBOL Stack makes
it a valuable tool for synthetic biology workflows.

Figure 2: An example of how the SBOL Stack per-
forms federated queries. Here, a user sends a query
to an instance of the SBOL Stack which subse-
quently queries other RDF databases that it has reg-
istered. The SBOL Stack then combines the results
of all the queries and returns a collection of RDF
objects to the user.

The SBOL Stack, in a similar to fashion to NOSQL databases,
allows for storing data flexibly. As a triplestore, it has the
advantage of utilising already available standard libraries
and the SPARQL querying language for data retrieval. We
are currently developing an API to allow computational tools
to programmatically access the SBOL Stack using the di-
rect search interface that is utilised by the Web client. This
API will eliminate the need for computational tools to re-
quire users to write raw SPARQL queries when accessing
the SBOL Stack. Additionally, when performing federated
queries, all registered repositories are world-readable but are
only writable by registered users. We currently have plans
to implement a more sophisticated security system allowing
users to give specific read and write permissions to the repos-
itories they create and register. In the future, we also plan
to support RDF/JSON output for more lightweight access
to data.

4. AVAILABILITY
The SBOL Stack source code is freely available for down-
load under the Apache License, Version 2.0 at https://

bitbucket.org/ncl-intbio/sbolstack. Our SBOL Stack
server can be accessed via www.sbolstack.org.
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ABSTRACT
We formulate the problem of finding stoichiometrically minimal
source pathways (SMSPs) in biochemical metabolic graphs and
present a model checking approach to solve it. SMSPs are paths
whose source nodes correspond to native metabolites and which
use a non-dominated amount of those compounds. Our approach
allows one to eliminate inefficient pathways when selecting the best
path to a target. We also investigate the impact of the choice of
model checking technique on the runtime for our procedure.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—Biol-
ogy and genetics; B.7.2 [Design Aids]: Verification

General Terms
Algorithms, Design, Verification

1. INTRODUCTION
Enzymatic pathway synthesizers (e.g., [7]) are capable of construct-
ing pathways to target chemicals based on naturally-known reac-
tions as well as reactions that are inferred as plausible. However,
few have the capability to provide information on which pathways
are better than others, in terms of success likelihood and efficiency.
In our work, we make strides towards this goal by defining the prob-
lem of finding stoichiometrically minimal source pathways (SM-
SPs). These SMSPs are defined by their usage of native metabo-
lites, which are compounds biosynthetically accessible from raw
sources (e.g., glucose, ammonia, sulfate, and phosphate) using only
the enzymes genetically encoded within the host organism. In-
formally, SMSPs are paths whose source nodes correspond to na-
tive metabolites and which use a non-dominated amount of those
compounds. The SMSP problem is related to that of balancing a
metabolic pathway: the latter is a limiting case of the SMSP prob-
lem where the coefficients for all cofactors are zero. For many
metabolic targets, there are no such balanced paths, but there may
be routes that use significantly fewer native metabolites than others.

Problem Statement: We are given a metabolic graph
G = (V, S, U, t), where V is the set of all chemicals, U ⊆ V is the
set of native metabolites, t is the target, and S is the matrix express-
ing the coefficients of the reactions, where Sji is the coefficient for
chemical i in reaction j. Let |V | = n and |U | = k. Cost vec-
tor c = [c1, . . . , ck, . . . , cn] represents the amount of each chemical
that is used (positive) or produced (negative) in any path. For each
hyperedge j that is traversed, decrement ci by Sji. The solution
(SMSPs) for a given G is the set of all non-dominated paths from
U to t where the cost of a path is represented by the vector c =
[c1, . . . , ck, 0, . . . , 0]. As this graph is completely connected, there
is some ordering of reactions that force entries of the cost vector to

be zero for the non-native metabolites, as we are interested in the
stoichiometric cost in terms of only the native metabolites. Path x

dominates path y if c(x)i ≤ c
(y)
i ∀ i ∈ U , and c

(x)
j < c

(y)
j for at

least one j, where c(x)i and c
(y)
i are the costs for the ith chemical in

paths x and y, respectively. An example of this formalization can
be seen in Section 2.

Finding SMSPs can easily be shown to be NP-complete [4] with
a reduction from the set partition problem [5], so we take a model
checking approach to solve this SMSP problem. In this work, we
describe the model checking approach that we employ, as well as
results from an E. coli system, provided by the Act Ontology path-
way synthesizer [7].

2. MODEL CHECKING FORMULATION
For model checking, the state of the system is defined by a vector
q = [N1, . . . , Nn, rxn], where Ni represents the number of units
of compound i, and rxn represents the reaction in the metabolic
graph that was most recently traversed (“fired”). The edges of the
metabolic graph define the transition function. The initial state, q0,
is [0, . . . , 0], where the last 0 denotes that no previous reaction was
traversed. The target chemical compound defines the target state
that must be reached within a finite number of steps. There are
limits on each of the N variables, where M is set to be the maximum
number of units of a compound (and should be large enough so
that it is never reached). rxn can take on the value of any reaction,
and can transition to any other valid reaction whose reactants are
available. Our approach is illustrated with an example below.

Chemical coefficients (N1, . . . , Nn) increase when a reaction is
fired that produces the chemical, and decrease when a reaction uses
the chemical. Below, we define S, U , and t for a simple example:

2A + B→ C (rxn1) B + 2C→ D (rxn2)

U = {A, B}, t = {D}, S =
[
−2 −1 1 0
0 −1 −2 1

]
The number of units of A, B, C, D are denoted by N1, N2, N3, N4,
respectively. The corresponding transition function for N3 is given
below in the notation of the NuSMV model checker [3]:

next(N3):=
case

N3 > M : N3; //stop at upper bound
N3 < -M : N3; //stop at lower bound
N4 > 0 : N3; //stop at target
rxn = 1 : N3 + 1; //transition for rxn1
rxn = 2 : N3 - 2; //transition for rxn2
TRUE : N3 //else, is the same

esac;



(a) (b) (c)

Figure 1: (a) Sample pathway to C6H13O9P. Red compounds are native. (b) Runtime vs. max depth for finding paths for C6H13O9P
(c) Comparison of SAT solvers after encoding with UCLID, depth 11 (targets in (c): (1) C5H11O7P, (2) C7H5NO4, (3) C3H7O6P).

An appropriate linear temporal logic (LTL) [6] specification must
then be checked to generate a counterexample that provides one
possible path. We iteratively add a constraint to the LTL formula to
eliminate this generated counterexample and generate a new coun-
terexample that is not dominated by this original one (or it returns
“no counterexample found”). The characteristics that the coun-
terexample must have are: (1) positive coefficient for target, (2)
non-negative coefficients for all non-source chemicals, and (3) not
dominated by any previously generated counterexample.

Here is an example on another small graph, with target N51. This
first LTL specification has characteristics (1) and (2), and is the
initial specification that is evaluated.

G (N51 = 0 | (N51 = 0 | (N7 < 0) | (N20 < 0)
| (N28 < 0)))

The following counterexample is found: N3 = -1, N5 = -1, N51 = 1,
implying that one unit each of Chemicals 3 and 5 can be consumed
to produce one unit of 51. The next specification is then:

G (N51 = 0 | (N51 = 0 | (N7 < 0) | (N20 < 0)
| (N28 < 0)) | (N3 <= -1 & N5 <= -1))

This continues until no further counterexamples are found.

3. RESULTS
First, we examine a concrete solution to this problem. We are using
a metabolic graph for E. coli generated by Act [7], which has a total
of 1253 reactions and 762 chemicals. In Figure 1(a), we see an
example of one non-dominated pathway to d-allose-6-phosphate.
Although this example only has compounds with coefficient 1, our
system accounts for non-unitary coefficients as well. In this case,
the cost of this pathway would be the total of the compounds in red
on the reactants side. All other reactants in this pathway come from
the products of some other reaction in the pathway.

We begin by encoding our model with NuSMV [3], a symbolic
model checker. There are two important points to note in this anal-
ysis. First, we must impose a maximum search depth for our model
checker. In practice, the most interesting (and best) paths occur
within a relatively low maximum depth, slightly greater than the
depth of the target to account for pathways that are not completely
in series. The main tradeoff that we work with is the exponential
nature of runtime vs. search depth, as we can see in Figure 1(b).
In addition, we report the amount of time that it takes for a given
model to reach a result of “no counterexample found", as that sig-
nifies the end of the search of the entire state space.

With the slow performance of NuSMV at bounds greater than 10,
we attempted to use other model checking techniques to solve this
problem. In particular, we used UCLID [1, 2], a model checker
based on satisfiability modulo theories (SMT) solving. As shown
in Figure 1(b), UCLID dramatically improved the runtime. More-
over, UCLID can be used with any back-end Boolean satisfiability
(SAT) solver, and varying the SAT solver paired with UCLID yields
further improvements in runtime as shown in Figure 1(c).

In this E. coli pathway, for the targets beyond depth 3, there was an
average speedup factor of 25x, with a maximum of 60x and a min-
imum of 8x when comparing NuSMV with the standard UCLID
solver. We have run this procedure on 19 different targets with
UCLID, and for a bound of 11, the average runtime for these is 161
seconds, with a minimum of 11 seconds. Some examples of other
chemical targets we analyzed are d-glucosamine-6-phosphate and
3-hydroxypropionaldehyde, which is a component of the antimi-
crobial compound Reuterin. We are further investigating the qual-
ity of pathways past a certain reaction threshold, as well as other
methods to speed up our runtime. More details are available in [4].

4. CONCLUSIONS
We have defined the SMSP problem and shown a viable method
of finding SMSPs, with the ability to generate all possible SMSPs
(bounded by an input search depth). From our experiments, we
already see that the choice of model checker can have a large im-
pact on the runtime, which indicates that further optimization could
make greater depths more tractable. Future work can address the
variance among the average runtimes for different targets, as well
as apply similar methods to other optimal path problems in syn-
thetic biology [4].
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1. INTRODUCTION
The development of technologies for designing novel DNA

components [2, 1] has enabled the design of large combi-
natorial libraries of variant metabolic pathways and genetic
circuits. Since it can be difficult to physically construct and
screen these libraries in their entirety, new tools are needed
to design these libraries for efficient testing. To meet this
need, we have developed Double Dutch, a web application
that tailors libraries of variant pathways for use in a design
of experiments (DOE) framework.

In the context of synthetic biology, DOE techniques can
be used to restrict testing to only those variants that are sta-
tistically relevant for determining the relationship between
variant parameters and measured performance. Despite this
potential, there are few published instances of applying DOE
methods to synthetic biology [4]. Currently, there exist gen-
eral purpose DOE software tools, such as JMP [3], that ser-
vice the biological sciences with varying degrees of speci-
ficity, but none have been explicitly developed for synthetic
biology. To bridge the gap between biological and experi-
mental design, Double Dutch automates the process of map-
ping from the coding sequences (CDS) and other character-
ized DNA components that make up variant pathways to the
factors and levels that define the conditions of a full factorial
experiment. The end result is a library of variant pathways
that can be used in a DOE framework. Figure 1 presents an
overview of this mapping process.

2. GRAMMAR
In order to determine which DNA components are eligi-

ble for mapping to the factors and levels of an experimental
design, Double Dutch implements a formal grammar. The
rules of this grammar specify that experimental factors must
be implemented as partial genes that include at least one
CDS, while the levels that each factor takes on must be
implemented as parameterized DNA components that reg-
ulate gene expression, such as promoters, ribosome binding
sites (RBS), and terminators. While the examples in this
abstract focus on mapping RBS-CDS pairs to factors and
mapping promoter-terminator pairs with REU measures of
their transcription strengths to levels, Double Dutch is ca-
pable of supporting other use cases through its grammar.
These include mapping promoter-CDS-terminator combina-
tions to factors and mapping RBSs with REU measures of
their translation strengths to levels, or mapping promoter-
RBS-CDS combinations to factors and mapping terminators
with measures of their relative efficiencies to levels.

3. LEVEL ASSIGNMENT
Once uploaded DNA components and parameters are clas-

sified as candidate factors or levels via a grammar, a Double
Dutch user only needs to select the partial gene factors in
their pathway of interest and choose a desired number of lev-
els per factor. Double Dutch then uses heuristic algorithms,
most notably k-means clustering and simulated annealing,
to automate the process of assigning candidate DNA com-
ponents to the levels of the experimental design. Prior to
assignment, all candidate components are partitioned into
k clusters based on their parameter values, where k is the
chosen number of levels per factor. The mean parameter
values of these clusters set the target values for each level,
while the clusters themselves filter the candidates available
for assignment to each level. Double Dutch also allows users
to manually set these target values if desired.

Level assignments are costed as the weighted sum of three
concerns: level matching, pathway homology, and compo-
nent reuse. Double Dutch attempts to manage these con-
flicting concerns according to user-defined weights and find
the level assignment with the smallest cost by randomly
changing which DNA components are assigned to each ex-
perimental level. Each change is accepted or rejected in ac-
cordance with a simulated annealing heuristic. Under this
heuristic, changes that increase the cost by a large amount
are more likely to be accepted early on, which can help pre-
vent entrapment in a local minimum.

In the case of level matching, Double Dutch attempts to
minimize the quantitative differences between the parame-
ters of the assigned DNA components and the target val-
ues of the experimental levels. In the case of pathway ho-
mology, Double Dutch attempts to minimize the number of
homologous DNA components within each variant pathway
of the resultant library, so as to reduce the risk of homolo-
gous recombination during pathway construction. Finally, in
the case of component reuse, Double attempts to maximize
the reuse of DNA components across variant pathways and
thereby minimize the costs associated with modular cloning.

4. PRELIMINARY RESULTS
As a demonstration of Double Dutch’s level assignment

capability, Figure 2 shows the results of designing pathway
libraries for experiments containing five to nine factors and
two to five levels. In particular, the top of Figure 2 dis-
plays the costs of the best level assignments found by Dou-
ble Dutch after 500 trials, while the bottom compares these
assignments with the best found by a purely random ap-
proach. In this example, all three assignment concerns are



Figure 1: Overview of Double Dutch library design.
DNA components are assigned to the factors and
levels of a full factorial experimental design to pro-
duce a library of variant metabolic pathways.

weighted equally. In addition, all DNA components belong
to a library containing 1,069 promoter-terminator pairs that
have been characterized for transcription strength in yeast.

As shown in Figure 2, the cost of the level assignment
found by Double Dutch generally increases as the size of
the experimental design increases. In addition, the percent-
age by which Double Dutch outperforms random assignment
generally decreases, though not to less than 25 percent for
the largest designs. One cause of these effects is that, as the
size of the experimental design approaches the limit of what
the DNA component library can implement without intro-
ducing pathway homology, the level matching and compo-
nent reuse costs are outweighed by a large pathway homol-
ogy cost that dominates the total. Finally, the time taken
by Double Dutch to perform 500 trials of level assignment
increases with design size, but it scales tolerably and is less
than six minutes for the largest designs in this example.

5. CONCLUSIONS
Double Dutch is among the first software tools capable of

designing combinatorial libraries of variant metabolic path-
ways that are tailored for use in a DOE framework. While
this framework relies on generic statistics software to prune
variants for testing and fit the resulting data to an empirical
model, we are currently implementing the same techniques
in Double Dutch and seeking to customize them for use in

Figure 2: Costs of best level assignments found by
Double Dutch (top) and the percentages by which
Double Dutch outperforms random level assignment
(bottom). The worst possible cost is three.

a synthetic biological context. Ultimately, Double Dutch
can be used to design libraries that provide better coverage
of pathway design spaces, minimize the risk of homologous
recombination, and reduce the monetary cost of modular
cloning. Double Dutch is currently closed source, but the
application can be accessed at www.doubledutchcad.org.
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ABSTRACT
The price of sequencing has fallen below $20 per micro-
bial genome [1], and advances in genome editing allow for
the generation of billions of combinatorial genomic variants
per day [2]. Computational analysis at this scale is a rate-
limiting step in microbial genome engineering. We describe
Millstone, a web-based platform for iterative genome en-
gineering and multiplex mutation analysis. Millstone can
handle the complexity of re-sequencing, variant-calling, and
genotype comparison for hundreds of microbial genomes, as
well as the design of targeted mutations in successive rounds
of experiments. We describe how we used Millstone as a
guide to improve the fitness of an engineered strain of E.
coli. Millstone is open source and available as an Amazon
Machine Image (AMI), making it a scalable solution acces-
sible to any lab.

1. INTRODUCTION
Microbes possess a staggering amount of genomic diver-
sity, enabling them to evolve and adapt to diverse envi-
ronments. Sequencing populations of genomes allows us to
study this diversity and identify novel phenotypes. In ad-
dition to studying natural evolution, biologists can gener-
ate targeted genomic diversity in a population of cells us-
ing techniques like MAGE [2]. These populations can then
be screened or selected for phenotypes which are useful for
biotechnology or for answering basic biological questions.
Multiplex sample preparation allows microbes such as E.
coli to be sequenced in bulk for under $20 per sample at
30x coverage [1].

The ease of generating and sequencing evolved and ratio-
nally modified populations of bacteria lends itself to an it-
erative cycle of combinatorially introducing targeted muta-
tions and converging on phenotypes of interest. At each
iteration, whole genome sequencing data and assay mea-
surements must be converted into actionable designs for
follow-up experiments. The complexity and effort required
to convert raw sequencing data for hundreds of genomes into
a representation of mutations that allow for querying and
comparison can overwhelm in-house computational infras-

∗These authors contributed equally to this work.

tructure and expertise and limit the rate of this engineering
cycle. Existing tools allow users to pipeline custom align-
ment and analysis steps, but are not optimized for large
amounts of data and are not capable of comparative anal-
ysis among multiple genomes. An ideal solution would in-
tegrate features such as interactive querying, visualization,
collaboration, iteration, genome versioning, and the design
of additional mutations or reversions.

To fill the need for an integrated software solution, we de-
veloped Millstone, a web-based platform that facilitates an
iterative approach to genome engineering. Millstone allows
non-computational researchers to explore the diversity of
their evolved or engineered bacterial strains and to design
follow-up experiments. Millstone grows out of experience
and needs in our own lab, and development versions of the
software were used extensively in various projects, including
reassigning the UAG codon genome wide in E. coli [3] and
identifying escape-conferring mutations while engineering a
biocontained strain of E. coli [4].

2. FEATURES
A typical workflow and major components of Millstone are
illustrated in Figure 1. A researcher provides a starting ref-
erence genome (.fasta or .genbank) and specifies an initial
list of target mutations. Millstone’s optmage integration
can generate oligonucleotides for use with MAGE. Following
experiments and whole genome sequencing, the researcher
uploads raw sequencing reads (.fastq). Millstone then per-
forms alignment (bwa), single nucleotide variant (SNV) call-
ing (freebayes), and structural variant (SV) calling (lumpy).
Millstone then parses the called SVs and SNVs into a unified
data model. A custom query language allows searching and
filtering efficiently over the data. Genotype calls often need
to be checked by eye, and Millstone’s variant analysis view
provides programmatically-generated links to visualizations
of the relevant read alignments in JBrowse. Millstone also
allows genome design iteration and versioning, where new
reference genomes can be generated from sets of called and
triaged variants. This allows the next round of genomic
mutations to be aligned back to the most recent ancestral
strain.



Figure 1: Millstone components and example workflow.

Millstone is implemented as a Django web application backed
by a Postgresql database, which lends flexibility in deploy-
ment and scaling, and facilitates collaboration. The soft-
ware can be deployed on a laptop, an in-house cluster, or
on Amazon Web Services (AWS). We recommend AWS for
most users and maintain a public release of an Amazon Ma-
chine Image (AMI) preconfigured (cloudbiolinux) with the
latest stable version of Millstone. The Millstone source code
is available at https://github.com/churchlab/millstone.

3. CASE STUDY
We used Millstone to guide experiments that improved the
growth rate of the Genomically Recoded Organism (GRO)
created in [3]. In that work, a sub-strain of E. coli, C321.∆A,
was created where all 321 known instances of the UAG stop
codon were replaced with the synonymous UAA codon, and
the UAG translational release factor prfA was deleted, free-
ing up the UAG codon for the incorporation of non-standard
amino acids [4]. However, in addition to the 321 designed
changes, the strain accumulated 355 additional mutations
during construction, and we hypothesized that a subset of
these off-target mutations impaired fitness.

Millstone was used to perform variant calling and annota-
tion on C321.∆A strain. Mutations were exported and fil-
tered by gene essentiality and other parameters to arrive
at a candidate set of 127 mutations marked for reversion.
We then used Millstone’s optmage [2] feature to generate
oligonucleotides that could be used for 50 cycles of MAGE
with this set of mutations. After performing MAGE, we

sequenced 96 strains, including reference controls, and once
again ran the sequencing data through Millstone to call vari-
ants. The annotated variants identified by Millstone, in com-
bination with additional analysis, allowed us to revert the
most likely causal SNPs, creating a strain with an improved
growth rate.

4. DISCUSSION
Advances in genome engineering technologies make it possi-
ble to rapidly generate microbial populations with a tremen-
dous amount of diversity. This creates an opportunity to in-
terrogate the relationship between genotype and phenotype,
but is limited by the availability of analytical tools for effi-
ciently identifying and following up on mutations of interest.
Millstone enables an iterative approach to genome engineer-
ing by providing a single workflow for designing targeting
oligonucleotides, calling mutations, and analyzing results.

Users can benefit from all or a subset of Millstone features.
For example, users who already have raw sequencing data
from as many as hundreds of bacterial genomes can use Mill-
stone to identify and explore mutations. We have reduced
the barrier for other labs to get started with Millstone by
providing an integration with AWS. Instructions and an on-
line demo are available at http://churchlab.github.io/

millstone.

Future work on Millstone includes extensions to enable CRISPR
gRNA design, more sophisticated models of genome version-
ing, and integration with rule-based genome design tools also
under development in our lab.
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INTRODUCTION
Here we describe Merlin (http://merlincad.org), a web-based tool
to  assist  biologists  in  designing  experiments  using  Multiplex
Automated Genome Engineering (MAGE).

Merlin provides methods to generate the pool of single-stranded
DNA oligonucleotides for a MAGE experiment. These oligos are
designed not only for optimal recombination efficiency, but also to
minimize  off-target  interactions.  The  application  further  assists
experiment  planning  by  reporting  predicted  allelic  replacement
rates  after  multiple  experiment  cycles,  and  enables  rapid  result
validation by generating primer sequences for Multiplexed Allele-
Specific Colony (MASC) PCR [2].

Categories and Subject Descriptors
J.3  [Computer  Applications]:  Biology  and  genetics;  J.6
[Computer-aided Engineering] Computer-aided design (CAD)

General Terms
Design, Experimentation

Keywords
Bioengineering,  genomics,  multiplex  automated  genome
engineering, MAGE,  synthetic biology

1.  BACKGROUND
MAGE  utilizes  homologous  recombination  proteins  originally
isolated  in  phage  to  achieve  scarless  integration  of  synthetic
ssDNA (oligos)  into a bacterial  genome.  The structure  of these
oligos  consists  of  5'-  and  3'-terminal  homology  arms  that  are
complementary to the sequence flanking the targeted locus, and a
central  sequence  corresponding  to  the  desired  mutation.  Once
introduced into the cell by electroporation, oligos are proposed to
anneal  to  the  lagging  strand  of  the  replicating  bacterial
chromosome with the assistance of phage recombination proteins.
The  oligos  are  then  integrated  into  the  growing  genome  in  a
process mimicking the natural joining of Okazaki fragments on the
lagging strand [1].

MAGE can be used to rapidly induce short sequence changes at
many  targeted  loci  in  a  bacterial  genome.  It  is  an  efficient
technique used to construct highly modified organisms, or with a
pool  of  degenerate  oligonucleotide  sequences  to  create  diverse
populations and explore a large genome landscape.

Computer-aided  design  software  plays  an  important  role  in
synthetic biology.  Many seemingly straightforward tasks such as
PCR primer design or creating MAGE oligos with the modified
bases at a predetermined position can be performed “well enough”
by hand, yielding a suboptimal result in order to save time and
effort.  By  incorporating  insights  from  recent  technological

advances, Merlin is designed with the intention of increasing the
mathematical rigor applied to oligo design without requiring extra
effort on the user's part, and to provide a predictive framework to
help guide experimental procedures. 

2.  METHODS

2.1  Oligo Design
The  method  used  to  generate  oligonucleotides  is  derived  from
prior work available as the optMAGE software package [2,4,5]. In
addition to the results of its own calculation, Merlin also reports
oligos as calculated with the optMAGE script. 

The Merlin algorithm for generating an oligo pool given a list of
target locations on the genome is as follows:
1. Alter the reference sequence string according to the changes

specified by the user.
2. At each target site, isolate every subsequence of nucleotides

of the specified oligo length that spans the target. 
3. Calculate  the  free  energy  of  a  single-stranded  DNA oligo

with each of the identified possible sequences.
4. Use  BLAST  to  find  the  relative  likelihood  of  off-target

interactions  against  the  reference  genome  and  any  other
accepted oligos.

5. Select  the  subsequence  with  the  best  score  from  these
calculations.

This  method  is  considered  an  improvement  on  optMAGE  by
virtue of calculating values for all possible oligos, as well as by
the addition of the BLAST step. The Merlin interface reports the
free  energy and sequence homology results  for  each  optimized
oligo along with its optMAGE-calculated counterpart (Fig. 1).

2.2  Allelic Replacement Efficiency
MAGE  experiments  typically  consist  of  multiple  cycles
transfection. Merlin is capable of creating visualizations based on
the calculated probability of each oligo becoming incorporated in
the target genome for each cycle.  These statistics are useful for
predicting  how  many  cycles  will  be  necessary  to  create  a
population with a specific diversity of modifications, or how many
cycles will be needed to produce an organism which is modified at
all target sites.

The allelic replacement efficiency (ARE) over multiple cycles can
be modeled as a binomial process in cases where modifications are
occurring at  discrete sites [4].  The average  ARE is determined,
then modified by an empirically determined “pooling factor” that
accounts  for  decreased  efficiency  dependent  on  the  size  of  the
oligo pool.



2.3  MASC PCR Primer Generation
Multiplexed Allele-Specific Colony PCR allows for simultaneous
screening of short mutations at many loci in a single PCR reaction
by generating DNA fragments of different sizes for each locus that
can  easily  be  distinguished,  and  is  valuable  for  reducing  the
amount of manual labor involved in validation [2]. Generating a
set of primers for wild-type and mutant genotypes of each target is
not  straightforward,  particularly  when  screening  for  short
sequence changes.  Merlin is capable of generating these primer
sets automatically.

2.4  Infrastructure
The interface for Merlin is built using VectorEditor (available at
https://github.com/JBEI/vectoreditor/), an open source web based
DNA sequence analysis and editing tool maintained by the Joint
BioEnergy Institute (JBEI). 

Free  energy  and  primer  melting  temperature  calculations  are
performed with the UNAFold software package [3].

Source  code  for  Merlin  is  available  at  the  CIDAR  Github
repository  (https://github.com/CIDARLAB/)  under  the  BSD  3-
Clause License (http://opensource.org/licenses/BSD-3-Clause). 
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Figure 1. The Merlin interface, containing A) visualization of the location of the modification for one target 
on the Merlin and optMAGE oligos, B) The aligned oligo sequences, C) (left to right) the free energy, genome
BLAST score, and oligo-oligo homology score for all possible oligos covering the current target, and D) text 
output of oligo prediction results.
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ABSTRACT

Organick is a software that helps user design and execute
protocols for building and evaluating biological systems. Or-
ganick organizes laboratory procedures as operations in work-
flows, tracks sample provenance, and manages data.

1. INTRODUCTION

The Bioworks1 foundry at Ginkgo Bioworks aims to make
building and evaluating biological systems scalable. Users of
Bioworks1 submit requests for PCR, transformation, genome
integration, genomic and plasmid DNA preps, protein and
metabolite extraction, metabolomic assays, and other ser-
vices. Foundry operators fulfill requests using liquid han-
dling robots and instruments and return samples and data
back to users. Used internally at Ginkgo Bioworks, Bioworks1
lets users design and use standardized processes for 1) build-
ing and testing large numbers of microbial organisms, and
2) creating new synthetic biology building blocks such as
validated regulatory parts, enzymes, and chassis strains.
Users and foundry operators use a software tool called Or-

ganick to plan protocols, track samples, and request foundry
services. Organick keeps track of sample contents and lo-
cations in containers. Organick lets users construct, using
a graphical interface, multi-step asynchronous workflows.
Each step in a workflow corresponds to a laboratory pro-
cedure (automated or manual, supervised by the user) or
a request for foundry service (performed by foundry). Or-
ganick also helps users maintain sample provenance when
creating new samples, interface with the automation soft-
ware, and review measurements on samples across multiple
steps (e.g. normalizing quantified protein amount by OD
readings on original culture sample).

2. SYSTEM DESIGN

2.1 Samples

Sample tracking improves efficiency and throughput of
many laboratory processes and follow up analysis efforts.
Knowing locations and contents of samples in containers,
for example, allows software to automate sample preparation
and reaction setup using robots. Recording sample prove-
nance and transfer amounts allows easy association of data
from a sample with that sample’s parent or child samples,
and simplifies data normalization and planning of additional
steps based on data.
Organick maintains an inventory of Samples and Contain-

ers. Each sample has an unique ID, a volume, an optional
barcode, a location (container ID, row, and column), and
some contents. A sample corresponds to either a well in a

non-individually barcoded container (e.g. PCR plate), or
an individually barcoded tube. A sample can contain DNA

molecules, Strains, and/or Reagents. A strain contains DNA
molecules that represent genomic and/or plasmid DNA. A
sample containing a DNA molecule represents a DNA sam-
ple, whereas a sample containing a strain represents a sam-
ple of cells. Organick records content concentrations as well,
either obtained from instruments or vendors, or computed
after sample manipulations. Keeping concentrations allows
Organick to assist in experiment planning. For example,
Organick can compute how much to aliquot from a reagent
sample for a buffer recipe.

2.2 Operations

Organick represents laboratory procedures as Operations.
An operation in Organick takes samples and parameters (e.g.
volumes to transfer from each sample) as inputs, creates
new samples if necessary, updates sample information, and
outputs samples.

When Organick executes an operation, it adjusts sample
volumes, contents, and concentrations, and, for each liquid
transfer from source samples to a target sample, records
the time and amount of liquid transferred from each source
sample to the target sample. Keeping transfer time and
amount allows Organick to normalize data against sample
preparation procedures. For example, the concentration of
a compound in two samples may measure to be the same,
but the two samples may have been diluted differently prior
to measurement.

Some example operations are: Liquid Transfer aliquots
part of a sample to a new sample, Mix Samples transfers
portions of several samples to a new sample, PCR uses Mix
Samples to mix template and primer samples, then adds new
product molecule to output sample, Transformation takes a
sample of a strain with a single genomic DNA molecule, a
sample of a plasmid DNA molecule, and creates a new sam-
ple of a strain with both the genomic and plasmid DNA
molecules. If a laboratory procedure does not have a corre-
sponding operation, users can typically use the Mix Samples
operation then update sample contents if necessary.

2.3 Service Requests

A Service Request in Organick represents a request for a
foundry service. It includes service name, input samples,
and service specific parameters (e.g. PCR condition).

2.4 Data

Organick represents data from instruments as Datasets.
Each dataset has a sample, a type, instrument settings and
analysis parameters, and data (e.g. raw data from mass



spec). Organick does not fetch data directly from instru-
ments; separate automation programs interface with instru-
ments, fetch data, perform computational analysis, and up-
load results to Organick. External tools can also create ad-
ditional analyses based on datasets; these analyses can be
uploaded to and displayed on Organick .
Users or external analysis tools can also add Measure-

ments to samples. Each measurement has a sample and a
predicate, object, value, unit tuple (e.g. ("concentration",
compound, 1, "g/L"), or ("OD", nil, 2.1, nil)).

2.5 Workflows

A workflow consists of steps. Outputs of a step may be-
come inputs of other steps, thus forming a graph. A step
includes operations or service requests. For example, a PCR
step may have 9 input samples forming 3 operations – each
operation has template, forward and reverse primer samples.
User creates and modifies workflows using a web-based

GUI. User can add steps to a workflow at anytime, even
after some steps have completed. When adding a step, user
specifies the type of operation or service, and their inputs.
Physical completion of a step is decoupled from Organ-

ick and performed in the lab; Organick provides user a link
and inputs to the automation platform. Upon completion
of a step’s physical work, user runs the step’s operations on
Organick to complete sample tracking and the step.
When specifying input samples for an operation or service

request, user can select output samples from completed up-
stream steps, or use “promises” representing future outputs
from upstream operations. In the latter case, Organick re-
places a promise with real samples when they become avail-
able. If an upstream operation produces duplicates (e.g.
picked multiple colonies), Organick duplicates the waiting
operation, once for each duplicate. Supporting promises al-
lows user to set-up and Organick to validate all steps of a
workflow upfront, prior to running any step of the workflow.
Each foundry service has a Organick workflow template.

Operators fulfill requests by creating a new workflow from
the template and completing steps in the workflow. Or-
ganick automatically sets-up operations in each step of the
workflow with request input samples and parameters. When
a step in an user’s workflow includes service requests, Or-
ganick looks for completed steps from the service workflow
and updates the user’s workflow with these steps, showing
just output samples.
In each step, Organick displays measurements collected

on output samples. Organick can also map measurements
from downstream samples onto an upstream step’s output
samples, so user can review data and add follow up steps
from the upstream step.

3. EXPERIENCE

The design of Organick has evolved several times in the
past 6 years. Currently it records more than 530K samples
and 570K liquid transfers among them.
Screening enzyme sequences for specific substrate activity

is a recurring process at Ginkgo Bioworks. Over the past
two years, over 500 different protein sequences have been
screened under various substrate concentrations. This ef-
fort resulted in over 5000 reactions and over 18K datasets.
Over 100 workflows capture mixing of protein extract sam-
ples with substrate samples, taking reaction timepoints, and
sampling timepoints on mass spec. One such workflow in-

cludes 6 steps with 90 Mix Samples operations creating 90
reaction samples per step, 6 steps with 90 Timepoint oper-
ations creating 270 timepoint samples per step, and 1 Mass
Spec step creating 1634 datasets. User planning for this
workflow mostly involves configuring operations in the Mix
Samples step so each reaction has the desired concentration
and amount of substrates and enzymes.

Integrating DNA into yeast genome is another recurring
process. Key steps in a typical workflow include: PCR step
to amplify integration cassette from plasmids, Transforma-
tion step to integrate the cassette into the genome, and PCR
step to amplify the modified region and screen for positives.
When planning this workflow, user needs to: a) for opera-
tions in the first PCR step, pair template and primer sam-
ples, b) for operations in the Transformation step, pair out-
put promises from the PCR step with cell samples, and c) for
operations in the last PCR step, pair output promises from
the Transformation step with verification primer samples.
For each integration event, user sets-up only one operation
for the last PCR step, even though multiple colonies from
the transformation step may be selected and screened; Or-
ganick automatically creates the duplicated operations for
the last PCR step, once for each colony.

4. RELATED WORK

Organick is similar to several other systems in literature.
Like Puppeteer [3] it lets users plan workflows, but focuses
more on sample management and relies on other software
for interfacing with instruments. Like Antha [1] it struc-
tures workflows as multi-step graphs, but provides a graphi-
cal interface rather than a programming interface to graphs.
Unlike Diva [2], Organick focuses more on protocol execu-
tion and leaves the design of biological systems and pro-
tocols to human experts or other software. Additionally,
many tools help users analyze data, but few map data onto
sample preparation workflows and allow user to further ad-
just/extend workflow based on data.

5. FUTURE WORK

Ongoing improvements to Organick includes ensuring each
input sample to a workflow have enough volume for all op-
erations using the sample, alerting user of plate layout con-
straints imposed by foundry services or robotic procedures,
helping users design plate layouts compatible with these con-
straints, and a priori validation of workflow steps against
desired biological system design.
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1. INTRODUCTION
Standardization of genetic parts enables fast assembly of
synthetic genotypes, and rigorous functional characteriza-
tion is the key to rapid prototyping of the desired pheno-
types. However, large scale and well characterized eukary-
otic parts are still underrepresented as a synthetic biology
community resource. Recently, we have launched an inter-
national effort to design, construct and characterize around
18,000 genetic parts from the model eukaryote Saccharomyces
cerevisiae genome (termed YeastFab[1]). These yeast parts
were “mined” out of the yeast genome using a computational
tool “Genome Carver”[2], and primers were designed auto-
matically, conforming to the YeastFab Golden Gate assem-
bly standard.

Manufacturing these 18,000 genetic parts across two conti-
nents poses several challenges: 1) Progress management and
workload assignment: YeastFab is currently being under-
taken by Edinburgh and Tsinghua Universities, where each
team has multiple experimentalists simultaneously working
on the project. Progress management is essential for the
PIs to monitor the overall progress of the project, and thus
can assign resources to workloads accordingly; 2) Statistical
process control: manufacturing each of these 18,000 parts
needs to go through 8 individual molecular biology oper-
ations (e.g., Polymerase Chain Reaction (PCR), ligation,
transformation and sequencing), and at each step a rigorous
quality control (QC) will be imposed to assess the success
of the operation on biological samples. The success rate
of passing each step needs to be systematically tracked to
analyze the workflow; 3) Workflow management: to enable
different experimentalists to work on different steps of the
same batch of biological samples, we need to dissect the
complex YeastFab workflow into trackable steps. The work-
flow management system will allow collaborative manufac-
turing, even across different sites. 4) Information capture
and rendering: we need to capture information from mul-
tiple aspects, including the parts genetic information (e.g.,
sequence and original loci), the parts manufacturing history

∗Corresponding authors YC: yizhi.cai@ed.ac.uk and JD: jb-
dai@biomed.tsinghua.edu.cn

as well as the parts functional characterization data. Ren-
dering this information in a user-friendly manner will facil-
itate the design process in the future.

Herein we have developed YeastFabCAM, a computer as-
sisted manufacturing platform to address these challenges
in the YeastFab project. Computer Assisted Manufacturing
(CAM) refers to the use of computational applications to
assist in all operations of the manufacturing process. CAM
is pervasive in mature manufacturing businesses, such as
the car and electronics industries. CAM greatly improves
the turnaround time, accuracy, consistency, and efficiency
of the manufacturing process. To the best of our knowledge,
we could not identify a CAM tool for biological parts man-
ufacturing available as of today. The closest application is
Taverna which is a workflow management system mainly for
sequence analysis[4]. Our vision is to develop YeastFabCAM
to formalize the DNA fabrication workflow and streamline
the parts manufacturing process. This will be useful for sim-
ilar large-scale parts manufacturing projects in the future.

2. IMPLEMENTATION AND AVAILABILITY
YeastFabCAM has been implemented using the Ruby on
Rails web framework, and also uses PostgreSQL for the
backend database. The part information is visualized and
rendered by connecting to the ONION sequence editor (un-
published), which was developed using the D3.js JavaScript
library. The sequencing verification step was described in [3].
YeastFabCAM is accessible at (http://yeastfab.cailab.
org), and view-only accounts are available upon request.

3. YEASTFABCAM FUNCTIONALITIES
Progress tracking: YeastFabCAM currently provides two
perspectives of viewing the project progress. The first one
allows viewing the part manufacturing progress chromosome
by chromosome, and the second one allows viewing by man-
ufacturing sites (Figure 1A). This is useful for the PIs who
track overall progress and make assignment decision.

Statistical process control: For each part which has passed



Figure 1: Progress tracking and statistical process
control of YeastFabCAM. A) Upper: Progress view
by chromosome; lower: Progress view by team. B)
Upper: Sample progress in a 96-well plate format.
Green: QC passed; yellow: in process; lower: Statis-
tics of YeastFab workflow. Each step is assessed by
a quality control, and the percentage refers to the
success rate of passing the QC.

QC, the original cloning, testing and sequencing data will
be traced in YeastFabCAM, and can be visualized by sim-
ply clicking the part name. In addition, all information is
tracked by YeastFabCAM to perform statistical process con-
trol of the DNA manufacturing (Figure 1B). This data will
be extremely valuable for future data mining exercises, such
as to correlate the sequence motifs to the probabilities of
experimental failure.

Part visualization and automated sequencing verifi-
cation: we used our ONION sequence editor to visualize
the part genetic information (Figure 2A) including sequence
features, sequencing reads, and restriction sites. YeastFab-
CAM also allows users to batch upload Sanger ABI files
and automatically verify the manufactured sequence fidelity
with reference sequences (Figure 2B) [3]. The automated
sequencing QC step liberates the experimentalists from vi-
sually inspecting sequencing trace files one by one, which is
a tedious and error-prone process.

Part characterization information capture: YeastFab-
CAM captures not only the part manufacturing history, but
also the functional characterization information of parts. We
have characterized the transcriptional strength of 227 pro-
moters using flow cytometry under various conditions such
as oxidative stress (H2O2). Each characterization was per-
formed in triplicate, and the information and statistics were
recorded by YeastFabCAM.

4. FUTURE DIRECTIONS
Currently, YeastFabCAM relies on the PIs to assign the re-
sources to the workloads, and in the near future we will
be working on automatic assignment based on the avail-
ability of resources and the workload priority. We will also
implement a 2D barcode sample tracking system in Yeast-
FabCAM, so that it will serve as the Laboratory Informa-
tion Management System (LIMS) for the future automation
plan. Finally, we will develop an Application Program In-
terface (API) for the YeastFabCAM so that other Computer

Figure 2: Parts visualization and automated se-
quencing verification. A) The sequence information
is rendered using the ONION sequence editor. B)
Automatic sequencing verification to identify muta-
tions in the manufactured sequences.

Assisted Designers (CADs) will be able to access the func-
tional characterization data of the YeastFab project.
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ABSTRACT 

Quality control (QC) measures for large-scale DNA assembly are 

essential if synthetic biology is ever to succeed in engineering 

living systems of interesting complexity.  While the DNA 

synthesis industry implements stringent quality control on 

synthesized oligos and genes[1], synthetic biology employs no 

consistent quality control practices for complex DNA assemblies. 

Moreover, synthetic biology employs a number of error-prone 

recombinant DNA methods, such as PCR and Gibson assembly, 

which may introduce or propagate errors at each step of a 

combinatorial assembly process[2].  Furthermore, once a synthetic 

construct is deployed in its production host, it may unexpectedly 

mutate and produce undesired behavior[3], [4]. Therefore, quality 

control must be practiced at each stage of assembly and should be 

periodically monitored during the actual deployment of a 

synthetic construct for a given application.   

In these proceedings we propose guidelines for QC reporting for 

DNA assemblies, including a standardized visual schema that 

simplifies diagnosis of failures based on quality control data.  

These quality control data are encoded in the Synthetic Biology 

Open Language (SBOL)[5], a standardized data model and file 

format, so the information can be easily shared with and 

understood by downstream builders who must rely on properly 

verified upstream constructs.  Finally, we demonstrate how our 

visual schema enables inspection of sequence quality across 

multiple scales of a complex, hierarchical design, making it 

possible to quickly pinpoint and diagnose failures. 

In order to fulfill its promise, synthetic biology must overcome 

daunting limits to complexity, including unpredictable cellular 

environments, unexpected biomolecular interactions, and 

undesired mutations[6].  However, we can immediately overcome 

one important limit to complexity simply by establishing best 

practices for quality control of DNA assembly. 

* Successful Failure was a term used to describe NASA’s Apollo 

13 mission, a complex engineering project plagued by 

unpredictable errors. 

 

 

1. INTRODUCTION 
Large-scale assembly of synthetic gene networks differs from gene 

synthesis.  The upper limit in size for gene synthesis de novo is 

about 105
 bases with a best-case error frequency of 1/105 bases 

[7].  Thus constructs on the scale of 105 bp exceed a critical limit 

to complexity at which quality control becomes absolutely 

essential.   In everyday practice at the synthetic biology bench, 

however, reality is much worse.  Failure often occurs even for 

simple constructs.  Often failures are due to errors in recombinant 

techniques like PCR and Gibson assembly[2], but also a variety of 

other factors such as human error, propagated construction errors, 

or mutations occurring after host transformation[4].  In order to 

isolate a successful construct, multiple clones must be screened, 

sequenced, and compared to the original design sequence.   By 

one estimate 50% of gene synthesis costs are spent trying to 

isolate perfect clones[8].  DNA assembly failure is unavoidable, 

but mitigating its impact on the synthetic biology workflow would 

save money, and time.     

2. QC DATA SHOULD BE REPORTED  
After assembling a construct, its sequence must be verified, 

usually by Sanger sequencing.  Sequencing data are compared to 

the target design, resulting in a sequence alignment or a multiple 

sequence alignment for large-scale constructs.  Unfortunately, 

these data require expert analysis.  Moreover, they are not kept in 

a centralized repository where other builders can access the data.  

Here we show how to turn sequence alignment data into an 

intuitive QC report in a standardized format that enables exchange 

and re-use of parts from repositories. 

The Registry of Standard Biological Parts (partsregistry.org) 

greatly improved their quality control reporting by directly 

displaying sequence alignments for parts.  We applaud these 

improvements.  Here we advocate similar quality control best 

practices for both industry and academic synthetic biology.  In 

addition we also demonstrate additional practices that enable QC 

on a large scale. 

The specific sequence alignment metrics we recommend reporting 

are percent identity, percent coverage, and percent ambiguity. 

Identity quantifies the number of good and bad bases in a 

construct compared to its design sequence.  Coverage is an 



important metric for any construct of non-trivial length, because 

the construct may be incompletely sequenced.  Cost is often a 

factor in deciding if a construct is completely sequenced.  

Ambiguity is important because noisy sequencing data may 

prevent us from confidently determining a construct’s sequence.  

The Parts Registry reports metrics similar to identity, coverage, 

and ambiguity, but in terms of base length.  As a matter of 

preference, we recommend reporting in percentages, because this 

quantifies our confidence in an immediately intuitive way. 

3. QC SHOULD SUPPORT CORRELATED 

VIEWS OF CONSTRUCTION AND 

FUNCTION 
Secondly, we recommend reporting QC metrics in a correlated 

view with a functional diagram of the construct (Figure 1).  In 

essence, we propose a novel way of visualizing sequence 

alignment data.  Inspecting an alignment base by base is 

comparable to examining machine code bit by bit, while our 

schema allows one to examine QC data from a comfortable level 

of abstraction.  A correlated view of construction and function 

also allows the builder to quickly diagnose functional failures due 

to construction errors and mutations. 

To illustrate this, we use SBOL Visual symbols to represent a 

biological design.  In the following design, the functional units 

are a promoter, ribosome binding site, coding sequence, and 

transcriptional terminator.  The QC statistics for a clone are 

derived from its sequence alignment and displayed below its 

design.  This hypothetical construct has errors in the promoter 

consistent with mutational failures observed in practice[4].  If the 

construct exhibits loss-of-function, the promoter is likely to 

blame. An error in the RBS could also explain an observed 

failure, but this is inconclusive due to the ambiguity of its 

sequence.  

 

Figure 1.  A correlated view of construction and function.  The 

functional schematic was created with the SBOL Designer 

tool.  

4. QC SHOULD BE SCALABLE 
Our third recommendation for QC best practice is to support a 

scalable view of a construct. Multiple sequence alignments for 

large scale constructs are much too complicated to easily 

apprehend by eye.  An additional advantage to representing 

sequence alignments schematically is that an arbitrarily large 

sequence can be collapsed into a single symbol.  Thus, it is 

possible to view sequence alignment results at any scale of genetic 

organization, starting at the genome level and drilling down 

through subsystems, operons, genes, etc.  As DNA assemblies 

scale in both structural and functional complexity, tools that 

support this QC best practice will become increasingly important.  

5. INTERACTIVE TOOLS FOR QC 
To highlight the quality control best practices described above, we 

will implement support for QC measures in the SBOL Designer 

[9] (Clark & Parsia LLC) plugin for the Geneious (Biomatters 

Ltd) sequence editor tool and the Tellurium [10] interactive 

Python platform for systems and synthetic biology.    These tools 

leverage the open-source software libraries libSBOLj (Java) and 

pySBOL (Python) based on the standardized SBOL data model 

for representing biological designs. Additionally, we will 

demonstrate how multiple sequence alignments can be translated 

into SBOL using Sequence Ontology annotations.  This allows us 

to directly associate QC data with a biological design, which is 

not possible with current alignment formats and yet another way 

the SBOL standard supports management of DNA repositories.   

6. CONCLUSION 
Synthetic biologists need better practices and better tools for 

managing QC.  With current tools and practices, synthetic 

biologists have trouble managing QC even on a small scale.  The 

best practices and interactive tools demonstrated here will help 

address this bottleneck in assembly and limit to complexity.   
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ABSTRACT
Living cells can sense and respond to changes in a variety of
environmental signals. So far, engineering new information
processing circuits to control these conditional responses has
been a challenging and time-consuming process. We have
developed a library of insulated genetic logic gates and a
software design environment called Cello, which allow elec-
tronic design specifications to be automatically converted
to a complete DNA sequence that executes the program in
bacterial cells. Cello was used for automated design of 60
circuits, where 44 functioned correctly in the first experi-
mental implementation. This result represents a significant
advancement in the scale and success rate of genetic circuit
design. To enable broad access, we implemented a web ap-
plication (www.cellocad.org) where users can design logic
functions of interest using an intuitive interface. Users also
have the option to upload data using a constraints file de-
scribing custom sensors, logic gates, and actuators to build
circuits in other experimental conditions and cell types of in-
terest. We envision Cello providing a flexible and robust de-
sign environment for engineering circuits with diverse gates
in diverse cell types.

1. SPECIFICATION
The Verilog hardware description language is used for high-
level specification of circuit functions[4]. The synthesizable
subset of Verilog can be mapped to a list of connected logic
gates with physical implementations in hardware. Currently,
Cello parses a subset of Verilog: case statements can specify
a truth table, assign statements provide concise behavioral
descriptions of combinational logic, and structural elements
specify a gate-level circuit topology.

2. LOGIC SYNTHESIS
Verilog code is parsed to generate a truth table, which is
the starting point for logic synthesis. The truth table is
converted to a wiring diagram with gate types that are ge-
netically available. This is done by first using a logic syn-
thesis tool called ABC[1] to synthesize a minimized AND-
Inverter Graph, consisting only of 2-input AND gates and
NOT gates. Then, a NOR-Inverter Graph is generated using
DeMorgan’s rule: (A and B) = (not A) nor (not B). Pre-
ferred logic motifs can then be substituted for functionally
equivalent subcircuits. For example, we include an OUT-
PUT OR motif and an optimal set of 3-input 1-output NOR

circuits in the motif library, which minimize circuit size upon
substitution. The iterative subcircuit substitution routine
can also incorporate other gate types such as AND, NAND,
OR, and can constrain substitutions to adhere to the gate
number and type constraints of the genetic gates library.

3. REPRESSOR ASSIGNMENT
Given the circuit diagram generated by logic synthesis, ge-
netic gates from the library must be assigned to the gates
in the circuit. We developed a set of NOT and NOR gates
based on a set of prokaryotic repressors, which bind orthog-
onally[3], and are transcriptionally insulated at the 3’ end
by a ribozyme and at the 5’ end by a terminator. Each gate
has an experimentally measured and quantitatively unique
response function fitted to a Hill equation, which relates an
input value to an output value in the same standardized
units (REU). Using a common signal (REU) allows levels
to propagate through a multi-level circuit. Functional gate
connections require the dynamic range of an upstream gate
to span the threshold of a downstream gate[5] (Figure 1).
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Figure 1: Response function matching. The pTac and pTet inputs
have measured ON/OFF levels. The NOT gate (AmtR, blue) inverts
the pTet according to the gate’s Hill function. The pTac and pAmtR
inputs for the NOR gate (PhlF, orange) are summed before apply-
ing the Hill function to calculate the output. The circuit score is
computed as the ON/OFF dynamic range.

Repressor assignment identifies the optimal way to select
and connect genetic gates to maximize the overall dynamic
range for the circuit. The total number of possible assign-
ments scales factorially as the circuit size and library size
increase. Given a large and discrete search space, we use a
Monte Carlo simulated annealing algorithm for assignment.
The algorithm initializes by randomly assigning gates from
the library to the gates in the circuit, and the Monte Carlo
move swaps assignments at two gates. The first gate is ran-
domly selected from the circuit, and the second gate is ran-
domly selected from the circuit or the library. After a swap,
the change in score and a temperature factor determine the
probability of accepting the change. Thousands of swaps
are performed in a single trajectory, and as the temperature



factor cools, the simulation converges. Multiple trajectories
are run, and the circuit with the highest score is the output
of the repressor assignment algorithm (Figure 2).
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4. OUTPUT DISTRIBUTIONS
Given a repressor assignment, the performance of the circuit
is predicted using cytometry data from experimental char-
acterization of each response function. Response functions
are characterized using discrete titrations of input levels,
each producing an output distribution (Figure 3a). These
discrete distributions are interpolated to generate a contin-
uous probabilistic response function, which can compute an
output distribution for any input value (Figure 3b). An in-
put distribution can be converted to an output distribution
by averaging all of the individual output distributions from
each individual input value. By propagating distributions
through each level in the circuit, the cytometry distributions
of the circuit output are predicted (Figure 3c).
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5. PHYSICAL LAYOUTS
The final stage of the Cello design process is to generate
physical part layouts that encode the assigned circuit. There
are a combinatorial number of possible layouts for the same
assignment: degrees of freedom include the order of tan-
dem promoters in each gate, and the order and orientation
of gates in the circuit. The Eugene language[2] is used to
explore these degrees of freedom, and rules can be used to
constrain the design space. For example, certain promoter
orders are prohibited from being downstream of an adjacent
promoter, and the gate orientations could be all forward,
some reverse, or feature an alternating orientation pattern
that may help reduce effects of terminator read-through.
Rules can be added/removed to constrain/unconstrain the
design space. In this work, a predetermined gate order and
’all forward’ gate orientation was specified for an efficient
Golden Gate cloning scheme.
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Circuit
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KanRp15A

T T

ALL_FORWARD, order 1

ALL_FORWARD, order 2
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ALTERNATE_ORIENTATION

Figure 4: Combinatorial design of circuit layouts. The Eugene lan-
guage uses rules for constrained combinatorial design of genetic con-
structs with varying part orders and orientations. A designed circuit
module is inserted into the plasmid, and the complete DNA sequence
is a Cello output.

6. EXPERIMENTAL RESULTS
Circuits ranging from 1 to 7 logic gates containing 27 to 55
genetic parts were designed with 44 of 60 circuits function-
ing correctly in all input states. These are unprecedented
scales and success rates for circuit design. Prior to designing
these circuits, significant experimental effort was required to
avoid failure modes, including non-additivity of tandem pro-
moters, terminator read-through, crosstalk between repres-
sor:promoter pairs, and impaired cell growth from repressor
expression. Rather than pursuing a convoluted computa-
tional model that attempts to precisely account for subtle
contributions from each effect, we instead carefully curated
the gates library and used empirically-determined design
rules to minimize these effects. This strategy to maintain a
simple computational model was validated by the high suc-
cess rate, but the failure of 16 circuits is likely attributable
to one or more of these effects.

7. USER CONSTRAINTS FILE
The ongoing goal for Cello circuit design is to standardize
the software inputs such that users can specify their own
preferred Boolean logic motifs, genetic gate library, circuit
layout rules, and plasmid backbones or genomic locations.
We use a highly specified constraint file to inform circuit
design in Cello, and additional versions of the constraint
file will allow Cello to design circuits in new experimental
systems and cell types. Each system will be tied to the
constraints file of that system, analogous to the choice of
different microelectronic hardware to physically implement
electronic designs.
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1. INTRODUCTION
Parameter inference is crucial in any modeling effort. Pa-
rameter inference based on sequential fitting of data to each
model leads to erroneous solutions due to over-fitting and ill-
constrained parameter bounds. Parameter estimation through
fitting multiple models simultaneously can reduce this error,
albeit it is computationally intractable for most practical ap-
plications. Here, we propose an alternative approach of pa-
rameter inference cascades, where parameter values with low
uncertainty are propagated to the sequentially fitted mod-
els. We propose how to deal with noise in the data and
we introduce confidence intervals as a selection metric on
parameter value propagation. We demonstrate how this ap-
proach reduces parameter estimation error in a synthetic
circuit case-study.

2. METHODS AND RESULTS
Model: We use a simple model [1] that can capture both the
processes of transcription and translation. More specifically,
when a repressor R binds to a promoter pR, the expression
level of a gene g at the downstream of pR is modeled by

νg = βpR +
αpR − βpR

1 +
(

νR
KpR

)npR
(1)

where νg, νR are the expression level of g and R respectively,
measured in relative expression units (REU) [2]. Parameters
βpR , αpR ,KpR , npR represent the basal level, the promoter
strength, the binding affinity, and its cooperativity respec-
tively, pertaining to promoter pR and its repressor R. In
the case where a ligand LR can bind and inactivate R, νR
in equation 1 is updated by

ν′R =
νR

1 +
( [LR]
KLR

)nLR
(2)

where [LR] is the ligand concentration. Parameters KLR

and nLR correspond to the dissociation constant and the
Hill coefficient of the ligand, respectively.
A case study: Assume a cascade of repressors, as depicted
in Figure 1. If we use the basic model, there are 16 pa-
rameters to capture all four circuits. For our evaluation,
we fixed the parameter values, and then generated through
simulations the corresponding synthetic datasets, on which
we added a 10% of Gaussian noise. We also generated the
data in triplicate and calculated the standard deviation of
the output to simulate the experimental data in practice.
Model fitting: Suppose that each circuit Ci is modeled by

yi = Mi(xi, θi) i = 1, . . . , 4
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where xi, yi, θi represent the input, the output, and the set
of model parameters, respectively, all for circuit Ci. For ex-
ample, for the first circuit of Figure 1, xi is the ligand Lx, yi
is the GFP concentration and θi is the set of six parameters
that are needed in equations 1 and 2. Each parameter can
appear in more than a single circuit, so we denote the set of
all parameters θ =

⋃4
i=1 θi.

Let Di = {(x(1)i , y
(1)
i , σ

(1)
i ), . . . , (x

(di)
i , y

(di)
i , σ

(di)
i )} be a syn-

thetic dataset with di data points of the circuit Ci and σ
(j)
i

capturing the standard deviation of the output y
(j)
i .

For each circuit Ci, if all data points are independent and
the output value yi has a Gaussian distribution then the
log-likelihood [3] is

LL(Di|θi) = −1

2

di∑
j=1

(Mi(x
(j)
i , θi)− y(j)i
σ
(j)
i

)2
+ const

We can fit the value θ∗i for parameters of each circuit Ci
seperately by solving the maximum likelihood problem

θ∗i = argmax
θi

LL(Di|θi)

If the model Mi is sloppy [4], then two different parame-
ter value combinations may have similar model outputs as
in Figure 2. If we fit a sloppy model with a given dataset
that contains noise, the fitted parameter values may be far
from the actual values. To aleviate this, we can add more
constraints on the parameters by fitting all the models si-
multaneously:

θ∗ = argmax
θ

4∑
i=1

LL(Di|θi)

However, solving this problem is computationally intractable
due to the number of parameters involved. To reduce the
computational cost, we can perform a sequential fitting,
where the fitted parameter values are propagated to the next
fitted model. However, any errors are also propagated and
accumulated, which leads to erroneous solutions, as shown
in Figure 2. To minimize this issue, we propose to propa-
gate only parameter values of high confidence and introduce
confidence intervals for this purpose.
Confidence interval We use the approach in [3] that is
based on the profile likelihood [5] to estimate the confidence
intervals of parameter values. The profile log-likelihood of a
parameter pk ∈ θi by fixing it to a value ν can be defined by

PLLpk (ν) = max
θi∈{θi|pk=ν}

LL(Di|θi)

And the confidence interval for parameter pk is

CIα(pk) =
{
ν | − 2PLLpk (ν) ≤ −2LL(Di|θ∗i ) + ∆(α)

}
where α is the confidence level. The threshold value ∆(α) =
icdf(χ2

1, α) is the α-quantile of a χ2 distribution with one de-
gree of freedom.
Interestingly, by using this method the final prediction can
be reliable even when its parameters have a large confidence
interval, as it is the case in circuit C3. The combination of
this ensemble learning and high-confidence parameter prop-
agation is what leads to superior parameter inference re-
sults. Figure 3 depicts the solution to our case study by
following Algorithm 1. Our approach can estimate the pa-
rameter value with a smaller error in all cases except for the
parameter nLx , where both approaches are similar.
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Figure 3: A comparison between actual and esti-
mated parameter values.

3. DISCUSSION
We presented a new approach to infer the parameter value
for multiple models with smaller error. Future work will be
extension of this technique to more complex models and as-
sessment of various optimization techniques such as symbolic
computation or pattern search to reduce the computational
cost.

Algorithm 1: Parameter inference

Input: Models Mi, datasets Di, threshold values α, ε
Output: Parameter values and their confidence interval
begin

CIα(pk) = Range(νg) = (−∞,+∞) ∀pk ∈ θ, g ∈ Ci
repeat

for i = 1→ n do
G = {g ∈ Ci | Range(νg) < ε}
θ′ = {pk ∈ θi | ∃g ∈ G ∧ pk affects νg}
θ′′ = {pk ∈ θi | CIα(pk) < ε}
θ̂i = θi \ (θ′ ∪ θ′′)
Fix value of νg (g ∈ G) and pk ∈ θ′′ in Mi

Estimate θ̂i by fitting Mi with Di

Update CIα(pk), Range(νg) ∀pk ∈ θ̂i, g ∈ Cj
until CIα(pk) and Range(νg) do not change
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1. MOTIVATION
Biological computing circuits have a role to play in many

synthetic biology applications, such as precision cancer ther-
apy, sensing chemical threats, or control of biosynthesis pro-
cesses. Actually realizing such circuits effectively, however,
has been quite difficult: until recently, neither high-precision
prediction nor high-performance component libraries were
available. Thus, although many design approaches for se-
lecting components to realize a circuit have been proposed
(e.g., [11, 6, 9], to name a few), it has been unclear which, if
any, of these approaches was likely to actually be practical
for the realization of biological circuits.

Recently, however, significant progress has been made in
both circuit prediction and device performance. Calibrated
flow cytometry [3] has enabled high-precision prediction of
cascades and feed-forward circuits [5], as well as precision-
design of resource competition systems [2]. At the same
time, extensible families of high-performance devices have
been created using four different architectures: TetR ho-
mologs [10], invertase logic [4], CRISPR-based repressors [7],
and TALE-based repressors [8, 5].

Unfortunately, a signal-to-noise ratio (SNR) analysis of
the actual properties of these device families shows that they
do not yet correspond well with some of the digital logic
assumptions that prior work on design approaches has relied
upon. Instead, biological circuit design requires an approach
that explicitly takes into account the degradation of a signal
by each device in a computation, at least with the current
families of available devices.

2. SIGNAL-TO-NOISE RATIO
From its inception, much of the work on biological cir-

cuits has embraced a digital logic paradigm. Key to realiz-
ing digital logic is for the amount of noise in the signal to
improve from the inputs to the outputs of a device (generally
via strong amplification). The amount of noise reduction—
the “noise margin”—then determines the amount of noise
that can be tolerated at each stage of computation without
impacting the outcome of a computation of arbitrary com-
plexity. Design tools for selecting devices to realize a circuit,
such as MatchMaker [11] and SBROME [6], typically assume
that there are devices available that provide noise reduction,
and then attempt to select an appropriate set of such devices
to realize the circuit.

We need to consider, however, whether such an assump-
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Figure 1: TetR homologs are the current best-
performing logic device architecture: a few have
positive maximum ∆SNRdB, but most do not, and
input/output levels do not generally match well be-
tween devices. Data reproduced from [1]

tion can actually be warranted. Mathematically, the re-
lationship between signal and noise can be expressed as a
signal-to-noise ratio (SNR), which may be computed using

the standard formula: SNRdB = 20 log10
Asignal

Anoise
where A

is the root-mean-square (RMS) amplitude of the signal and
noise waveforms respectively. The efficacy of a logic device
may then be expressed in terms of the difference between
output and input SNR: ∆SNRdB = SNRdB,out − SNRdB,in

Any device with a significantly positive ∆SNRdB can be
used effectively to implement digital circuits; any other de-
vice degrades the signal that passes through it, limiting what
computations are possible to implement. Moreover, the
∆SNRdB that can actually be realized for a device depends
on the levels and distributions of the inputs with which it
is provided: a device that is positive when provided with
well-matched inputs may be very negative when its inputs
are instead too low or too high.

Characterization of synthetic biology devices and compu-
tations to date, however, has generally not actually analyzed
signal to noise ratio, but instead provided only partial in-
formation, such as the ratio between “on” and “off” states,
or the amplification of the device. While strong on/off ra-
tio and strong amplification are generally necessary for good
devices, they are not sufficient.

In fact, an SNR analysis of each of the current extensible
high-performance device architectures, carried out in [1], re-
veals that none of them is currently known to be sufficient to
implement complex digital logic circuits: TetR homologs [10]
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Figure 2: Design of a three-stage repressor cas-
cade using TetR homolog devices shows that met-
rics based on digital assumptions are not effective
at predicting signal degradation.

are currently the best-performing architecture, with a few
devices providing the desired positive ∆SNRdB for a narrow
band of input values (Figure 1). They are highly heteroge-
neous, however, with most performing much more poorly,
and generally poor matches between input and output lev-
els. Invertase logic [4] has a sufficiently strong amplifica-
tion, but its SNR performance is degraded by a significant
non-responsive population. TALE-based repressors [8, 5]
have insufficient amplification to support noise restoration.
CRISPR-based repressors [7] may be better, but have only
been characterized for on/off ratio, so amplification and in-
put/output matching cannot yet be analyzed.

The effects of this insufficient ∆SNRdB can be directly
observed in the results reported for circuits constructed with
these architectures. In every case [10, 5, 8, 7] the on/off
ratio of the circuit output is much less than the on/off ratio
of its inputs and earlier stages. This is symptomatic of a
negative ∆SNRdB , indicates that only simple and shallow
circuits can currently be realized, and also indicates that
digital logic noise restoration cannot be safely assumed.

3. SNR-BASED CIRCUIT DESIGN
Given the signal degradation of current biological com-

puting devices, how do proposed approaches to design need
to be adjusted? One option, of course, is to change nothing
about design and just wait for devices with better ∆SNRdB ,
but it is unclear how long this will take or to what degree
it is even possible for large families of devices. More to the
point, a great deal of interesting circuits can be implemented
even with degrading signal strength, as is well demonstrated
by the circuits in the same publications cited above.

To make principled decisions regarding the design of such
circuits, we need a better metric that does not assume digital
behavior. A reasonable choice for such a metric, of course,
is simply SNR, since this directly measures the distinguisha-
bility of circuit outputs. For small circuits and libraries, this
metric can be applied by brute force simulation of distribu-
tions. For example, Figure 2 shows the ∆SNRdB ratings
of the best ten designs for a three-stage inverter chain de-
signed with TetR homologs from [10], beginning with an
initial strong signal of low 10−1.5 and high 101.5 a.u. and
assuming a 2-fold standard deviation of per-cell expression.

Some of the choices are actually quite non-intuitive: for ex-
ample, the top ten circuits include use of HlyllR, BM3R1,
and PsrA, and the strongest repressor (PhlF) appears to
be a poor choice for the first inverter, with the best circuit
starting with PhlF being only -9.79 dB. Heuristics based on
digital assumptions, however, such as maximizing the min-
imum noise margin [11] (using thresholds set at the 1:1 log
slope), or maximizing input/output match quality, fail to ac-
curately predict circuit performance and may select highly
sub-optimal circuits.

Therefore, in order to realize effective biological circuit
design using current signal-degrading devices, we can see
that is it important to take the distribution of variation
into account using a metric such as SNR. Heuristic and dy-
namic programming techniques that work for other metrics
are likely to be adaptable for SNR as well, and there is also
a considerable literature from the signal processing commu-
nity that may be investigated for adaptability to the biolog-
ical domain as well.
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ABSTRACT
In silico design is a fundamental component of the synthetic
biology process. Tools for designing and exchanging genetic
circuits are essential to support the design process and fa-
cilitate the transition from in silico design to in vivo im-
plementation and testing. We have developed SynBad, an
extensible design environment enabling the parts-based and
model-driven design of genetic circuits. SynBad’s modu-
lar design facilitates design reuse and the management of
complexity. SynBad’s architecture allows for the extension
of functionality through the installation of plugins. Whilst
supporting the manual CAD process, SynBad also supports
genetic design automation using computational intelligence
approaches. To this end, SynEA, an evolutionary algorithm-
based tool for automating genetic circuit design was imple-
mented as a plugin. SynBad is built on emerging open stan-
dards, including Standard Virtual Parts (SVPs) for repre-
senting designs, and the Synthetic Biology Open Language
(SBOL) 2.0 for storage and exchange. In this work we de-
scribe the architecture of the SynBad system and demon-
strate its functionality for the design of genetic circuits.

Keywords
Genetic circuits, SVPs, CAD, SBOL

1. INTRODUCTION
A major aim of synthetic biology is to enable the engineering
of complex and novel biological systems. Computer-aided
design (CAD) is a common approach in other engineering
disciplines for managing complexity, where routine design
tasks can be automated and abstracted. In Integrated De-
velopment Environments for computer programming, for ex-
ample, the burden on programmers is lessened by providing
re-usable, tested, higher-level abstractions more suited to
human-manipulation, while automating the mapping from
abstract to lower-level implementation of designs. Synthetic
biology design, however, has not yet reached the stage where
the forward engineering of biological systems is routine [4].
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Figure 1: An editor view in SynBad.

2. SYNBAD
Complex synthetic biology designs require computational
approaches to their construction and optimisation. A num-
ber of software design tools have been developed to meet
this challenge [7, 1]. SynBad also utilises the concept of a
CAD system that is common to many previous approaches
but builds on the approach offered by others with the addi-
tion of three major features; (i) SynBad enables a modular
model-based design approach to genetic circuit design, pro-
moting module re-use, with the ability to simulate designed
circuits (ii) the inclusion of computational intelligence-based
approaches for circuit design and optimisation (iii) a modu-
lar plugin-based framework to support third-party software
extensions. SynBad also supports emerging standards such
as SBOL 2.0.

2.1 SVP-based Design
The parts for the SynBad system are based on Standard
Virtual Parts. SVPs are composable models of physical bio-
logical parts and their interactions, represented using XML.
SVPs are abstract models, which are parameterised from
templates representing genetic parts such as promoters and
protein coding sequences, and their interactions [6]. SVPs
may also contain information about the sequence of the parts
they represent. SynBad designs can use any combination



Figure 2: A prototype transcription unit compiled
to SBML.

of SVPs specified either abstractly with hypothetical or de-
sired properties, or concretely, with preinitialised parts from
a Web-service based parts library. Such part libraries can
be populated using parameters drawn from the literature,
or from in vivo or in silico experiments. SynBad is cur-
rently configured to use the Flowers Virtual Parts Reposi-
tory1 (VPR), an SVP repository maintained by the Inter-
disciplinary Computing and Complex BioSystems (ICOS)2

research group at Newcastle University. The VPR contains
2226 parts and interactions, initially produced from an inte-
grated dataset [5]. SynBad supports modular design. SVPs
are hierarchically organised into SBOL2.0 compatible mod-
ules, composed from parts and other modules. This ap-
proach enables any design element in SynBad, from a single
part to entire design, to be reused as a module in another
design.

2.2 Visual Interface
SynBad has a visual design interface. Editor views present
abstractions of the designs, emphasising or de-emphasising
different aspects of each design, while operating on the same
underlying data model. Views abstract the process of ma-
nipulating the SVPs composing the design, and allow syn-
thetic biologists to share a common design language based on
the manipulation of standard parts and interactions. Syn-
Bad then automates the compilation of these part-based de-
signs into simulatable Ordinary Differential Equation mod-
els in the Systems Biology Markup Language (SBML) for-
mat by composing the underlying SVPs into a single model.

2.3 Extensibility
SynBad is open source, with an extensible architecture al-
lowing additional functionality to be installed using plug-
ins. SynBad designs are stored using the Synthetic Biology
Open Language (SBOL) [2], with additional annotations for
platform-specific data, such as SVPs. SynBad offers syn-
thetic biology tool developers a common environment for
SBOL and SVP-based tools. Emerging open source stan-
dards such as SBOL and SVPs were chosen in order to max-
imise interoperability with other tools. Plugin developers
can take advantage of the APIs provided, including those
for storing, manipulating, and composing SVPs, and expose

1http://www.virtualparts.org/
2http://ico2s.org

their own APIs. Plugins can use SVPs to represent their
designs, or developers can design their own mappings from
the SBOL documents while benefitting from the common
design environment SynBad offers.

2.3.1 SynEA - A SynBad Plugin
The extensibility of the framework is demonstrated by the
SynEA plugin, an automated design tool for SynBad based
on an evolutionary approach [3]. SynEA can generate net-
works de novo, or use designs implemented in SynBad as
initial designs. SynEA can also optimise existing designs,
and fit abstract networks with parts from repositories. De-
signs produced by SynEA are added to the user’s project,
for export or visualisation and manipulation in the editor
views.

3. FUTURE WORK
SynBad and SVPs are ongoing, open-source projects, and
we encourage feedback from the community to help guide
development. In the short term, we plan to expand SVPs,
and SynBad, with support for more modelling formalisms,
such as rule-based modelling, the development of workflows
enabling more sophisticated feedback between in silico and
in vivo synthetic biology approaches. Additionally, SynBad
will include plugins for design verification, a promising fea-
ture of model-based design.

4. AVAILABILITY
The Java source code for SynBad is available under the
Apache License at:

http://ico2s.org/software/synbad.html.
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1. INTRODUCTION 
A genetic circuit represents a gene regulator network that is 
triggered by a combination of external signals, such as chemicals, 
proteins, light or temperature, to emit signals to control gene 
expression or metabolic pathways accordingly. In order to match 
the intended behaviour, genetic circuits are either assembled from 
a standard library of well-defined genetic gates or from parts of an 
available library, for instance, BioBricks. The obtained behavior 
can be validated through in-silico analysis, solving reaction 
kinetics using ordinary differential equations (ODEs) or by 
stochastic simulation, with the aim to reduce the number of 
required in-vitro experiments.  

We present a behavioural simulation and analysis tool that allows 
the biologist to carry out virtual lab experiments as an interactive 
process during simulation of the genetic circuit, rather than a 
batch process, which is current practice. We believe that this 
increases the insights gained from the analysis and allows for 
exploring more parameters in an intuitive manner. 

2. GENETIC CIRCUIT ANALYSIS 
The Systems Biology Mark-up Language (SBML) is a standard 
way of representing computational biological models [1]. It is a 
machine-readable format, which enable models to be shared and 
published in a form that can be used by different software tools.  

Beside the functional behavioural of the biological systems, 
SBML allows the user to model a sequence of input patterns in 
order to capture a more elaborate experiment. This is done 
through events, which describe the instantaneous, discontinuous 
state changes in the model [1]. For example, in genetic circuits, 
events are used to trigger the concentration of any input species to 
a certain level, at a specific point in time, and to observe the 
effects on the concentration of output species. Since events are 
predefined, they cannot be changed during runtime, which means 
that the output of a genetic circuit can be observed only for 
defined events. In order to observe the output, the different set of 
input conditions, i.e., when to change what input to which level, 
must be defined in each event. Even for moderate sized genetic 
circuits, capturing all combinations of inputs and concentration 
levels may require a very large number of events to be defined 
and simulated. 

The ability to interact with the model, during runtime, makes it 
more convenient to observe the behaviour and directly make 
changes of input species as a reaction to the observed changes. 
This not only helps the user to analyse the model appropriately by 
triggering the concentration of input species to any level and at 
any instant of time, but it also makes the user free of defining long 
list of events for all the possible combinations of inputs in the 
SBML description.  

There are more than 260 systems biology tools [2], which assist 
users in model construction and analysis. Some of these tools 

serve as a toolbox for commercial platforms including MATLAB, 
Mathematica, and Oracle; some are developed as APIs or plugins 
to specific software systems, while the rest are independent tools 
for design and simulation. A vast majority of these tools supports 
reading and/or writing SBML files. To the best of our knowledge, 
there exist no tools that allow users to trigger/change input species 
on the fly during the simulation, effectively creating a virtual lab.   

3. VIRTUAL LAB SIMULATION  
In the wetlab, the biologists are either provided with ready-made 
biological models available in test tubes or are given a 
specification/recipe from which to prepare it in the lab. Their duty 
is to analyse the model and verify its functional behaviour. This 
analysis is done interactively by among other things, increasing 
the molar concentration of input species at any instant of time and 
observing the effects.  

This motivated us to develop a virtual laboratory environment 
where users can perform interactive experiments by varying the 
molar concentrations during run time. This inspiration lead us to 
develop D-VASim (Dynamic Virtual Analyzer and Simulator), a 
user-friendly environment to simulate and analyse the behaviour 
of genetic circuit models written in SBML. D-VASim takes as 
input a SBML file and generates an interactive virtual instrument 
(VI) to simulate the behaviour of the biological model. This 
virtual instrument works as a standalone simulation tool for the 
particular SBML model. Currently D-VASim offers two types of 
virtual instruments, one based on solving reaction kinetics using 
ODEs, and the other based on stochastic simulation.   

Both D-VASim and the generated virtual instrument are 
developed on National Instruments LabVIEWTM1 platform, which 
is a graphical programming platform commonly used to rapidly 
develop instrumentation systems for data acquisition, instrument 
control, and industrial automation [3].  

Besides giving the biologist the feeling of being in the lab, D-
VASim has also proved useful to help early-stage researchers or 
students, with little experience in biology, to get an intuitive 
feeling of the underlying biological processes and their 
interactions. A virtual laboratory environment is desired for such 
inexperienced users to observe the live biological phenomenon by 
varying the species concentrations without being afraid of 
crossing the threshold values.  

D-VASim also allows user to analyse the SBML model 
components. Depending on the parameter settings, D-VASim 
generates a VI for deterministic or stochastic analysis separately. 
Once the instrument is generated, the user can analyse the model 
by varying those species’ concentrations, which acts as external 
modifiers. This makes the VI more analogous to the real-life 
experimentation where the operator can increase the molar
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Figure  1. D-VASim (a) Top-level diagram of D-VASim showing different tabs (b) Generated virtual instrument for stochastic 

simulation of genetic AND gate model. 

 
Figure 2.  Static stochastic simulation plot of genetic AND gate 

generated by iBioSim [5].  
concentration of external inputs only. Unlike the real-life 
experimentation, where the reaction takes place at specific rates, 
users can speed-up or slow-down the reaction by varying the 
parameter values during runtime.  

4. EXPERIMENTAL RESULTS 
D-VASim is tested with different example models imported from 
existing tools including CellDesigner [4] and iBioSim [5]. We 
have also tested some of the genetic gates modelled by Myers [6]. 
Due to the space limitations, only the results of a genetic AND 
gate [6] is included here. 

Figure 1 shows a screen captures of D-VASim running the genetic 
AND gate model. Figure 1(a) shows the basic top-level diagram 
of D-VASim containing different tabs. For example, Reactions 
tab helps the user to analyse the reaction kinetics of the model in a 
user-friendly manner. Similarly, Virtual Instrument Properties tab 
allow users to set up different properties of the VI including the 
VI window-bounds, sizes of VI objects (knobs, graph-window 
etc.), deterministic or stochastic simulation, timing bounds for 
ODE simulation, type of continuous solver for ODE simulation 
etc. After setting up these properties, the VI can be generated by 
pressing the button Generate Virtual Instrument depicted in 
Figure 1(a). Figure 1(b) shows the virtual instrument generated for 
stochastic simulation of the genetic AND gate model [6]. The 
screen of the VI is captured during the simulation, which clearly 
shows the interactive stochastic simulation results. In comparison, 
Figure 2 illustrates the static stochastic simulation results of the 
same genetic AND gate generated by iBioSim [5]. As shown in 
Figure 2, the events, to trigger the number of molecules of TetR 
and LacI to 60, are predefined to be activated at time 2000 and 
4000 units respectively. Also, the simulation runs for a predefined 
interval, 6000 time units in this example.  From Figure 2, it can be 

observed that the production of GFP (blue curve) starts when the 
number of molecules of both the inputs, TetR and LacI, reaches at 
the same level i.e. 60. It is, however, more evident in Figure 1(b) 
that the production of GFP (green curve) starts even when the 
concentration of both the inputs are not same (at time unit 3200). 
Therefore, to observe the behaviour of combinatorial genetic logic 
circuits more clearly, either all the possible combinations of inputs 
with all possible concentration levels should be defined in the list 
of SBML events – a tedious task, or the model’s behaviour should 
be examined in the interactive environment. It may also be 
possible to generate the list of SBML events by running pre-
written scripts with minimal efforts, but the idea of interacting 
with the model during runtime gives the insight of performing live 
virtual lab experiments. Hence the significance of a run-time 
interactive simulation environment, like D-VASim, is more 
obvious as it helps the user to analyse the model more easily and 
explore its parameter space intuitively.   

5. SUMMARY 
We are currently working on an algorithm to make the D-VASim 
capable of extracting the Boolean expression from the interactive 
simulation. It will help students and scientists to validate if the 
genetic circuit model behaves as expected. In future, we plan to 
incorporate a Boolean logic minimization tool for genetic cost 
reduction, which will specifically be helpful when building 
cascaded genetic circuits.  
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ABSTRACT
One goal of synthetic biology is to design and build genetic
circuits in living cells for a range of applications. Major
challenges include increasing the scalability and robustness
of engineered biological systems and streamlining and au-
tomating the synthetic biology workflow of specify-design-
assemble-verify. We present a novel hardware/ software/
wetware framework, Fluigi, that allows for functional specifi-
cation to be“synthesized”into genetic networks that are spa-
tially arranged and connected by a scheduled interconnec-
tion network. This arrangement is created via 3D-printable
microfluidics and augmented with a library of electronic ac-
tuators, sensors, and controllers. This framework will push
the boundaries of hybrid bio-electronic integration and will
enhance the current state of synthetic biology design au-
tomation by introducing an open, accessible, and democra-
tized method of laboratory customization.

1. INTRODUCTION
The goal of synthetic biology is to use naturally existing con-
structs in biology (such as repressible and inducible genes)
for novel applications [Cameron et al. 2014]. Microfluidics
can assist researchers by reducing reagent use, increasing
throughput and automation, and precisely controlling the
spatial and temporal environment of their experiments [Huang
and Densmore 2014]. However, adoption of microfluidics in
synthetic biology labs has been slow due to the expertise and
equipment needed to design and manufacture microfluidic
devices [Ferry et al. 2011]. We present here Fluigi, a frame-
work and toolchain for automating the design and manufac-
ture of microfluidic devices for synthetic biology through the
use of 3D printing and CAD.

The Fluigi framework, shown in Figure 1, starts with the
specification of a function in a description language (Verilog)
and a set of physical design rules. Fluigi consists of three
main blocks: the hardware for microfluidic valve control, re-
mote communications, and sensors (Channel Chomp), CAD
for microfluidic devices (Pirahna Planner), and a 3D print-
ing setup for printing molds for microfluidic devices (3DuF).
A different tool converts the design specification into a set
of biological devices that implement the function [Nielsen
et al. ]. Fluigi takes the set of biological components and the
constraints to layout a microfluidic device that houses and
monitors those components. It also produces photomasks
for use with multilayer soft lithography or a 3D model for
fabrication with consumer 3D printers and the valve control
sequences to operate the microfluidic device.

Figure 1: The three main blocks of Fluigi: Channel Chomp
for hardware control and chip interfaces, Piranha Planner for mi-
crofluidic CAD, and 3DuF for rendering and fabricating both 2D
and 3D molds for microfluidic devices.

2. CHANNEL CHOMP
Accurate, real-time monitoring and dynamic control are chal-
lenges in the creation of microfluidic devices. Channel Chomp
is a modular approach to delivering these capabilities to the
device under test. Potential applications are shown in Fig-
ure 2. Designers can define input and output constraints
for assay instrumentation using open-source hardware and
software solutions. Valve control schemes are compiled into
an executable experimental protocol automated through the
use of parametrized, 3D-printed, pneumatic control devices.
The use of open-source software and inexpensive commercial
off-the-shelf hardware creates an environment for electronic
analysis and control that is fully-accessible, affordable and
easily reproduced.



Figure 2: Applications for Channel Chomp include dynamic
valve control, reconfigurable assays, programmable microfluidics,
and remote communications between experiments.

3. PIRANHA PLANNER
Piranha Planner is the CAD software responsible for the
physical description and layout of the microfluidic device
being designed. The workflow for this process is show in Fig-
ure 3.A device is represented as a data structure where each
layer is a graph of channels and components such as ports,
valves, and cell traps. A layout is generated from a set of
physical constraints and a netlist describing the connections
in the device using simulated annealing for placement [Betz
and Rose 1997] and Hadock’s algorithm [Hadlock 1977] for
routing. If given a set of biological devices that perform a
function, Piranha Planner will generate a design of a device
to house the biological devices and a set of valve control pat-
terns to allow intercellular communications between them.

4. 3DuF
The adoption of consumer 3D printing in laboratory environ-
ments has led to increasingly sophisticated devices that can
be fabricated using commodity hardware [Takahashi et al.
2014]. We present here a process for printing molds for mi-
crofluidic devices using an off-the-shelf 3D printer. Designs
are generated by using Python scripts to place primitive
features and configure device layers. These scripts generate
header files for an OpenSCAD library which converts a list
of primitives and parameters into a printable 3D model for
each layer of the device. Each model is converted into in-
structions for a 3D printer using standard slicing software,
taking into account nozzle size, minimum layer height, and

Figure 3: The workflow for Piranha Planner, from physical de-
sign to manufacturing and device controls.

Figure 4: An initial prototype of a parametric microfluidic trans-
poser module was designed and fabricated using 3DuF. The de-
sign was refined over the course of a week to dramatically reduce
both individual feature size and the overall footprint.

other printer-specific factors. Features are then printed di-
rectly onto glass slides and assembled for PDMS casting.
We show in Figure 4 a prototype of a parametric trans-
poser module designed with this process that can be easily
customized and adapted for fabrication at a wide range of
feature sizes.

5. CONCLUSION
The integration of synthetic biology, 3D printable microflu-
idics, and electronics has the capability to increase the scale
of engineered biological systems for applications in cell-based
therapeutics and biosensors, expand on the idea of distributed
biological computation, and produce new rapid prototyping
platforms for the characterization of genetic devices. The
combination of 3D printing for manufacturing coupled with
off-the-shelf electronics can increase the use of microfluidics
in synthetic biology and promote opportunities for interdis-
ciplinary research and collaboration.
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ABSTRACT 
Apprentyeast aims to provide an abstraction layer between the 
circuits designed by synthetic biologists and their implementation 
as a synthetic yeast strain constructed in the lab. Apprentyeast is a 
command line tool implemented in python that relies on 
Aquarium, which is a human-in-the-loop lab automation system 
that includes a Laboratory Information Management System 
(LIMS), running in the Klavins Lab, and gets data from public 
sources such as the Saccharomyces Genome Database. 

Apprentyeast can be considered as an architect’s apprentice. It is 
handling the wet lab realization of high-level synthetic designs on 
the behalf of the organism designers while learning the best 
practices from experts. For instance, Apprentyeast can be used to 
knockout a gene. The organism designer simply inputs the name 
or id of the yeast gene they desires to knock out and the name of 
the selection marker to insert. Apprentyeast will then retrieve the 
sequences to design the corresponding primers and fragments, 
load them into Aquarium through a web API for automated 
construction. Being an apprentice, Apprentyeast learns the most 
commonly used construction strategies in the lab and 
preferentially uses them. We looked at all the Gibson assemblies 
performed through Aquarium in order to infer rules that then serve 
to design new plasmids. 

Categories and Subject Descriptors 
D.2.2 [SOFTWARE ENGINEERING]: Design Tools and 
Techniques 

General Terms 
Algorithms, Management, Design, Experimentation, Human 
Factors, Standardization, Languages, Theory, Verification. 

Keywords 
supervised learning, yeast, synthetic biology, plasmid, data 
mining. 

1. Background 
Synthetic biology has been tackling the problem of reproducibility 
in biology by standardizing wet lab practices and recording 
experiments [1]. 

In Klavins Lab, researchers have been using Aquarium [2] to 
formalize and automate protocols. Wet lab work is performed and 
logged by technicians using a touch-screen interface. Aquarium 
has been running for over a year providing us access to wet lab 
usage. 

For instance, it is not clear what the optimal recipe to build a 
plasmid is using Gibson Assembly given an extended and shared 
library of fragments. Our lab members use a modular plasmid 
design in which linkers between functional parts are re-used 
systematically (see Table 1-A).  Yet, a newcomer in the lab would 
not easily be able to look at this template and build a plasmid 
from scratch. Lab researchers have developed their own 
approaches on how to efficiently build new pMOD plasmids such 
as reusing fragments in combination to form their plasmid 
backbone. Therefore, by relying on user data, it is possible to 
mine the information and extract local knowledge that pertains to 
the best practices as developed over time by the researchers in the 
lab. 

2. METHODS 
2.1 Formalization of Gibson assembled 
plasmids as cycled directed graphs 
In order to understand how lab users have been building their 
plasmids, we mine the data associated with the Gibson assembly 
jobs performed in Aquarium. 

We used a directed graph to formalize the way in which pMOD 
fragments are combined to generate a plasmid. The nodes 
represent the fragment overlaps and in most cases, they are 
pMOD linkers (as expected). The edges are fragments, directed 
consistently with the orientation of the gene of interest. 
When reconstructing these plasmids from their list of fragments, 
we were often missing sequence information about the fragment. 
However, most of them were built in Aquarium and had their 
primers with sequences in the database. Using pymbt, a sequence-
level DNA design specification language, it was often possible to 
reconstruct the overlap with the Gibson Assembly reaction 
module. If it fails to find a solution, we also try to automatically 
find identical words in the fragments’ names. 

If we could find a cycle in the directed graph, we had a plasmid 
fully reconstructed. Otherwise, we fill the gaps based on user 
feedback in a supervised learning fashion in order to finalize the 
reconstruction of the plasmid. For instance, an expert synthetic 
biologist may teach the graph analyzer to always associate certain 
nodes based on their names, skip plasmids that were not 
successfully built or indicate that a fragment is encoded on the 
opposite strand so that the directed edge is flipped.  



Table 1: A) A theoretical pMOD plasmid that integrates at native yeast markers and B) the most frequent graph mined from 
Aquarium’s Gibson Assembly logs has a URA|ampR backbone. 

A) 

 

B) 

 
 

2.2 Inferring a probabilistic context-free 
grammar (PCFG) of our lab plasmid design 
methods 
We generated a pMOD context-free grammar (CFG) based on the 
re-constructed plasmids. First, we created fragment categories 
based on the leftmost nodes and rightmost nodes. Essentially, 
these CFG are ‘flat’: there is a rule to transform plasmid into the 
different fragment categories. Each category is then associated to 
its corresponding fragments following the GenoCAD library 
architecture [3].  

We then add some ‘depth’: we automatically identified motifs, 
that is, two or more categories that we find together in two or 
more unique rules, and created intermediate rules. For instance, 
the URA|ampR backbone is in practice often broken down into 
two fragments (TP-ampR and ampR-PP2) and the homology is 
located on the ampR (see Table 1-B). Hence, Apprentyeast 
created the rule TP-PP2 → TP-ampR, ampR-PP2. Apprentyeast 
learnt to split ampR, which in practice will decrease the chance of 
template vector making its way into the Gibson reaction. 

Finally, we computed the probabilities by using relative frequency 
estimation since rules may appear more than once. Therefore, it 
becomes possible to identify the dominant Gibson assembly 
strategies in the lab. 

3. RESULTS AND FUTURE DIRECTIONS 
Apprentyeast is able to design pMOD formatted DNA fragments 
and primers from public databases and connect with Aquarium 
through an API. Apprentyeast has been learning how to build 
plasmids from our lab practitioner data. We successfully tested it 
to implement and build designs in a URA integrating plasmid: we 
only specified the names of the yeast genes we would like to 
overexpress and the Aquarium’s promoter fragment we would like 
to use. Apprentyeast created the new gene fragments along with 
the necessary pMOD compliant-primers to PCR it out of a yeast 
lysate and selected all the Aquarium fragments to finalize a 
pMOD plasmid and finally asked Aquarium to make each plasmid 
using a Gibson Assembly task. Apprentyeast successfully 

demonstrated that it can automatically have plasmids constructed 
in Aquarium from high-level specifications. 

We are currently integrating formal semantics to Apprentyeast: 
the plasmids generation will formally handle the integration 
markers and manage these ‘logistic’ integration aspects when 
constructing a synthetic yeast. 

In addition, after importing all existing DNA fragments found in 
Aquarium, we are theoretically able to generate all pMODs that 
could be build straightforwardly in Aquarium. Because it is 
possible to associate the generation of the constructs’ equations to 
grammars [4], we will be able to perform design-space 
exploration based on mass-action equations for each plasmid. We 
will also make it possible to generate plasmids based on an 
equation set. 
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ABSTRACT 
In this paper, we describe a framework for automated development of 
executable models using information extracted from literature. The 
framework also includes model analysis and correction methods. The 
final objective is to have a representation for models of complicated 
mechanisms that allows for easy model exchange and improvement, and 
therefore facilitates the discovery of interventions (e.g., treatments or 
drugs in case of cell mechanisms).   

1. INTRODUCTION 
Understanding complicated mechanisms usually requires collecting 
existing information from various sources and integrating it all 
within a model. The most common sources include published 
literature, existing published models, and relevant data. By 
designing a single model that can be exchanged, tested and 
improved, we can advance and accelerate knowledge exchange in 
the scientific community. For a particular system, such as a 
biological cell signaling network, a large number of models in 
existing literature that were developed over the years are rendered 
useless when they cannot be updated, validated or corroborated with 
each other.  

Manual processing of such tremendous amounts of data is not 
possible. For example, in a single model of epidermal growth factor 
receptor (EGFR) signaling proposed by Chen et al. in [1], there are 
499 ODEs, 828 reactions and 229 parameters [2]. Hence our aim is 
to automate reading and model building procedures, followed by 
model checking and improvement. Section 2 describes the cell 
signaling model that we have chosen to demonstrate our method on. 
Figure 1 depicts our proposed framework and the various aspects of 
the work, with details in Section 3. With the assistance from experts 
in natural language processing, causal inference and cancer 
immunology, we hope to achieve the goal of developing a system 
that can learn, execute and manage models for large, complicated 
mechanisms, thus enabling informative simulations. 

2. CASE STUDY 
In our case study model, we focus on signal transduction pathways 

in cancer. We would like to expand beyond the downstream 
effectors of Ras protein signaling to include metabolic effects and 
extracellular communication in the tumor microenvironment and 
immune system. Stress delivered to cells can result in imbalances in 
metabolism that may affect mitochondrial and nuclear exchange and 
function. Changes in metabolism are also observed when mutations 
in Ras occur. When the system is overwhelmed and feedback is 
compromised, damage control mechanisms in cells do not function 
properly and cells become cancerous. There are hallmark effects of 
stresses on nuclear chromatin structure and proteins involved with 
chromatin structure. The High-Mobility Group Protein B1 
(HMGB1) has various cellular locations and has roles in oxidative 
stress, Reactive Oxygen Species (ROS) and Redox signaling. Along 
with these intracellular pathways, the tumor microenvironment is 
also an important aspect of cancer. Therefore, extracellular 
signaling by direct contact or through exosomes [3] needs to be 
considered when developing models. Immune cells are of particular 
interest to us and will be included in the model. Integration of 
models and simulations across these scales will provide greater 
insights and potential therapeutic targets. 

3. PROPOSED FRAMEWORK 
Here, we outline and explain each of the blocks in Figure 1. 

3.1 Information extraction  
Information for our model can come from various sources such as 
model databases, literature or data from experiments. Currently, 
information is extracted from literature using natural language 
processing algorithms and is entered into a standardized format that 
can be further processed by computers. For example, the sentence 
“Cell activation with growth factors such as epidermal growth 
factor (EGF) induces Ras to move from an inactive GDP-bound 
state to an active GTP-bound state” can be represented as: 

CHANGE_STATE 
{ Participant_1: GDP-bound Ras 
  Participant_2: EGF  
  Product: GTP-bound Ras 
  Relationship effect: Activation }. 

 
Figure 1: Our proposed framework for automated model building and analysis. 



3.2 Interaction graph inference 
Using the format from the previous step and causal inference 
algorithms, one can obtain a set of nodes and edges for the entities 
in the model. A visual representation of one connection inferred 
from our example is as seen in Figure 2. 

Models from various model databases such as BioPAX [4], 
Biological Expression Language (BEL) or Pathway Logic [5], 
which use different representation formalisms are being translated 
into a unique format in order to generate an interaction graph. This 
is a challenging task since each representation has different levels of 
detail and quantification; for example, BEL is a set of discrete 
statements, one for each reaction while BioPAX has a wide latitude 
of components of the pathway and details on how pathways 
interact. 

3.3 Executable model inference 
This step involves automated inference of element update functions 
by combining qualitative interaction graphs and any other available 
quantitative information. We must identify the list of components in 
the graph, the list of regulators for each component and the type of 
regulation, as well as any interactions between regulators. In our 
example, assuming that no other entity influences the example 
reaction, the simplest RAS_GTP update rule is: 

RAS_GTP = RAS_GDP and EGF 
If additional information about levels of activity of RAS_GTP, 

RAS_GDP and EGF is available, the rule becomes more complex, 
and thus, model design is only feasible with automation [6]. 
Furthermore, due to complex interaction networks and feedback 
loops, creating rules for inferring accurate models from available 
information becomes a challenging task.   

3.4 Model simulation  
We focus on two types of model simulations. The first type is a 
deterministic approach, which gives us the steady states in the 
model, and the second one is a stochastic approach which allows us 
to analyze transient behavior. Tools described in [6] and [7] are 
capable of performing both types of simulation. 

3.5 Model analysis 
The output data from simulations can be processed using algorithms 
such as Principal Component Analysis to identify key regulators 
(for example, elements critical in studied cell behavior) or 
correlations and trends in the behavior of system elements or in the 
overall system. Additionally, we have developed a method to 
conduct sensitivity analysis to identify best targets for treatment. To 
this end, controllability analysis can also contribute to finding 
specific inputs that control intermediate values or outputs.  

3.6 Model correction 
This step involves probabilistic and statistical model checking for 
both, deterministic and stochastic simulations by using and 
expanding the tool described in [8]. Perturbation analysis considers 
the effects of certain altered causal relationships in both steady-state 
and transient behavior [9], [10]. 

3.7 Hypothesis generation and testing 
We are currently developing a method to automate extraction of 
hypotheses that will follow model simulation and analysis. This step 
in our framework will pose new questions leading to design of new 
wet lab experiments, propose refinements to the model, and guide a 
new literature search for information extraction to validate the 
generated hypotheses.  

4. CONCLUSION 
The focus of our project is development of a completely automated 
model design and analysis procedure. Many tasks out of the ones 
mentioned in Section 3, such as extraction of frames from literature, 
causal inference and model simulations have shown promising 
results. We are applying this approach on models of cell signaling 
and metabolism networks as well as on cell-cell communication. 
Questions in cancer immunology concerning the effect of mutant 
Ras on metabolism of healthy cells, effect of exosomes on immune 
cells and their function are of special interest to us. The results from 
simulations of the case study model described in Section 2 will be 
used to find answers to these important questions.  
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ABSTRACT 
Codon context has been shown to affect mRNA translational 
efficiency, but existing methods and tools for designing codon 
context optimized synthetic genes do not provide quantifiable 
measures for evaluating design quality. In this study we examine 
statistical properties of codon context measures and algorithms for 
codon context optimization under reasonable constraint models. 

Categories and Subject Descriptors 
F.2.0 [Analysis of Algorithms and Problem Complexity]: 
General. 

General Terms 
Algorithms, Performance. 

Keywords 
Codon context, gene design. 

1. INTRODUCTION 
Expression of genes is fundamental to modern biotechnology. 
Several steps in the gene expression process may be modulated, 
including transcription, RNA splicing, translation and post-
translational modification of a protein. We will primarily focus on 
the process of translation, and the effect that synonymous 
mutations in a protein-coding gene confer to the expression of the 
corresponding protein. Working towards the objectives of 
synthetic biology, precise protein expression control has direct 
implications in improving heterologous expression, and in 
successfully designing and fine-tuning gene regulatory networks. 

In most species, synonymous codons are used at unequal 
frequencies. Codon usage bias is recognized as crucial in shaping 
gene expression and cellular function, affecting diverse processes 
from RNA processing to protein translation and protein folding. 
Rarely used codons have been associated with rare tRNAs and 
have been shown to inhibit protein translation, where favorable 
codons have the opposite effect, something that is particularly 
pronounced in prokaryotic organisms [11]. The use of particular 
codons through synonymous mutations has been shown in certain 
cases to increase the expression of transgenes by more than 1000-
fold [7]. 

Gutman and Hatfield first noticed that codon pairs in prokaryotic 

genes exhibit another significant bias towards specific 
combinations [8], where codon pair optimization influences 
translational elongation step times [10]. More recent work by [3], 
[13], and [4] who synthesized novel coding regions utilizing large 
scale codon pair optimization and de-optimization, coupled with 
de novo synthesis of the constructs and in-vivo experimentation, 
provided further evidence of the influence codon pair bias has on 
translational efficiency. 

Several mathematical methods have been proposed for the study 
of codon context bias, including [1, 3, 5, 9, 12, 14]. Several 
published gene design tools provide functionality for controlling 
codon context, albeit no two tools share the same measure of 
codon context bias. Eugene [6] is a standalone tool developed for 
multi-objective gene optimization and provides functionality to 
optimize mRNA codon context bias, but uses ‘percentages’ to  
indicate improvement towards a target objective instead of scores, 
precluding quantification of results and comparison to other 
methods. Codon Optimization OnLine (COOL) [2] is a web-based 
utility that can optimize for multiple objectives including codon 
context bias. The optimization process uses a genetic algorithm to 
produce several approximately pareto-optimal solutions given a 
set of design criteria. Codon context optimization is based on 
matching a given host codon pair distribution and no cumulative 
score is available to quantify the end result. 

All current methods and tools have severe limitations, the most 
crucial being a lack of reference information about the 
optimization objectives and the optimality of the designs. 
Arbitrary scores are used to quantify codon and codon context 
bias, and it is hard to justify the use of one method over another. 
In this paper we focus on codon context and attempt to shed light 
on its statistical properties, as well as exact and approximate 
methods to evaluate the quality of an optimized design. 

2. CODON CONTEXT 
2.1 Statistical properties of codon context bias 
A measure of codon context bias can be defined from the 
following formula of codon pair score (CPS) [3] (supporting 
online material, Fig.S1): 
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where the codon pair AB encodes amino acid pair XY , F denotes 
the number of occurrences, O is the observed number of 
occurrences and E is the expected number of occurrences.  

Codon pair bias (CPB) for an entire gene sequence is the 
arithmetic mean of codon pair scores for all pairs making up the 
entire gene sequence. 
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where k+1 is number of  codons in the gene sequence. 

We have shown that under the above definitions the CPS measure 
is independent of codon bias, scores of different codon pairs are 
mutually independent, and the CPB values of protein variants of a 
given gene are approximately normally distributed (proofs 
omitted). As such, the mean, standard deviation, and variance of 
such scores can be approximated, and the p-value of a protein 
being encoded by an mRNA with a specific CPB can be 
calculated. This information can be used to determine the 
significance of a specific codon bias score of an mRNA and used 
to estimate the effect on the gene’s expression levels.  

Despite differing definitions of alternative codon context bias 
measures, the statistical properties and computational methods 
discussed in this paper are applicable to all measures where codon 
context is evaluated in regions of constant size surrounding a 
codon, a property common among all examined measures in 
current literature. 

2.2 Codon context optimization 
We have proved that it is possible to efficiently design an mRNA 
encoding of a given protein with optimal CPB, maximized or 
minimized, using dynamic programming. Our algorithm involves 
a linear scan of the amino acids of the protein in order, keeping 
track of the best score thus far for each codon at the currently 
examined position. CPS depends only on the codon pair 
examined, meaning preceding and following selections of 
synonymous codons do not affect the score of the currently 
considered codon pair. Although we need to consider all codon 
pairs corresponding to each amino acid pair, we need only retain 
the maximal (or minimal) score for each codon pair chain ending 
at the currently examined codon, together with a pointer to the 
‘parent’ codon that ended that chain before the current position. 
The pointer information can be used to retrieve the mRNA 
encoding with the maximal (minimal) bias once the optimal score 
is calculated and optimal chain identified. This process is 
analogous to the calculation of the edit distance of two strings and 
the subsequent generation of their alignment. 

Codon bias is one of the primary design objectives aiming to 
control gene expression, and commonly it is desirable to control 
the codon distribution while optimizing the CPB of a protein 
mRNA encoding. Codon pair bias optimization while maintaining 
a fixed codon distribution is a hard computational problem and we 
have characterized it as a variant of the Travelling Salesman 
Problem (TSP), albeit one with polynomial time complexity as a 
function of the protein size [13]. We designed a dynamic 
programming algorithm to maximize/minimize CPB under codon 
distribution restrictions, which keeps track of every possible 
assignment of available codons to previously encountered amino 
acids and their optimal scores at each step. This algorithm has 
O(n65) time complexity (for a protein with n amino acids), which 
we can reduce to O(n42) by taking advantage of the 
interdependence of synonymous codons, meaning their degrees of 
freedom (as, for example, one codon frequency is sufficient to 
determine the frequency of the single alternate synonymous codon 
for a given number of occurrences of their corresponding amino 
acid). 

Due to impracticality of the aforementioned algorithm, we 
designed and implemented a branch and bound algorithm to 
optimize CPB of a protein encoding under a fixed codon 
distribution, but, despite significant speedup, this solution is still 
not practical for any but the smallest proteins (<100 amino acids). 

Practical approximations of optimal codon pair bias designs under 
a fixed codon distribution involve the use of metaheuristics such 
as simulated annealing, a technique particularly appropriate for 
TSP problem variants. We have successfully used simulated 
annealing to approximate optimal CPB designs within a 99/100 
ratio for small proteins (<100 amino acids). 

Software implementations of all aforementioned algorithms are 
available from the authors upon request. A web-based utility is 
currently under construction. 
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ABSTRACT
Pipetting operations are at the core of nearly every molecu-
lar biology protocol. They provide a way to precisely move,
mix or separate liquids, whether they be samples, reagents
or other materials. However, a major issue of manual pipet-
ting rests in the feedback it provides to the user. Further
issues arise when pipetting small volumes or when perform-
ing a large number of operations due to the cognitive burden
associated with remembering accurately every action. This
leads to uncertainty of sample content, wasted reagents and
contributes to making biological research difficult and ex-
pensive.

While recent efforts[9] have demonstrated the use of a
web application to provide visual pipetting instructions for
well plates, the system does not incorporate feedback of the
user’s action. Other systems[3][2][1] rely on custom hard-
ware to provide the pipetting instructions but still lack the
ability to have real-time feedback, on the user’s actions.

To solve this problem, we have developed a computer vi-
sion system able to track the position of the pipette tip rel-
ative to a plate in real-time. We also show the reverse-
engineering of an electronic pipette that allows to operate
the system in a closed-loop and drive the actuation of the
pipetting operation automatically. Due to its simple hard-
ware requirements, this system is readily retrofitted to ex-
isting lab furniture, providing pipette tracking capabilities
with minimal workflow adjustment on the part of the user.
A video of the pipetting tracking system is available at:
http://vimeo.com/charlesfracchia/welltracker

Keywords
pipetting, computer vision, reverse engineering

1. SYSTEM ARCHITECTURE
The different components of the context-aware pipetting

system are outlined in the system architecture in Figure 2.
The system is composed of two main parts: the computer

vision system and the electronic pipette. We have built the
system to relax as many constraints as was possible and
reasonable. Currently, the system only requires the use of
a USB camera overhead and special tips whose sole modi-
fications are their colored ends. The color can be changed
in the code and is therefore not restricted to our arbitrary
choice of blue.

This project makes use of the popular OpenCV[4] library
to carry out the computer vision portion of this work. The

∗Corresponding Author

Figure 1: Annotated view of the plate tracking sys-
tem. In yellow: the wells that the user pipetted
into

task of tracking the user’s pipetting patterns can be sub-
divided into two problems: first, obtaining positions and
naming each of the wells in the plate being used and, second,
obtaining the current position of the pipette tip. Once these
two subproblems are solved, the current well into which the
user is pipetting can be extracted by comparing the position
of the tip to the position of the closest circle.

2. WELL AND TIP DETECTION
The computer vision task of tracking and annotating well

plates rests on the assumption that a defining, recognizable
pattern can be extracted and tracked in a sufficiently ag-
nostic way as to avoid restricting the user in their choice of
plate. The number of wells in a plate is determined by the
number of rows and columns regimenting the grid pattern in
which the wells are arranged. Plates are often referred to by
the number of wells they have. Common formats are either
96-well plates: 8 rows by 12 columns; and 384-well plates:
16 rows by 24 columns.

With the exception of some cell growth plates, the vast
majority of plates have circular wells arranged in the grid
pattern previously described. We therefore decided to base
our detection on this common feature. Circle detection is
performed in our system by using the OpenCV HoughCir-
cles[5] transform. Internally, this transform first performs
edge detection using the Canny algorithm[7] before using
a gradient search method[8] to detect circles on the image.
The algorithms using the transform each have input param-
eters that affect the overall result of the circle detection.



Figure 2: The overhead camera provides video to
the embedded computer running the computer vi-
sion code in real-time. The code detects the plate,
annotates its wells and sends a message to the Web
interface displayed on the tablet to provide real-time
pipetting feedback to the user. The tablet is solely
used to provide localised, intuitive feedback to the
user and is not a required component of the system.
An electronic pipette is used to close the loop in our
system and prevent pipetting into the wrong well.

The parameters were chosen to ensure maximum detection
of the circles representing the wells in varied lighting and
viewing angle conditions.

Key to determining the bounds of a well by solely us-
ing the circular well as the feature is the ability to detect
the edge wells, in particular the four corner wells. In order
to reduce search time through all detected circles from the
previous step, the image is split into four equally sized quad-
rants. The corner wells are then detected by computing the
distance from each of the wells within the quadrant to their
respective corners.

Using the center of each well obtained from the circle
detection step described previously, we fit a line passing
through both corner wells. Using the knowledge that wells
are arranged following a grid pattern, we thus expect all A
row wells to be within some minimal distance from the fit-
ted line. Once all row wells are detected, we iterate from
both edge wells at columns 1 and 12 inward to associate
the detected circle with the particular well.

In order to mitigate the effect of lighting artifacts, we
check the distance between adjacent wells and if it is found
to be larger than the average distance between detected cir-
cles on the overall plate, we instantiate the missing circle
along the fitted line. This allows us to fill in wells that may
be missing due to lighting or other aberrations. The whole
process is then repeated for each row. The following row
edge wells are determined by calculating the wells with min-
imum distance from the previous edge wells but that are
not along the previously fitted row axis. The end result of
this row-by-row annotation is shown in Figure 1. Tests con-

ducted in different lighting conditions and plate orientations
show that this annotation algorithm is robust.

In order to successfully and reliably track the position
of the tip, we opted for tracking a custom-colored tip by
applying color filtering to the frame. The choice of color is
arbitrary and can be readily changed.

3. REVERSE ENGINEERING THE EDP3
In order to demonstrate closed-loop pipetting operations,

we reverse engineered an electronically drivable pipette. This
serves as a proof of concept application for incorporating ac-
tuation in the loop, allowing to assist pipetting operations
when the user is over the correct well. Using a logic ana-
lyzer[6] wired to each of the terminals on the battery con-
nector, we were able to collect all communications from the
EDP3 electronic pipette. However, in its normal state, the
pipette did not seem to output any data. Thanks to the
help of a Rainin engineer, we were able to obtain a compiled
version of the Windows utility used to control the EDP3
remotely. Using a USB FTDI Serial cable and the logic
analyzer, we captured all available commands and their re-
sponses by the pipette. We then created a custom board that
plugs in the back port and enables wireless control (802.15.4)
of the pipette. The schematics and firmware for the board,
as well as the communication commands for the pipette are
available by contacting the author.

4. CONCLUSIONS
This work describes the creation of a pipetting system that

is closed loop and context aware. While the current incar-
nation of the system relies on the presence of a blue marker
at the extremity of the tip, further work on classifiers might
enable its operation without any special tips. The work out-
lined in this paper enables the future insertion of controls
systems, thus carrying the promise of increased traceabil-
ity, reproducibility and reliability of this key biological lab
activity.
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ABSTRACT 

CRISPRs, TALs, and siRNAs are efficient tools for engineering 

cell activity. CRISPRs and TALs in particular edit the genome, 

allowing knock out or knock in of functionality. This makes them 

prime resources in the synthetic biologist’s toolkit. We provide a 

web-based computational platform for selecting CRISPR and 

TAL designs out of a database of designs targeting most human 

and mouse genes. Furthermore, we provide computational tools 

for the de novo generation of designs to arbitrary target sequences. 

General Terms 

Algorithms, Design, Standardization 

Keywords 

Cell engineering, synthetic biology, CRISPR, TAL, design 

1. INTRODUCTION 
CRISPRs and TALs enable efficient knock out and knock in of 

functionality in a cell, making them powerful engineering tools. 

While online design algorithms exist, there is currently no 

standardized pool of CRISPR and TAL designs. To remedy this 

situation, we created databases of CRISPR and TAL designs 

produced using our design algorithms targeting most human and 

mouse genes. Furthermore, we have made these databases 

accessible through a web interface. For cases where a predesigned 

CRISPR or TAL does not exist, we provide through the same web 

interface direct access to our design algorithms, enabling users to 

enter arbitrary target sequences and retrieve suitable designs. 

2. METHOD 

2.1 Design Algorithms 
Our CRISPR and TAL design algorithms implement design rules 

derived from analysis of laboratory data and best practices [1, 2, 

3]. For a given target, a pool of potential candidate CRISPRs or 

TALs is generated and each is scored by one of the algorithms. 

The top-scoring candidates are then selected. The scoring strategy 

balances predicted effectiveness of a CRISPR or TAL versus its 

predicted risk of off-target effects. 

2.2 Databases 
The CRISPR and TAL MySQL design databases reside in the 

cloud, hosted by Amazon’s Relational Database Service. 

2.3 APIs 
Web-based APIs connect the databases and design algorithms to 

the user interface, providing responses in JSON format easily 

processed by the user interface. The APIs are written in Java and 

are hosted on Amazon EC2 instances. 

2.4 Web Interface 
The web interface providing access to the CRISPR and TAL 

design databases and to the design algorithms is written in 

JavaScript and hosted on an Amazon E2 instance. Figure 1 shows 

the CRISPR search page. Figure 2 shows corresponding search 

results. 

 

Figure 1. CRISPR Search Interface 



 

Figure 2. CRISPR Search Results 

3. RESULTS 

3.1 Gene Coverage 
Our CRISPR, TAL, and siRNA designs target a total of 18,002 

genes, where each technology targets each gene. This enables 

researchers to choose more than one method for the same gene. 

Furthermore, our CRISPR designs target an additional 148 genes, 

our TAL designs target an additional 2,559 genes, and our siRNA 

designs target an additional 241 genes. This overlap in targeting is 

shown in the Venn diagram in Figure 3. 

 

Figure 3. Gene Coverage 
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ABSTRACT
Oligonucleotide library synthesis can generate many thou-
sands of high-quality DNA sequences at low cost. Coupled
to reporter assays that utilize high-throughput sequencing,
this platform can be used to simultaneously measure thou-
sands of computationally designed genetic elements in a sin-
gle experiment. We have developed a software framework
called Promuter that can design and interpret these mas-
sively multiplex experiments. Promuter uses position weight
matrices and an iterative mutational strategy to identify,
score, and modify cis-regulatory elements in E. coli that
control transcription, translation, and inducible expression.
We used Promuter to generate a library of over 140,000 sim-
ple transcriptional circuits in E. coli and measured their in-
put/output relationships. These circuits utilize over a dozen
different synthetic and natural transcription factors, and can
be used to optimize small-molecule biosensors and quantita-
tively tune synthetic genetic systems.

1. BACKGROUND
Gene expression is choreographed by short stretches of DNA
called genetic regulatory elements. By interacting with pro-
teins and RNAs, these elements form additional layers of
genetic instructions interspersed between and within the
protein-coding genes themselves. Unlike the straightforward
relationship between the sequence of a gene and its corre-
sponding protein, the relationships between the location, se-
quence, and function of regulatory elements are extremely
complex and poorly understood. A better understanding of
these relationships will have vast implications for medicine
and biotechnology, such as predicting disease from natural
human genetic variation and for programming synthetic ge-
netic circuits for environmental sensing, bioproduction, and
molecular diagnostics.

Our knowledge about how genetic elements function comes
from comparing and measuring the activity of natural se-
quences, or from genetically perturbing natural elements at
relatively small scales. We still have only limited ability to
predict how changing these DNA elements will affect expres-
sion, and have even less understanding of how to design and
tune novel regulatory systems for biotechnological applica-
tions.

2. PREVIOUS WORK
Advances in oligonucleotide synthesis now allow for the pro-
duction of large amounts of inexpensive, high-quality syn-

SYNTHETIC

DNA

LIBRARY

Figure 1: Up to 500,000 distinct DNA oligonu-
cleotides, each up to 230 base-pairs long, are compu-
tationally designed and printed simultaneously onto
the surface of a glass slide. After printing, the DNA
is eluted, resulting in a complex library.

thetic DNA oligomers. We developed an experimental method
called FlowSeq that combines oligonucleotide synthesis with
fluorescence-activated cell sorting and high-throughput DNA
sequencing to measure protein expression from thousands of
synthetic constructs in a single experiment. Applying this
approach to E. coli, we have previously examined the com-
posability of regulatory elements that control transcription
and translation[1], and explained why rare codons at the
N-terminus of genes increase protein expression[2].

3. PROMUTER
Promuter uses strength and spacing of multiple position
weight matrices to identify and score promoters and tran-
scription factor binding sites. We use data from our previ-
ous high-throughput studies[1] to train a model of transcrip-
tional rate based on sequence alone. To create new genetic
elements, we then build a mutational landscape in which
certain mutations are favored and otehrs are disfavored, and
iteratively search that landscape for combinations of muta-
tions that satisfy constraints, such as the creation or removal
of regulatory elements, or the maintainence of the current
transcriptional or translational rates. We have used Pro-
muter to generate a wide range of circuit designs by modify-
ing number, location, and strength of binding sites, as well
as circuits that self-repress and self-activate. Our circuits
utilize commonly-used transcription factors like tetR, lacI,



and λ cI, as well as other lambdoid repressors, zinc finger-
based transcriptional activators, and allosteric transcription
factors that sense molecules of industrial relevance.

4. FLOWSEQ
Using our FlowSeq method, we identify the input/output re-
lationships for each circuit, identifying those that perform a
variety of useful functions, such as amplification and damp-
ening of input signals, band-pass and band-stop filters, and
switch-like behavior. We also perform the experiments in
media with different concentrations of small molecule in-
ducers or at different induction time points. In addition
to being useful for the programmable modulation of gene
expression, a quantitative understanding of the behavior of
these circuits and their constitutive elements will allow for
predictive design of more complex synthetic gene regulatory
systems.

5. DISCUSSION
Until now, our knowledge about how genetic elements func-
tion comes from comparing and measuring the activity of
natural sequences, or from genetically perturbing natural
elements at relatively small scales. The approach described
here allows unlimited interrogation of sequence-space to gen-
erate thousands of simultaneous hypotheses, and can answer
questions that were previously intractable. As sequencing
and synthesis become cheaper, faster, and higher quality,
synthetic and systems biology are exponentially accumulat-
ing predictive capacity in a rapid design-build-test cycle.
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Figure 2: (A) Using Promuter, we computationally
design and synthesize a library of interacting pro-
moters and regulatory elements. The library is then
cloned into a plasmid to express super-folder GFP;
mCherry is independently expressed from a consti-
tutive promoter to act as an intracellular control
(1). The plasmids are transformed into E. coli and
then FlowSeq is performed to quantify DNA and
protein levels for each construct (2). In FlowSeq,
cells are sorted via FACS into bins of varying GFP to
mCherry ratios (3), barcoded, and sequenced with
short Illumina reads to reconstruct protein levels for
each individual construct (4). (B) On every oligonu-
cleotide synthesized, the left promoter expresses a
transcription factor, and a second promoter controls
a reporter via a transcription factor binding site. By
measuring the reporter over a range of transcription
factor expression levels, we can measure a character-
istic response curve for the inducible promoter.
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ABSTRACT 
Triplex-forming small molecules are nanomolecular 
mutagens designed to precisely target a genomic locus by 
locally recruiting and upregulating the endogenous genome 
homologous recombination (HR) machinery. Upon 
recruitment, the HR machinery at some frequency utilizes 
donor DNA small molecules containing precise edits as 
nanomolecular recombinagens for HR-dependent genome 
repair safely and efficaciously. Hematopoietic progenitor 
cells dosed with these mutagens and recombinagens offer a 
regenerative treatment modality for hematological 
disorders, such as for a misspliced or defective adult β -
globin subunit in β-thalassemia or sickle cell disease, 
respectively. A semi-automated rational design approach 
optimizes these recombinagenic and mutagenic small 
molecules for genome engineering and molecular therapy. 

Keywords 
Design, Genome engineering, Molecular therapy.  

1. INTRODUCTION 
Triplex-forming peptide nucleic acid (PNA) molecules are 
composed of moieties that are partially peptide (i.e. a 
polyamide linked backbone) and partially nucleic acid (i.e. 
natural and unnatural nucleobases) [1]. These hybrid 
molecules are able electrostatically bind and displace 
genomic double strands while remaining resistant to 
proteolytic and nucleolytic degradation (Fig. 1A).  Donor 
DNA molecules are composed of backbone termini 
containing phosphorothiolate linkages that confer 

Figure 1. (A) Synthetic triplex-forming peptide nucleic acid 
(PNA) chemistry. (B) Triplex-forming PNA molecules 
designed as mutagens by windowing around polypurine 
targeting sites near human genome β-globin, γ-globin loci. 
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nucleolytic degradation resistance (Fig. 2A). 

2. MATERIALS AND METHODOLOGY 
Mutagenic triplex-forming PNA and recombinagenic donor 
DNA small molecules were designed for human 
chromosome 11 to precisely target HR activity by 
windowing around polypurine targeting sites in whole 
human genomic DNA near the β-globin gene or γ -globin 
loci and verifying propensity for both Watson-Crick and 
Hoogsteen base pairing (Fig. 1B). The recombinagenic 
donor DNA designs were intended to edit the β -globin 
locus to repair its missplicing, or to edit the γ-globin locus 
to induce fetal γ-globin expression by centering and 
windowing off-center from the editing sites and verifying 
propensity for Watson-Crick base pairing (Fig. 2B).  

3. RESULTS AND DISCUSSION 
Designed mutagens and recombinagens precisely targeted 
and edited episomal and chromosomal genomic human 
DNA as shown by molecular weight shifts, mRNA 
expression, and repair frequencies consistent with repair of 
β-globin, and induction and regulation of γ-globin under 
hypoxia in mammalian progenitor cells [2].  

4. CONCLUSIONS 
Gene targeting mutagens and editing recombinagens 
designed to treat the genomic basis of β-thalassemia and 
sickle cell disease in regenerative progenitor cells has the 
potential to permanently address these hematological 
disorders in diverse populations [3]. 
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Figure 2. (A) Synthetic donor DNA chemistry. (B) Donor 
DNA molecules designed as recombinagens by centering 
and windowing over editing sites at human genome β-
globin, γ-globin loci. 
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ABSTRACT 

The process of microbe engineering at an industrial scale requires 

storing vast amounts of DNA sequence information. Multiple 

teams must be able to share design ideas, scientists must be able 

to communicate with production engineers, and project managers 

must be able to track details from the early stages of conception to 

the final stages of evaluation. To meet these multiple needs we 

have designed and are building a model for communicating DNA 

sequence information. We present the principles of our data 

model here as we believe it is broadly applicable in the synthetic 

biology community.   

1. INTRODUCTION 
Zymergen is a technology-driven company applying radical new 

methods to design and improve microbes by rewriting their DNA. 

This capability allows us to generate novel chemicals, advanced 

materials, and pharmaceuticals. Our approach combines biology, 

robotic automation, and proprietary computational and analytic 

methods to do this work faster and cheaper than competing 

technology. Currently, we are working with large industrial 

partners helping them improve their existing production microbes. 

Over time we expect to develop a large portfolio of our own 

products, ranging from drop-in replacements for existing 

chemicals to advanced materials to life-saving therapeutics. 

Our technical development work is focused on establishing new 

molecular biological techniques, moving existing protocols to 

robotics workstations, and creating workflows that enable high 

throughput microbe engineering and evaluation. Within that work 

we face the challenge of communicating design concepts at the 

level of DNA parts, DNA assemblies, and engineered cells lines: 

(1) between Zymergen and partner businesses, as well as (2) 

between Development and Operations departments within 

Zymergen. In addition, we anticipate that new players will arise 

that will provide third-party services for building and testing 

various aspects of our cell engineering and evaluation pipeline. 

To address these data communications issues, we have designed 

and are building the system described herein. Our data model 

builds on the concepts of the Synthetic Biology Open Language 

v1.1 (SBOL) [1], specifically by introducing a new entity that 

defines relationships between sequences.  

2. Origins 
At the core of our data model is the SBOL concept of a DNA 

Component: an entity describing a region of DNA. The 

fundamental information is the underlying DNA sequence. 

Decorating that sequence are Sequence Annotations which are 

comprised of a region of nucleotides in that sequence and an 

orientation. One elegant feature of this model is that each 

Sequence Annotation can become its own DNA Component. The 

ability to nest DNA components within each other allows details 

to be captured at different levels of granularity. 

Consider a plasmid to illustrate these concepts.  The entire 

plasmid can be stored as a DNA component. Within that plasmid 

are features like an origin of replication, an antibiotic resistance 

marker, and an insert. Each feature is stored as a Sequence 

Annotation. The plasmid insert, in turn is its own DNA 

Component with Sequence Annotations like promoters, genes, 

and terminators. 

3. DNA Specification 
SBOL also includes the concept of a Collection as a way of 

grouping related DNA Components. We build on the concept of a 

collection with a DNA Specification. In addition to grouping DNA 

Components, the DNA Specification defines relationships among 

related sequences. It behaves much like a function: performing a 

specific operation on inputs to create outputs. Operations are 

performed on the underlying DNA sequence.  Examples include 

concatenating two sequences together, selecting a region from a 

larger sequence, or replacing one region with another. 

Returning to the above example of a plasmid, we may have a set 

of several related plasmids.  The DNA Specification describing 

this set would be made up of two inputs: the empty plasmid and a 

set of inserts.  The specification would perform a replacement 

operation, exchanging the insertion site in the empty plasmid with 

each of the insert sequences. The outputs of the specification 

would be the final set of related plasmids. Note that the empty 

plasmid in our example is a DNA Component and that the set of 

inserts may be another DNA Specification. Just as DNA 

Components can be composed of other DNA Components, DNA 

Specifications may also be composed of other DNA 

Specifications. 

Operations of a DNA Specification are intentionally not related to 

DNA function, properties, or behavior in a cellular context. They 

are explicitly string-manipulation functions in order to provide a 

clear distinction between the description of what DNA sequences 

are being designed or constructed and how or why those 
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sequences are under consideration. Our tools provide a separate 

layer of information (not described here) to convey, for example, 

construction protocols and biological function of those sequences. 

4. Design/build communication 
Let us illustrate how this two-part model of DNA Components 

and DNA Specifications facilitates one of the interactions 

described above. In our large-scale, automated process the teams 

responsible for deciding what DNA assemblies are built are 

different than the teams responsible for producing those 

assemblies. The designers can communicate their ideas via a DNA 

Specification. The outputs provide the exact sequences that 

should be produced, but they also illustrate how sequences are 

related which can be used to inform the methods used to assemble 

them. 

5. Flexibility of storage and presentation 
The DNA Specification provides a compact storage format for a 

set of similar DNA Components.  Shared elements, like the empty 

plasmid sequence in the above examples, need only be serialized 

once. Further compression can be achieved by relying on external 

resources. For example, a URI to a public database can point to a 

specific genome sequence.  

Given the right tools for interpreting DNA Specifications, the user 

can be presented with only the information of interest at the 

correct level of detail. A researcher performing a multiple 

sequence alignment might need the fine-grained detail of the exact 

sequence of every DNA Component in a specification whereas an 

operator might only need a list of parts in the freezer inventory. 

6. Conclusion 
Communicating DNA design ideas is central to the work we do at 

Zymergen. Our early implementations of the data model described 

here are providing a rich and flexible model for that 

communication. 

We are keenly interested in the development of SBOL 2, a project 

which is under development concurrent with our work on DNA 

Specifications. While SBOL 2 does not contain the pure textual 

relationships between DNA sequences, we look forward to 

studying this design further as it develops, and integrating with its 

final results. 
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1. INTRODUCTION
Standards are key to the success of systems and synthetic
biology since standards give biologists the ability to share
models. The leading standard representation of biological
systems is the systems biology markup language (SBML) [3].
Unfortunately, not all modeling efforts in systems biology
use SBML. For example, Karr et al. [4] developed a compu-
tational model of a whole-cell using MATLAB. This model
includes all of the molecular components of the cell and their
interactions, which makes the model quite involved. There
are some aspects of the model that are difficult to encode in
SBML. For example, the model makes heavy use of vectors
to represent regular structures, such as, the chromosome.
In SBML, you need a species for each position in the chro-
mosome. This does not scale, since it requires hundreds of
thousands of species with unique IDs and duplicated com-
mon properties. Although SBML cannot currently represent
such structures efficiently, the SBML arrays package has
been proposed to overcome such a limitation by enabling
the construction of complex biological models in a standard
manner. The draft specification is currently under review
by the community, and this work describes a prototype sim-
ulator that uses arrays.

The field of synthetic biology and the genetic design au-
tomation (GDA) tools that support this field also require
efficient modeling. The arrays package can also be helpful
in this domain. In particular, in synthetic biology, one may
be interested in modeling a population of cells that include
a genetic circuit design. This abstract uses as an example
population of cells with repressilator circuits [1]. Arrays al-
lows the creation of any arbitrary number of cells containing
the repressilator circuit.

Although arrays are useful in constructing more concise
models, efficiency of analysis is not improved if the arrays
are simply ”flattened” out for simulation. This abstract
describes a simulation method within the GDA tool
iBioSim [5] that handles array constructs on-the-fly rather
than flattening the model. Although this method has some
overhead with index calculations, it provides significant
memory advantages over simulating flattened models.

2. MODELING
iBioSim provides a user interface to construct SBML mod-
els. This includes all SBML core constructs: Compartments,
Species, Reactions, Parameters, Rules, Events, Constraints,
etc. Figure 1 shows an example of an SBML model con-

Figure 1: Array of repressilator circuits in iBioSim.

structed in iBioSim. This model corresponds to the repres-
silator circuit. In the repressilator, there are three proteins
produced from three promoters in which each protein acts
as a transcription factor for one promoter creating a loop
that forms an oscillator. Namely, the first protein, LacI,
inhibits the transcription of the production of the second,
TetR, which inhibits the production of the third protein,
CI, which inhibits the production of LacI. The tool pro-
vides high-level constructs to represent genetic circuits using
SBML core elements. The blue rectangles represent chemi-
cal species, which in this particular model are the proteins
TetR, LacI, and CI. Promoters are represented as red dia-
monds, which in SBML are simply species. The red arcs
represent repression and the green arrows represent genetic
production. These processes are represented using reactions
in SBML. In addition, the model includes a degradation re-
action for each species that is not shown on the figure.

The arrays package allows the expression of regular con-
structs more efficiently. Using this package, SBML objects
are extended with the addition of dimensions and indices.
An SBML object is an array when it is given dimensions.
Each dimension can have a name and an id. Dimensions are
required to have a size that points to a constant parameter
with a non-negative integer value. In addition, dimensions
should have an integer associated with the referred array
dimension. Furthermore, objects can have indices to spec-
ify an array index to reference an arrayed object. Indices
reference arrayed objects by specifying an attribute.

iBioSim has been extended to support such array constructs.
Figure 1 shows how this is currently done in iBioSim. In
order to indicate an object has dimensions, you can specify
it by using square brackets enclosing the id to a constant
parameter e.g. ”[” size ”]”. In this particular case, the species
TetR, CI, and LacI, and the promoters P0, P1, and P2 are



arrays of size n. The index math is specified within the
attributes box of each object. Without arrays, the same
population of genetic circuits would have to be instantiated
explicitly multiple times. Not only would this be a tedious
process, but also it would not scale, since the model would
grow quickly for large population sizes.

3. ANALYSIS
There are two ways to simulate models with arrays. The
first way is to flatten a model before simulation. The arrays
package is just syntatic sugar for SBML models. That is,
semantically equivalent models can be constructed without
this extension. This means an SBML document using ar-
rays can be flattened into a new SBML document without
arrays. This flattening procedure has been implemented in
the Java-based library of SBML called JSBML. This routine
eases the integration of the arrays package into existing anal-
ysis tools. However, this approach has some limitations: it
restricts arrays objects to be statically computable (i.e. con-
stant sizes), and it can cause model blow up. The flattened
method can be analyzed using a variety of different methods,
such as Gillespie’s stochastic simulation algorithm (SSA) [2].

One of the problems with the flattening approach is that
when a model is flattened to an intermediate representa-
tion, valuable information is lost. Another way is to sim-
ulate the original model as it is. An extension to SSA,
where arrays are handled on-the-fly, is implemented within
iBioSim. In this approach, only one copy of each construct
is necessary with the exception of variables. Variables, such
as Species, Parameters, and Compartments, among others,
need a record of the state of each member of the array. Other
constructs need a record of the size of the array. When
performing arrayed reactions, events, rules, and others con-
structs that change the state of the simulation, the simu-
lator iterates through each of the components of the array
and performs the necessary updates. Objects that reference
other arrayed objects need to calculate the index for each ob-
ject being referenced. The extended SSA potentially allows
for the analysis of arrayed models with dynamically chang-
ing sizes. In addition, this approach prevents the model blow
up caused by flattening.

4. RESULTS AND DISCUSSION
Comparison between the two approaches is conducted by
simulating the arrayed version of the repressilator with dif-
ferent sizes. While the runtime is a bit higher as shown in
Fig. 2, the method discussed in this abstract reduces the
memory usage substantially. This enables the simulation
of larger models. Furthermore, handling arrays on-the-fly
ultimately allows one to leverage sparse arrays to further
improve the memory-efficiency. In the future, this new sim-
ulator could also support dynamic arrays enabling the sim-
ulation of populations of cells as they grow and divide.
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ABSTRACT
gro is a flexible cell programming language and powerful
Agent-based Model (AbM) tool developed in Klavins Lab
for simulating bacterial colony growth and cell-cell commu-
nication. It is used as a prototyping tool in synthetic bi-
ology. Here, we present some extensions made to gro to:
1) improve its performance (a new shoving algorithm and
a new genetic expression module) and 2) add new func-
tionalities (bacterial conjugation and nutrient uptake). The
increase in performance is achieved mainly by the shoving
algorithm that seeks to minimise calculations for relocat-
ing and reorienting simulated bacteria in the colony. The
new genetic module also speeds up execution by calculat-
ing protein concentrations in each bacterium using a model
based on Boolean networks with delays. The overall speedup
achieved is about 20-fold. The new gro simulator with these
modules can grow bacterial colonies of around 105 cells in
10 minutes. Bacterial conjugation is being included as a
new cell-cell communication method to be simulated with
gro. The nutrient uptake module treats bacterial growth
as an emergent property dependent on underlying nutrient
concentration, consumption and biomass conversion.

Keywords
Agent-based Model, Individual-based Model, gro, Synthetic
Biology, Bacterial Conjugation, Cell growth, Gene expres-
sion

1. INTRODUCTION
Synthetic Biology in prokaryotic cells is moving from single-

cell programming, where all the cells execute the same ge-
netic program, to distributed synthetic multicellular frame-
works with different bacteria processing different programs
and communicating with their neighbour cells. Most of the

current multicellular systems are based on quorum sensing
cell-cell communication protocols [1]. Other possibilities for
intercellular signaling are phage systems [2] or plasmid con-
jugation [3]. We add conjugation [4] as a new communica-
tion protocol for multicellular programming to the features
of gro. This multicellular approach yields more sophisti-
cated and complex genetic circuits. However, finding the
right parameters for optimal functioning and “debugging”
the circuits is time consuming and a costly task if done in a
wet lab. Computer-based simulators help to fulfil these tasks
to a certain extent. Agent-based Model (AbM) is a class of
simulators in which each entity of the simulation is treated as
an agent, and therefore, mostly operates individually accord-
ing to its designated behavior. Examples of AbMs for syn-
thetic biology are described in [3, 5, 6, 7]. gro [5] is an AbM
framework for specifying and simulating multicelled behav-
iors. It focuses on bacterial colony growth and signalling.
It is a powerful tool with a flexible and simple architecture.
Improvements such as performance, more communication
primitives and a biological-oriented programming paradigm
would help to handle more complex and realistic simulations.

2. THE gro EXTENSIONS
We now describe the new features that we are including

and their impact on gro’s functionality.

2.1 CellEngine
CellEngine is a new algorithm for executing bacterial shov-

ing. It replaces Chipmunk [8] in gro for that function. This
replacement gives rise to an order of magnitude in execu-
tion speedup. For example, simulating the growth of a 5000
bacterial cell colony took gro about 7 minutes when using
Chipmunk, while it only took 15 seconds with CellEngine.
This new algorithm will be described in detail in an upcom-
ing work by our group.



2.2 Nutrient uptake module
Bacterial growth in gro is driven by a parameter that de-

termines the volume each bacterium gains per minute. How-
ever, it does not account for underlying nutrient conditions,
such as local nutrient depletion and each of the bacterium’s
growth phases. We are building a library that implements
nutrient uptake in a manner similar to [9]. It is based on
a grid that stores the nutrient concentration at each loca-
tion. Each bacterium consumes a certain amount of nutri-
ents from the location of the grid where it currently is and
converts the consumed nutrient to biomass. When no nu-
trient is left at the specific location, no growth occurs. This
module’s goal is to increase bacterial growth realism in gro.

2.3 Gene expression module
gro specifications follow a rule-based paradigm. These

rules take the form of guarded commands in which a guard G

is tested and if it evaluates to true, a block of instructions B is
executed. We propose a complementary approach in which
the specification is expressed as a set of gene-expression units
grouped into plasmids. The activation and repression of
each gene is computed through a boolean network model
with delays, an efficient simplification of Differential Equa-
tion models. This new gene expression module will allow
simple linkage of SBOL 2.0 [10, 11] as an input format for
the genetic design for gro. The goal of this module is two-
fold: to simplify experiment specification and to accelerate
execution of the simulations.

2.4 Conjugation
Bacterial conjugation is a Horizontal Gene Transfer mech-

anism that transfers plasmid DNA from a donor bacterium
to a neighboring recipient bacterium. We implemented con-
jugation in a general manner: depending on the values of
two parameters, conjugation frequency, cf , and a neigh-
bor saturation threshold, Nc, conjugation may be set to act
as frequency-based, density-based or any intermediate stage
[12]. The implementation of conjugation broadens the va-
riety of cell-cell communication primitives available in gro.
This feature is crucial for simulating multicellular genetic
circuits based on conjugation that are being engineered for
the EU project PLASWIRES, http://www.plaswires.eu.

3. CONCLUSIONS AND FUTURE WORK
We have presented a brief description of the extensions

that we are preparing for gro: implementation of bacterial
conjugation, inclusion of a different programming paradigm
for specifying genetic circuits, coupling of bacterial growth
with nutrient uptake and the enhancement of gro’s perfor-
mance through a new shoving algorithm. With the new ex-
tensions it is possible to specify and simulate a broader range
of circuits in gro and to perform longer, more complex and
realistic simulations. Finally, we conclude that performance
bottlenecks for gro are located at the physics engine and the
program parsing and processing module.

gro’s modular architecture enables relatively straightfor-
ward addition of more biological tools. We foresee the inclu-
sion of tools such as phages, CRISPR, small RNA regulation,
etc. Direct import/export of the models is another interest-
ing direction: Use of SBOL 2.0 [11] enriched with quantita-
tive modelling data could serve as the basis of a standard
description language for AbM simulations. We believe that

gro can evolve to become even more intuitive and scalable to
be used in the realistic simulation of many synthetic biology
circuits.
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1. INTRODUCTION
Synthetic biologists forward engineer living systems to cre-
ate novel solutions for many of society’s grand challenges in
human health, materials, energy, and environmental reme-
diation. This process requires a highly interdisciplinary set
of skills and participants. The efficient exchange of informa-
tion and ideas can be facilitated by connecting researchers to
a social networking platform that encourages sharing, data
exchange/standardization, and collaboration. Unlike tradi-
tional social media experiences (e.g. Twitter, Facebook), a
system for synthetic biology will require that the social in-
teraction aspects be tied to a formalized set of design tools
that naturally expose real-life design activities to a social in-
terface. Interacting with the social networking tools should
enhance research, which in turn should enhance social net-
working.

Clotho 3.0 is a database management tool for synthetic bi-
ology [2]. Phagebook is a Clotho 3.0 app that serves as a
social networking interface incorporating lab inventory man-
agement and project/personnel networking. Phagebook fa-
cilitates collaboration amongst the synthetic biology com-
munity and like any other Clotho app, it directly commu-
nicates with Clotho apps for specification, design, assembly,
and verification of synthetic biological systems.

Phagebook currently consists of three general networking
areas: personal, inventory, and research. Its social media
aspect allows users to create a profile, connect with other
researchers, update publications, and post progress updates
for projects and papers.

2. FEATURES
Phagebook uses Clotho to store its data in a MongoDB
database. Phagebook utilizes built-in Clotho features to
store and manage data. Additionally Phagebook exchanges
information with various Clotho applications, such as Phoenix
(www.cidarlab.org/phoenix) and Cello (www.cellocad.org).
This integration allows users to easily incorporate Phage-
book into existing aspects of their research.

2.1 Personal
Phagebook allows users to set up a profile, which lets them
be a part of institutions, labs and other social organizations.
Using their profiles, Phagebook users can update their sta-
tus, share publications, receive updates about orders and
projects, and add important events to their calender. Users
can “add friends” and collaborators to receive updates from

Figure 1: Phagebook allows users to share informa-
tion via a social networking application. This appli-
cation is unique in that it leverages real data and
existing design tools to inform and enhance the so-
cial media experience.

other researchers and keep up with the progress of their col-
leagues. Phagebook’s integration in Clotho provides a pow-
erful platform allowing users to post statuses with features
they have created in Clotho applications, such as DNA se-
quence data and experiment protocols, which can then be
accessed by other users via Clotho.

2.2 Research
Users have the ability to design, create, and share wetlab
and computational synthetic biology projects. Projects can
be associated with multiple Phagebook members and labs,
which can help collaborative efforts. Wetlab projects include
online notebooks in which users can record protocols, exper-
iments, genetic parts information, and test results. These
notebook entries respect privacy options set by the user and
can only be accessed by members of the project. The ability
to document and share project details enables users to re-
ceive quick updates and enables Lab PIs to keep track of the
work and progress being made in a project. Additionally, lab



members have the ability to comment on results, progress
updates, experiment protocols and notebook entries.

Phagebook provides an online ecosystem for synthetic bi-
ologists. While there are several project documentation
tools currently available, such as the iGEM registry [1] and
OpenWetWare (www.openwetware.org), Phagebook drives
its strength from Clotho’s integrated features and metadata
capabilities. These unique features allow a more holistic ap-
proach to synthetic biology research.

2.3 Lab-Inventory Management
The Phagebook lab-inventory management system grants
users easy access to an ordering portal, which lists vendors
and product details. Depending on the user’s level of autho-
rization, the user can create a new order or edit, approve,
and submit an existing order. This simplifies and stream-

lines the ordering process by containing all orders in one
accessible location. Additionally, users can monitor inven-
tory and budgets for labs and projects. There are several
built-in features that alert a user of budget constraints and
recent orders before a new order is placed.

2.4 For more information
See http://www.cidarlab.org/phagebook
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1. INTRODUCTION
The field of synthetic biology has grown considerably in

recent years. This growth has improved the core technolo-
gies used to engineer genetic systems and also increased the
scale of data used to design and build such systems. These
increases in scale necessitate the building of tools to store
and manage large amounts of data in addition to tools that
can reason with this data to improve foundational technolo-
gies. As a consequence, there has been significant growth in
both the theory and the software tools to accomplish some
of these tasks [3], such as standardized data model tools,
data storage tools, DNA assembly tools, system design tools,
design specification tools, simulation tools and data visual-
ization tools. Although there are currently many tools to
solve individual sub-problems, there still remains some im-
portant problems that have not been defined and solved in
great detail such as design verification and experimental de-
sign for data acquisition. Furthermore, there are few tools
that successfully integrate tools for each of the sub-problems
in a cohesive way such that a user can proceed through it-
erative design-build-test cycles that do not require detailed
knowledge of the tools on the back end.

To help address these problems we have built a tool called
Phoenix, where users are guided through an iterative, hi-
erarchical design-build-test cycle with sets of building and
testing instructions. In this work, we have defined and ad-
dressed existing sub-problem gaps and integrated other ex-
isting tools and data standards. Information flow in Phoenix
is presented to a user in an abstracted form such that mini-
mal knowledge of sub-problems is required and an iterative
design process can be tracked in a user interface.

2. RESULTS

2.1 Tool overview
At the highest level, a user inputs their design specifi-

cations, any existing constraints on those specifications (in
terms of structure, function, and performance), and their
DNA parts library. Then, Phoenix returns iterative sets of
instructions for building and testing the genetic constructs.
A user can then execute the experiments according to the
instructions and return sequence and flow cytometry data,
which can then be used to determine the next set of con-
structs to be built and tested (Fig. 1). This iterative process
continues until a construct that satisfies the initial design
specification input is produced.

The user interface of Phoenix displays an interactive map
of experiment sets, such that iterative design-build-test phases
do not loop endlessly into failed local maximums. Since
each experiment is mapped to data from sets of character-
ized genetic constructs, processed data and simulations can
be viewed in the user interface to evaluate processed data

and simulation results. This software framework allows for
the bulk of design choices, data analysis and data storage to
be handled by computational tools on the back-end, while
presenting the user with only the minimal necessary infor-
mation to evaluate and re-direct designs if necessary.

2.2 Back-End Tool Flow
Phoenix combines seven existing software tools and in-

troduces more than four additional sub-problem definitions
and solutions. A majority of these tools are not presented
directly to a user, but are used extensively on the back end.

The first series of tools and algorithms goes from an input
design specification and parts library to the first set of ex-
perimental instructions. This starts with uploading all DNA
sequences into a sequence editor tool (Benchling1) and ex-
porting annotated sequences into a multi-part Genbank file.
This file, along with files for sets of constraints used to pro-
duce abstract genetic regulatory networks (AGRNs) using
miniEugene [4] are uploaded and saved into Clotho2 (Step
0).

Phoenix is then idle until it receives a set of design spec-
ifications from the user (Step 1) in the form of a temporal
logic equation (‘function’), a constraint set to describe candi-
date structures that can be used as building blocks for com-
plex function (‘structure’), and a set of limitations on the
observed function (‘performance’). These specifications are
verified and decomposed using structure- and function-based
grammars within Phoenix (Step 2). These decomposed ge-
netic structures and functions are supplemented with tem-
porary testing parts and the first round of optimized part
assignment is performed to get the constructs for the first
testing phase (Step 3). These target parts and the parts
library are then exported into Raven [2] to produce an op-
timized DNA assembly plan (Step 4). At this point, the
user is returned a file with instructions for DNA assembly,
oligos needed for assembly, and a ‘key file’ that represents
the testing needed for subsequent data analysis (Step 5)
after building is complete.

The user then executes the building and testing instruc-
tions and returns into Clotho the sequence data via the se-
quence editor and the annotated key file (Step 6). Raw
cytometry data is then processed by a data analysis script
using the Bioconductor3 library in R (Step 7). This pro-
cessed data is then mapped with the key file to the core
Phoenix mechanistic model, where an algorithm for param-
eter estimation is used to determine measured rate constants
for each construct according to the assumptions of the core
model (Step 8).

At this point, based on the design hierarchy created by

1https://benchling.com
2https://clothocad.org
3http://www.bioconductor.org



Figure 1: Phoenix tool map and flow

the structural and functional grammars upon input, all pa-
rameters for the current stage of the design hierarchy are
known and can be used to simulate behavior at the next
stage. These parameter sets are collected and the parame-
terized models are converted to an SBML master equation to
simulate the behavior of this next stage of the design hierar-
chy (Step 9). Next, these simulations are verified using the
decomposed temporal logic equations and those constructs
which do not satisfy the function under the bounds of the
specified performance at that level of the hierarchy are fil-
tered out (Step 10). Lastly, the constructs that have the
best verification results are mapped back to parts and an-
other round of part assignment optimization (Step 11) is
performed and the results of both simulation and observed
behavior can be viewed in electronic datasheets using Owl
[1] (Step 12).

Steps 4-12 are repeated iteratively up the design hierar-
chy determined by the Phoenix grammars (Step 2), but the
user only ever views building end testing instructions (Step
5), a graphical map of the design hierarchy (Step 2) and
results in the user interface (Step 12).

3. CONTRIBUTIONS
Phoenix is designed to perform all of the necessary de-

cisions required in a design-build-test cycle for genetic reg-
ulatory networks, while only showing a user the minimal
information to perform the directed experiments and view
simulated and observed results. In addition to the work to
identify and link all necessary tools for an automated design-
build-test cycle, we created grammars for design decompo-
sition, cloned libraries of DNA building blocks to diversify

construct design space, developed standardized experimen-
tal methods for building and testing genetic constructs, de-
veloped scripts for parameter estimation based on cytometry
data, developed software for functional verification, devel-
oped algorithms for part assignment based upon functional
outcomes and predictions, and, created a front-end interface
that enables tool use without requiring detailed knowledge
of each of the tools used on the back end. We intend for this
tool to enable users to build highly functional synthetic ge-
netic regulatory networks with minimal background knowl-
edge.
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ABSTRACT 

Engineering diverse genomic libraries of complex biosynthetic 
pathways and dynamical systems in bacteria, including E. coli, is 
limited by poor recombination efficiency of multi-kilobase linear 
DNA. We have developed a novel methodology that is compatible 
with ribosome binding site or coding sequence libraries to 
integrate multi-gene constructs with high efficiency, allowing 
extensive sampling of functional variation for engineering 
biological systems. The method couples a serial “inchworm” 
chromosomal integration workflow for cycling antibiotic markers 
with FACS enrichment of pooled genomic libraries that 
minimizes off-target integrations which contaminate the serial 
integration process. We have validated the genome engineering 
approach by integrating a diverse expression library for the 7.5 kb 
violacein pathway and developed a pooled enrichment screen for 
antibacterial activity via competition with B. subtilis. We have 
also developed Goldenworm, a software tool that automates 
primer and integration cassette design, distilling best practices for 
cassette assembly and high-efficiency recombination. This 
genome engineering methodology enables integration of diverse, 
multi-gene genomic libraries suitable for optimizing biosynthetic 
gene clusters and dynamical systems in situ on bacterial 
chromosomes. 

1. INTRODUCTION 
Heterologous pathways are introduced into bacteria efficiently via 
plasmid transformation, generating combinatorial libraries of 
constructs that are screened or selected for the desired function. 
However, plasmid-borne constructs have several limitations for 
production systems or complex environments, including variable 
copy number and high rates of spontaneous plasmid loss without 
antibiotics. In addition, modern DNA fragment assembly methods 
limit library complexity since assembly efficiency is inversely 
proportional to the number of fragments. Moreover, improper 
assemblies such as those missing fragments severely limit library 

construction, forcing verification at the single colony level. Here 
we present a method that uses bacterial chromosomes as 
substrates for the serial assembly of complex genomic libraries 
that retain library purity through error correction checkpoints 
inherent to the mechanics of recombination. 

2. EXPERIMENTAL RESULTS 
We sequentially integrated a five-gene, 7.5 kb violacein 
production pathway from Chromobacterium violaceum. We used 
the Ribosome Binding Site Calculator [1] to parameterize the 
predicted expression space of a vioABEDC library, with each gene 
having 8 to 16 RBS variants, giving a potential library size of over 
200,000 genotypes. Using five stages of high-throughput 
electroporation we obtained 103 - 105 transformants per 
integration stage, resulting in a final library that samples up to 
10% of the designed genotypes. 
Our library samples considerable phenotypic diversity in color, 
titer and fitness when induced, and we sequenced several colonies 
to verify variation in RBS sequences. Due to the size of the 
library, we are adapting an emulsion-PCR based assay coupled 
with high-throughput sequencing [2] to estimate the number of 
variants. 

3. METHODS 
We utilized a modified EcNR1 strain [3] with TetR regulated 
expression of λ Red genes and select exonuclease knockouts to 
improve recombineering efficiency. Each integration cassette 
contains a gene library, a selection/enrichment cassette and 
chromosome homology. Inchworm assembly [4] allows sequential 
insertion of integration cassettes into a chromosome with strong 
selection at each stage. Subsequent integrations replace the 
selection/enrichment cassette from the previous stage, allowing 
resistance marker recycling and cell sorter enrichment of proper 
integrants. 

Traditional inchworm assembly is not compatible with a pooled 
genomic library strategy due to the bacteriostatic activity of many 
common antibiotics and a non-negligible rate of off-target 
integration. We addressed these limitations by engineering dual 
fluorescence/selection cassettes using sfGFP and mKate2 with 
kanR, cmR and specR and using fluorescence-activated cell 
sorting to screen out off-target integrants. For example, if the 
stage 1 insert contained RFP and the stage 2 insert contained GFP, 
cells that are positive for RFP and both GFP and RFP can be 
removed by cell sorting. 
Integration cassettes were constructed using a three-fragment 
linear Golden Gate assembly followed by gel extraction and 
nested PCR. The assembled parts consisted of the gene library of 
interest, a dual fluorescence/antibiotic resistance fusion gene, and 
a third fragment to introduce 500 bp of homology to the genome. 
The homology fragment is identical for each integration stage and 

Figure 1. Sorter-assisted pooled library generation workflow 
includes λ Red–mediated recombination, selective growth 
and FACS enrichment to sequentially incorporate gene 
libraries and screen out off-target integrants. 
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serves to boost transformation efficiency. The full-assembly 
product of Golden Gate assembly was gel extracted and amplified 
with nested PCR to yield sufficient DNA for high-efficiency 
transformation (>200 ng). 

 

4. DESIGN AUTOMATION 
Our design tool will incorporate the lessons learned from our 
experimental attempts to improve integration efficiency. For 
example, protecting the lagging-strand-targeting strand of the 
DNA fragment with phosphothioate modification has been shown 
to enhance efficiency [5]; the tool will output integration primers 
with this modification as appropriate. In addition, the Golden Gate 
fragment that extends chromosome homology will be designed to 
integrate at the 3’ end of the lagging strand to be compatible with 
the asymmetric nature of λ Red recombination [5]. 

The design tool will function similarly to JBEI’s j5 [6], accepting 
a list of (possibly degenerate) parts and generating the required 
primers, along with annotated GenBank files describing the 
expected products. Input sequences are given as annotations in 
GenBank files; sequence context is required to include a leader 
region in the initial PCR reaction to ensure compatibility with 
nested PCR, which increases yield and specificity for the 
integration cassette. The algorithm includes regions of homology 
to the genome in the integration primers to allow efficient and 
specific recombination on the chromosome. 

The tool will take into account best practices for Golden Gate 
assembly and warn about potential problems such as internal Type 
IIs restriction sites or off-target homology. Sticky ends will be 
designed such that non-adjacent parts have no more than 2 bp in 
common, and fragment sizes will be chosen to allow easy gel 
extraction of the product. 

The web interface for the tool will be accessible at 
http://goldenworm.genomics.lbl.edu where users can upload 
sequences and download the generated primers and recommended 
assembly and integration protocols. 

5. CONCLUSION 
We successfully developed an efficient and generalizable method 
for genomic integration of multi-gene libraries in E. coli. This 
method is capable of generating large combinatorial libraries for 
metabolic pathways, genetic circuits, or any other genetic 
constructs with design uncertainty that can be tested with genomic 
libraries. To date we have demonstrated up to five cycles of 
sequential integration. Future work will investigate experiment-
based optimization of fragment size to accommodate designed 
libraries with minimal losses in efficiency. 

The goal of the design tool is to make it easy for researchers to 
apply our assembly and recombination strategy to their own 
genomic library design and to allow integration with robotic 
automation. By providing it to the public, we hope it will 
accelerate engineering functionally complex systems in microbes.  
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Figure 2. A sampling of full vioABEDC pooled genomic 
library. The samples represent observed population diversity 
in growth rate, pigmentation and antimicrobial activities 
when the pathway is induced. 
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ABSTRACT 
We developed Scylax™ as a set of computational tools to design 
metabolic pathways from a starting metabolite to molecules of 
value to the chemical industry. To do so requires novel metabolic 
pathways not existing in nature and that are optimized for 
chemical production. The resulting pathways are rationally 
designed and novel, incorporating synthetic enzymes. At Arzeda, 
our ability to rationally design novel enzymes for potentially any 
reaction opens new avenues for cell factory design. Scylax™ will 
enable us to produce fine chemicals that can be difficult to 
synthesize and to ferment biomass at a scale required for our 
industrial needs.  

1. INTRODUCTION 
Arzeda genetically engineers yeast to make molecules of value to 
the chemical industry. We do so by engineering novel metabolic 
pathways in yeast to convert feedstock into the product. Our 
distinguishing characteristic is that we design enzymes that 
catalyze reactions not in found in nature. By incorporating 
computationally designed enzymes we can propose pathways 
from a broader search space than competitors, who rely on 
expression of heterologous enzymes. Furthermore, we can 
optimize for a high yield of product and offer unique solutions not 
available otherwise. Our potential solutions are tested 
experimentally to create novel cell factories, that are further 
developed in partnership with (petro)-chemical companies. 
However, the potential solution space for any given product of 
interest requires a computational methodology to identify putative 
pathways. In collaboration with KM, SG and HMS at the 
University of Washington we developed Scylax™ a set of 
databases, a computational engine and analysis interface (Redox 
UI) to find all pathways employing natural and designed enzymes 
for a given product.  

Initial steps in this direction have been taken previously. For 
instance, Mavrovouniotis[1] and more recently Hatzimanikatis 
and colleagues[2] have developed computational approaches to 
systematically  explore the diversity of complex metabolic routes 
from a starting point to a product. However, the methods are 
based solely on the type of chemistry that existing enzymes are 
known to catalyze (for instance, carbonyl reduction) and remain 
purely theoretical since the likelihood of (re)designing an enzyme 
having the desired substrate specificity is not considered.  

2. SCYLAX™ automated pathway prediction 
 

2.1 Natural Enzyme Reaction Database  
First, we leveraged current known data on enzymes and the 
chemical reactions they catalyze. We developed our in-house 
Natural Enzyme Reaction Database (NerdB) by aggregating and 
curating  data from public data resources known enzymes, the EC 

classification, the reactions they catalyze, and chemical and 
structural information for their substrates, and products.  

2.2 Generalized Enzyme Reaction database  
Next, we created the Generalized Enzyme Reaction database 
(GerdB) of reaction operators that generalize reactions in the 
Enzyme Classification (EC) nomenclature to the sub subclass 
level of EC numbers (e.g. 1.1.1).  A reaction operator for EC class 
1.1.1, for example, can be applied to any compounds containing a 
primary alcohol, which converts the functional group on the 
compound to an aldehyde. The operation tells us the enzyme class 
that could perform the reaction and will direct the potential design 
of novel activity for non-natural compounds by using Arzeda’s 
computational enzyme design technology. Each operator is 
manually curated and validated by Arzeda's expert biochemists 
enabling prediction of the chemical reaction, as well as the 
feasibility of design for the putative enzymes. 

2.3 Pathway enumeration engine 
2.3.1 Algorithm 
The goal of the Scylax™ algorithm is to exhaustively find 
metabolic pathways. The algorithm considers all natural and 
predicted enzyme reactions from the NerdB and GerdB as 
putative steps for a pathway. It proceeds by enumerating all 
pathways from a start compound to the product, subject to 
filtering methods: pathway length cutoff, and mass yield. 

2.3.2 Carbon yield  
We developed a method to eliminate paths that do not represent 
the direct chemical conversion of the starting compound to the 
product compound. In the majority of cases for metabolic 
engineering applications this is where the carbon atoms from the 
starting compound does not end up in the final product. To enable 
this filtering in the pathway enumeration algorithm we pre-
computed the number of shared carbon atoms between every pair 
of reactants and products. Our algorithm then uses this 
relationship to traverse only the relationships where the number of 
carbons shared is greater than a parameter value provided for each 
run. Adding a minimum cutoff of at least one carbon to filter the 
number of pathways returned has a significant effect. As an 
example of the effect of the carbon yield cutoff on the number of 
viable pathways returned from glyceraldehyde 3-phosphate to 
pyruvate and 3-phospho-D-glycerol phosphate to pyruvate is 
reduced by around 75-80% (where 100% represents the number of 
compounds returned where the carbon yield is 0). 

2.3.3 Top down and bottom up enumeration 
The combinatorics of running the complete enumeration from D-
glucose 6-phosphate to pyruvate to recover even the shortest 
natural pathway of 8 steps would take us many days to complete. 
Pyruvate is known to a play a key role in many major metabolic 
pathways and hence enumerating metabolic pathways that involve 



 

 

pyruvate will return many solution since pyruvate is a highly 
connected compound.  In a benchmark test for glycolysis we 
enumerated the last 5 steps of glycolysis – namely glyceraldehyde 
3-phosphate to pyruvate. To get an idea of the level of 
connectivity pyruvate has, we looked at the number of resulting 
pathways that were returned (with the minimum carbon yield set 
to zero), this enumeration returned in 73,031 pathways. 
Conversely, the first 4 steps of glycolysis going from D-glucose 
6-phophate to 3-phospho-D-glyceroyl phosphate only report 145 
pathways. Hence, we applied a simultaneous bottom-up and top-
down search with a limited number of enzymatic steps to more 
efficiently identify the pathways from D-glucose 6-phosphate to 
pyruvate Figure 1.  This approach requires the enumeration of all 
possible paths from a given compound for N steps. We repeat this 
enumeration for both the starting and ending compounds as the 
given. Finally, we create complete pathways by finding the 
overlapping compounds from both searches and enumerating the 
paths that result from their combination. Using this approach, we 
were able to recover the shortest natural pathway of 8 glycolysis 
steps along with the other expected natural pathways. 

 
Figure 1. Mockup (actual results too numerous to display) 
demonstrating pathways finding using top down bottom up 
approach used for highly connected compounds. 

2.3.4 Thermodynamic feasibility of pathways  
Thermodynamic profiles based on our implementation of 
Jankowski’s group contribution method[3]  of estimating the free 
energy of formation allow us to discriminate the putative paths. 
Cumulative ΔG of reaction plotted per step in the path enables us 
to exclude paths with unfavorable (dark blue line) predicted 
thermodynamic properties show in Figure 2.  

 
Figure 2. Putative 1,3 propanediol pathways predicted by 
Scylax™ 

2.4 Integration and benchmark 
We ran a set of benchmark pathways to test the path enumeration 
by demonstrating the ability to return expected paths present in 
literature and one in development at Arzeda under an earlier 

project. For our benchmark pathways we chose natural 
pathways: ethanol, 2,3-butanediol, and non-natural pathways: 
1,4-butanediol[4], 1,3-propanediol[5], levulinic acid (Arzeda 
proprietary pathway). We were able to recapitulate the correct 
sequence of known enzymes that complete each of the pathways, 
whilst also enumerating many other potential pathways using 
existing and novel enzymes. 

2.5 Example: fermentation to 1,4-butanediol  
We ran the path enumeration to recover the pathways from α-
ketoglutarate and succinate to 1,4-butanediol. These are 
Genomatica’s pathways as described in Yim et al. 2011[4]. We 
used this benchmark set of pathways to drive the development of 
Generalized Enzyme Reaction (GER) implementation. We 
defined a reaction operator for each step of the pathway as a GER 
and ran a benchmark test to recover the correct pathway using the 
full NER and only the GERs that are used in the pathways. We 
were able to recover the expected pathways from this reduced 
subset of GERs. As a more comprehensive test we ran the 
enumeration using the full NerdB and the full GerdB. Initially we 
found that due to the complexity of applying each reaction 
operator to the pool of new compounds generated, the 
enumeration would not complete in a timely manner. We adopted 
the simultaneous top-down, bottom-up search here also, we were 
able to recover both reference pathways for 1,4-butanediol 
pathway, starting from either succinate and α-ketoglutarate. 

3. PATHWAY VISUALIZATION  
An interactive user interface was needed to aid in the exploration 
of the numerous pathways generated by Scylax™. Redox UI is a 
web browser application designed to visualize and iteratively filter 
the predicted pathways. Redox allows us to distill meaningful 
results from the raw output of the enumeration algorithm. A 
screenshot of Redox’s rendering of pathways can be seen in 
Figure 1 and Figure 2. 

4. CONCLUSIONS 
Our development and benchmarking of Scylax™ establishes a 
proof-of-concept for automated pathway design that generates 
libraries of feasible pathways from the information contained in 
natural and designed enzyme databases. Already, we have begun 
using the Scylax™ tools at Arzeda to generate leads for targets on 
projects internally and with partners.  Going forward Scylax™ 
will also help us to refactor pathways with new enzymatic steps or 
to remove unnecessary steps.  
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1. INTRODUCTION
The current synthetic biology design-build-test cycle is

slow and tedious. Unlike most engineering fields, parts and
specifications in synthetic biology are not clearly defined,
making reproducibility and optimization in the area a real
challenge. Aquarium is a system developed in the Klavins
lab for high-throughput, reproducible, semi-automated pro-
tocol execution in the wetlab. Our objective is to take ad-
vantage of Aquarium’s potential for high-throughput experi-
mental characterization, to explore combinatorially-constructed
genetic regulatory networks. We are working to create a
framework for systematically learning the map from a ge-
netic circuit design space to its behavior space using experi-
mental data. Having such a map can lead to more accurate
predictions about the behavior of new synthetic designs, and
can therefore provide researchers with a minimal set of ex-
periments for reaching a specific design goal. We introduce
a Design Recommendation Tool (DRT) to assist designers
with gene network design for a pulse generation circuit using
a library of promoters and repressors.

2. DESIGN RECOMMENDATION TOOL
Our envisioned framework of a closed-loop and mostly au-

tomated design, build, test cycle in synthetic biology con-
sists of three main portions. The build and test portion of
the cycle is implemented by Aquarium. The design portion,
the DRT, takes as input a design goal and outputs a set of
designs to build. The compile portion, currently being de-
veloped by N.bolten and L.Adams also of the Klavins lab,
compiles those designs into an actual build strategy which
is then sent to Aquarium. Aquarium then sends back any
characterization data of those designs back to the DRT.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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permission and/or a fee.
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.

2.1 Specifications
The user must enter as inputs to the DRT the design goal

specification along with a design grammar specification[1].
The design goal specification is defined as the desired behav-
ior of the system in question at its final output. In addition,
the user must provide a definition for the parts of the system
and how they fit together structurally. In other words, the
user must input the grammar of a design.

The DRT takes as additional input the experimental char-
acterization data of designs returned by Aquarium. The
user must specify the type of data it expects in order to
meet the design goal requirements. The DRT outputs a set
of designs to implement as terminal implementations of the
insert grammar G.

2.2 Approach
We are particulary interested in how the parts in a sys-

tem affect the up-regulation or down-regulation of a gene.
Our method is a parameter and model inference approach to
learning circuit behavior; as such, the learned model is cur-
rently defined as an array of all possible parameters in the
system, i.e the parameters to the following master equation:

ġa =

I−1∑
i=0

J−1∑
j=0

(Da+1,j+1 · 00
Ni+1 · Lj,i

1 + ki,jgi
) − ga (1)

which, when evaluated for a = 0, 1, 2, generates a set of
ODEs for each design Da,j . In the above equation, N is
an array representing the number of promoters promoting a
specific gene, i.e the sum of each row in D. Lj,i represents
the expression rate of a promoter Pj promoting gene gi. The
parameter ki,j represents strength of repression by a gene gi
in the design.

The DRT combinatiorally assemble the entire design space
and generates all the respective ODEs/parameter sets for
each design. It begins by doing Bayesian model inference
using the ABC-sysbio package across all three-cassette de-
signs under consideration [2]. The Joint PDF should show
that with no priors/intial knowledge of any parameters any
of the potential final designs could have generated the de-
sired behavior data set (Figure 2a). The DRT then chooses
the simplest set of designs with the most to learn from (min-
imizing uncertainty in parameters). It submits these de-
signs to Aquarium to build and test. The DRT uses the re-
turned characterization data from Aquarium and performs
Bayesian parameter inference (again using ABC-sysbio) on
each design. The global parameter priors are then updated
and model inference is redone with new parameters. It con-
tinues iterating until there is a clear preferance for one (or



Figure 1: Desired pulse-generating behavior of the
GFP reporter (G0), for a genetic circuit consisting
of three genes (G0,G1,G2).

a few) final three-cassette designs for generating our ideal
behavior dataset and then build/test those final designs.

3. PRELIMINARY RESULTS
To validate the DRT approach, we developed a test envi-

ronment to confirm that our tool can learn and uncover the
optimal pulse-generating genetic circuit in simulation, hav-
ing no prior information about how the genetic parts behave,
before applying it to true experimental data.

3.1 Test Environment
Our goal is to determine how to optimally construct a syn-

thetic pulse-generating circuit matching the exact behavior
specification in Figure 1, using a library of repressors and
promoters (the behaviors of which are initially unknown).
The rules for composing a design are written in the form
of a design grammar to generate the set of all designs that
contain only one promoter-reporter cassette followed by any
number of promoter-gene cassettes, as can be filled in by the
given parts library.

For our preliminary testing we limit the large combinato-
rial design space to only a few design circuits. In particular,
we only have two potential candidates for final designs, one
of which (model 1) is the model we used to generate the
behavior in Figure 1.

3.2 Uninformed Design Selection
Because the parameter set is so large at the level of three-

cassette designs, using our master equation, model selection
with uninformed priors on the parameters leads to mixed
results and no strong indication of which model could pro-
duce our desired behavior. Figure 2a below shows the joint
probability distribution resulting from an ABC-sysbio run
of our candidate models with no informed priors.

3.3 Informed Design Selection
The DRT’s approach to model selection is sequential, and

for each iteration attempts to reduce uncertainty in the pa-
rameters of the candidate models using the simplest circuits
it can build/test. Figure 2b shows clear model selection of
model 1 (the model which intially generated the data) af-
ter uncovering more definitive parameter priors in previous

Figure 2: This shows the joint model distributions
of the two candidate models to have generated our
desired data. Model 1 (the system that actually
generated the data) is appropriately chosen only af-
ter having had informed priors. Without informed
priors, the system cannot determine which model
generated the data. (a) Model selection with unin-
formed parameter priors. (b) Model selection with
informed parameter priors, given by iterative DRT
parameter inference

rounds of inference.

4. FUTURE WORK
Our current preliminary results is only a first pass at val-

idation of the system. There remains a substantial amount
of work to validate the iterative DRT framework. Impor-
tantly, a better distance function will need to be used dur-
ing the inference cycles. We will also need to accomodate
much more of the existing design space to really test out
the algorithm. Additionally, we are currently working to
reproduce the pulse-generating circuit experimentally using
the CRISPR system, and are in the process of interfacing
the DRT to Aquarium to apply the same model inference
framework in a real lab scenario [3]. We hope to use the
DRT to aide physical construction of new genetic circuits
with a variety of desired dynamic and steady state behav-
iors.
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Categories and Subject Descriptors 
D.2.2 [SOFTWARE ENGINEERING]: Design Tools and 
Techniques 

1. INTRODUCTION 
CAD (computer-aided design) software enables engineers to 
rapidly prototype and codify designs within the constraints of 
their field, including synthetic biology. There are two distinct 
classes of CAD software in synthetic biology: visual design tools 
and programmatic libraries and languages [4].  
Visual design tools for DNA constructs were already established 
prior to the development of the field of synthetic biology and have 
largely consisted of advanced text editors that constrain the 
alphabet (e.g. A, T, G, and C) used, allow user-defined tagging of 
functional regions, and display those features on a linear or 
circular map (VectorNTI [11], Geneious [7], TinkerCell  [3], 
Benchling.com, j5 [8], and Geneious). Visual CAD tools offer a 
gradual learning curve and immediate visual feedback for design 
choices and as a result are ideal for exploratory design. The other 
class of synthetic biological CAD software is domain-specific 
languages, some visual and some programmatic. These tools aim 
to provide further levels of abstraction, allowing user-defined 
semantics, grammars, and constraints to be defined over a set of 
parts (Eugene [2], GenoCAD [6]). In addition, there are scientific 
software libraries that are often used for synthetic biological CAD 
tools such as the many core biological libraries (Biopython [5], 
BioPerl [12], BioJava [10]). However, because they were 
originally intended for sequence analysis, common design tasks 
(for example, primer design and restriction digest) are often 
unavailable or poorly maintained.  
Programmatic tools offer a steeper learning curve than visual 
CAD tools, but are more expressive in the complexity of what 
designs can be specified and enable higher levels of abstraction. 
In addition, source code for biological designs provides a 
reviewable specification of a design strategy, serving as both 
documentation and reproducible, extensible software. Despite the 
power and usefulness of programmatic tools, there is currently no 
standard library or language for both describing and operating on 
DNA at the level of exact sequences; existing high-level 
frameworks such as Eugene, GenoCAD, and Proto [1] leave 
specification of sequences up to the user. As a result, the core data 
types and operations on DNA (and RNA) tend to be 
reimplemented for each project, sitting ”under the hood” and 
largely unavailable to the designer. Despite the lack of a standard 
programmatic CAD tool for doing so, design at the sequence level 
is ubiquitous in synthetic biology.  
Here, we propose to address this lack of a DNA language by 
introducing pymbt, a proof of concept Python library that enables 
the concise expression of sequence-aware data types and the 
operations on them. By relying on the high-level scripting 

language of Python, data types for DNA, RNA, and Peptides have 
had their common logic and operation functions such as 
concatenation and subsetting redefined, providing a language-like 
abstraction layer on top of a popular scientific programming 
language. pymbt provides a set of data types and functions 
representing the core processes of synthetic biology that can be 
(and have been) extended to express custom synthetic biological 
design algorithms. In addition, pymbt comes with modules 
representing common operations on nucleic acids that produce 
new sequences (the reaction module) as well as de-novo sequence 
generators (the design module)  

2. BODY 
2.1 Language domain, data types, and core 
functions  
The core data type of pymbt is a sequence (The BaseSequence 
class) upon which DNA, RNA, and Peptide data types are 
modeled. Biological sequences are represented as strings (or in the 
case of double-stranded DNA, sets of strings) for which a limited 
alphabet is defined: for DNA, {ATGCN}, for RNA, {AUGCN}, 
and the 20 proteinogenic amino acids for Peptides. Initialization 
of the data types is simple, requiring only a valid string:  
my_dna	
  =	
  pymbt.DNA(”ATGC”)	
  	
  
my_rna	
  =	
  pymbt.RNA(”AUGC”)	
  	
  
my_peptide	
  =	
  pymbt.Peptide	
  (”MSQQG”)	
  	
  
Through slight modifications of the base library, DNA and RNA 
could be made aware of the less-common ambiguous alphabets 
that include all combinations of A, T, G, and C of size less than 
three (for example, R, representing any purine (G or C)). All 
sequences are aware of sets of features-annotations describing 
subsets (usually functional domains) of the sequence. On top of 
these basic data structures, all sequences have had their common 
operators overriden with custom, sequence-aware behaviors. For 
example only sequences of the same type can be concatenated 
with the + operator and the subset operation (slicing, done using 
square brackets in Python [ ]) is aware of both strands of a double- 
stranded DNA sequence.  
my_dna	
  +	
  my_dna	
  	
  
[1]	
  ATGCATGC	
  	
  
my_dna[0:2]	
  	
  
[2]	
  AT  
Concatenating linear and circular DNA has been abolished, as it 
violates the topology of the strands. Multiplying sequences by an 
integer results in repetition of that integer and is implemented 
using the smallest number of concatenations. In addition to 
overriden operator behavior, the sequences data types include core 
methods (functions) representing common design operations that 
produce a new, modified copy of the sequence. For example, the 
DNA data type includes methods that modify its topology 
(circular or linear), reverse complement the sequence, calculate 
the GC content or melting temperature, insert sequences, 



searching within a sequence, and compare for equivalence to 
rotated sequences, among others. In addition to these core 
sequence data types, specialized cloning types have also been 
defined to include primers, fragments, and restriction enzymes. 
From this base, a large variety of designs can be specified with 
concise syntax, including the built-in reaction and design 
modules.  

2.2 The reaction module  
The reaction module includes functions that operate on sequences 
to produce new sequences, chiefly the processes of the central 
dogma (transcription, translation) and common cloning reactions 
(PCR, restriction digest, Gibson assembly, and oligonucleotide 
assembly). All of the functions are available at the top level of the 
module, so the syntax for producing a peptide sequence from a 
(valid) open reading frame is:  
x.dna	
  =	
  pymbt.DNA(”ATGGGAGTGCGATAG”)	
  	
  
x.rna	
  =	
  pymbt.reaction.transcribe(x.dna)	
  
x.peptide	
  =	
  pymbt.reaction.translate(x.rna)	
  	
  
	
  
x.peptide	
  	
  
[1]	
  MGVR  
2.3 The design module  
The design module is primarily concerned with generating de 
novo sequences commonly required for computational sequence 
design, including uniformly random sequence generation of any 
length (design.random_dna), codon-biased DNA sequence 
generation from a peptide (design.random_codons), and melting-
temperature and dimer-avoiding based primer design, including 
automatic Gibson assembly primer generation.  

2.4 Other modules  
pymbt includes other modules used by the main reaction and 
design modules or extending pymbt’s functionality. They are the 
analysis module, constants module, database module, and seqio 
module. They use NuPACK [13], Vienna RNA [9], Rebase, 
Intermine, Entrez. Finally, the seqio module enables pymbt to 
read and write sequences in common formats.  

2.5 A design example  
The following function written with pymbt facilitates the fusion of 
an ORF consisting of a native Saccharomyces cerevisiae (yeast) 
gene with its stop codon removed to a protein of interest. For this 
task, the sequences surrounding the stop codon of user-defined 
genes must be extracted from a set of chromosomes (a list of 
sequences obtained from the Entrez module):  

 
This function iterates over each chromosome, looking for a 
feature with the specified name. Once found, the stop codon is 
removed and the regions 1000 bp before and after the stop codon 
are isolated. In downstream code, these sequences were used to 
generate a small library of integrating plasmids that efficiently 

tagged native yeast genes with proteins of interest.  

3. CONCLUSIONS  
Because the data types begin at basic unit of synthetic biology, 
biological sequences, pymbt represents a fully bottom-up 
approach to synthetic biological design. In fact, the re- action and 
design modules are fully-implemented using only the core data 
types, constants module, and analysis module, and demonstrate 
the extensibility of the system. Demonstrating extensibility and 
expressiveness, pymbt has already been used to generate design 
algorithms for yeast integration plasmids, yeast knockouts, 
degenerate peptide linkers, and complete end-to-end plasmid 
mockup, primer design, construction approach validation, and 
sequencing result analysis workflows. Because pymbt has been 
written in Python, it can be (and in some cases, already has been) 
extended to work with a large ecosystem of existing scientific 
libraries, enabling diverse sources of data and sequences or even 
automated submission of designs to genetic part synthesis 
companies. Finally, by operating at the level of sequence design, 
pymbt provides a way for researchers to rapidly develop shareable 
design strategies using operations analogous to those of visual 
CAD tools.   
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